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Abstract. The well-known geometric-arithmetic index is a famous topological index was de-
fined as GA(G) = ∑uv∈E(G)

2
√

du dv
du+dv

, where du = deg(u) in G. By replacing δu = ∑v∼u dv instead of du in

GA(G), we have a new version of this index that defined as GA5(G) = ∑uv∈E(G)
2
√

δu δv
δu+δv

. In this paper,
we present exact formulas of these indices for some benzenoid graphs.
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1 Introduction

Let G be a simple connected graph. A graph is a collection of points and lines connecting
a subset of them. The points and lines of a graph also called vertices and edges of the graph,
respectively. In chemical graph theory, the vertices and edges of a graph also correspond
to the atoms and bonds of the molecular graph, respectively. If e is an edge/bond of G,
connecting the vertices/atoms uand v, then we write e = uv say ” u and v are adjacent”.
Chemical graph theory is an important branch of graph theory and Mathematical chemistry,
which applies graph theory to mathematical modeling of chemical phenomena [7, 9, 10, 12].
A chemical topological index is a numeric quantity from the structural graph of a molecule
and is invariant on the automorphism of the graph. The concept of geometric-arithmetic
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indices was introduced in the chemical graph theory. These indices generally are defined as:

GAgeneral(G) = ∑
uv∈E(G)

2
√

Qu Qv

Qu + Qv
,

where Qu is some quantity that in a unique manner can be associated with the vertex u of
graph G. The first member of this class was considered by Vukičević and Furtula [11], by
setting Qu to be du, we have:

GA(G) = ∑
uv∈E(G)

2
√

du dv

du + dv
,

in which du denotes the degree of vertex u in G, namely, the number of its neighbors G.
The second member of this class was considered by Fath-Tabar et al. [2], by setting Qu to

be the number nu of vertices of G lying closer to the vertex u than to the vertex v for the edge
uv of the graph G,

GA2(G) = ∑
uv∈E(G)

2
√

nu nv

nu + nv
.

The third member of this class was considered by Bo Zhou et al. [14], by setting Qu to be
the number mu of edges of G lying closer to the vertex u than to the vertex v for the edge uv
of the graph G,

GA3(G) = ∑
uv∈E(G)

2
√

mu mv

mu + mv
.

The fourth and fifth members of this class was considered by Ghorbani et al. [3,4], by
setting Qu to be εu, the eccentricity of vertex u (the largest distance between u and any other
vertex of graphs) and δu, the summation of degree of neighbors of vertex u,
GA4(G) = ∑uv∈E(G)

2
√

εu εv
εu+εv

and GA5(G) = ∑uv∈E(G)
2
√

δu δv
δu+δv

.
For a comprehensive survey of the mathematical properties and chemical properties of

these indices see papers series and books [1, 5, 6, 8, 13].
A benzenoid system is a connected geometric figure obtained by arranging congruent

regular hexagons in a plane, so that two hexagons are either disjoint or have a common edge.
Benzenoid graphs are simple, plane, and bipartite. The vertices lying on the border of the
unbounded face of a benzenoid graphs are called external and other vertices, if present, are
called internal. In this paper, we focus on the first and fifth geometric-arithmetic indices are
computed them for some benzenoid graphs.

2 Results

In this section, we compute first and fifth geometric-arithmetic indices for some ben-
zenoid graphs as shown in Figure 1.

The first class of benzenoid graphs we consider is triangular benzenoids such as shown
in Figure 1. We denote this graph by Tn in which n is the number of hexagons in the base
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Figure 1. The benzenoid graphs T4, R4 and X4 from left to right.

of graph. Obviously, the total number of hexagons in Tn is n(n+1)
2 . Also Tn, has |V(Tn)| =

n2 + 4n + 1 vertices and |E(Tn)| = 3
2 n(n + 3) edges.

Theorem 2.1. For graph Tn we have

GA(Tn) =
3
2

n(n − 1) + 6 +
12
√

6
5

(n − 1),

GA5(Tn) =
3
2

n(n − 3) + 3 +
√

35 +
8
√

5
3

+
12
√

42
13

(n − 2) +
9
√

7
8

(n − 1).

Proof. Let mij is an edge that connects a vertex of degree i to a vertex of degree j. So in graph
Tn for external vertices we have |m22| = 6, |m23| = 6(n − 1) and for internal vertices that all
of them are from degree 3, |m33| = 3

2 n(n − 1), then we have

GA(Tn) =
3
2

n(n − 1) + 6 +
12
√

6
5

(n − 1).

For compute GA5(Tn), we partition the edges of graph into five subsets. All of m22edges
have a vertex u with δ(u) = 5 and a vertex v with δ(v) = 6. In m23 edges, we consider two
cases: one set is contain edges with δ(u) = 5and δ(v) = 7, that these edges have a common
vertex with a m22. So the number of these edges are equal to 6. Other edges with two external
vertices have δ(u) = 6 and δ(v) = 7, that the number of these edges are equal to 6(n − 2).
Edges with an external vertex and an internal vertex are equal to 3(n − 1)and have δ(u) =
7and δ(v) = 9. Finally the number of edges with two internal vertices are 3

2 n(n − 3) + 3 and
δ(u) = δ(v) = 9. Then we have

GA5(Tn) =
3
2

n(n − 3) + 3 +
√

35 +
8
√

5
3

+
12
√

42
13

(n − 2) +
9
√

7
8

(n − 1)

which completes the proof.

A benzenoid rhombus Rn is obtained from two copies of a triangular benzenoid Tn by
identifying hexagons in one of their base rows that is shown in Figure 1. Consequently,
|V(Rn)| = 2n(n + 2) and |E(Rn)| = 3n2 + 4n − 1.
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Theorem 2.2. or graph Rn we have

GA(Rn) = 3n2 − 4n + 7 +
16
√

6
5

(n − 1),

GA5(Rn) = 3n2 − 8n + 7 +
8
√

20
9

+
4
√

35
3

+
16
√

42
13

(n − 2) +

√
63
2

(n − 1).

Proof. The proof is similar to that of Theorem 2.1.

Third benzenoid graph that we consider is benzenoid hourglass. A benzenoid hourglass
Xn is obtained from two copies of Tn by overlapping their extremal hexagons in the way
shown in Figure 1. The number of vertices and edges of Xn is given by |V(Xn)| = 2(n2 +

4n − 2) and |E(Xn)| = 3n2 + 9n − 4.

Theorem 2.3. For graph Xn we have

GA(Xn) = 3n2 − 3n + 12 +
8
√

6
5

(3n − 4),

GA5(Xn) = 3n2 + 9n + 10 +
16
√

20
9

+
16
√

35
12

+
24
√

42
13

(n − 2) +
12
√

63
16

(n − 1).

Proof. The proof is similar to Theorem 2.1.

Corollary 2.4. For benzenoid graphs in Figure 1 we have the following statements

GA(Rn)− GA(Tn) ≈ 1.5n2 − 0.5404n − 0.9596,

GA(Xn)− GA(Tn) ≈ 1.5n2 + 4.3788n − 3.798,

GA(Xn)− GA(Rn) ≈ 4.9192n − 2.8384,

GA(Xn)− 2GA(Tn) ≈ −3.9192,

GA5(Tn)− GA(Tn) ≈ 0.0801n − 0.1834,

GA5(Rn)− GA(Rn) ≈ 0.1074n − 0.2193,

GA5(Xn)− GA(Xn) ≈ 18.160n − 0.366.

Corollary 2.5. Let Gn be one of the benzenoid graphs Tn,Rn or Xn, we have

lim
n→∞

GA(Gn)

GA(Gn−1)
= 1.

In Table 1, we compute GA(G) and GA5(G) for three graphs in Figure 1, (2 ≤ n ≤ 7).
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Table 1.
n GA(Tn) GA(Rn) GA(Xn) GA5(Tn) GA5Rn) GA5(Xn)

2 14.879 18.838 25.838 14.856 18.832 61.792
3 26.758 37.677 49.596 26.814 37.776 103.71
4 41.636 62.515 79.354 41.774 62.721 151.63
5 59.515 93.354 115.11 59.731 93.667 205.54
6 80.394 130.19 156.87 80.691 130.61 265.46
7 104.27 173.03 204.63 331.38 173.56 331.38
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