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ABSTRACT. The eccentric connectivity index of a graph is defined as (Γ)=uV(Γ)degΓ(u)e(u), 
where degΓ(u) denotes the degree of the vertex u in Γ and e(u) is the eccentricity of vertex u. 
In this paper, the modified eccentric connectivity index of two infinite classes of fullerenes is 
computed. 
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1. INTRODUCTION  
Throughout this paper, all graphs are simple and connected. The vertex and 

edge sets of graph Γ are denoted by V(Γ) and E(Γ), respectively.  
For two vertices x,yV(Γ) the distance d(x,y) is defined as the length of a 

shortest path between them. The eccentric connectivity index of the molecular graph 
Γ, was proposed by Sharma et al. [12]  as 

ξ


 Γ(Γ)
(Γ) deg ( ) ( ),

u V
u e u                                                  (1) 

where degΓ(u) denotes the degree of vertex u and ( ) max{ ( , )| (Γ)}e u d u x x V  , see 
[1,2,3,7,10] for details. The eccentric connectivity polynomial of a graph Γ defined by 
Ghorbani et.al [8] as 

( )
Γ(Γ)

(Γ, ) deg ( ) .e u
u V

ECP x u x


                                             (2) 

Then the eccentric connectivity index is the first derivative of ECP(Γ,x) 
evaluated at x = 1. 
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Došlić et al. [4] defined the total eccentricity of the graph  as follows: 

Γ

Θ Γ


 
( )

( ) ( )
u V

e u .                                                         (3) 

An automorphism of graph  is a bijection α on V() with this property that 
e=xy is an edge if and only if ( ) ( ) ( )α e α x α y  is an edge. The set of all automorphisms 
under the composition of mappings as an operation forms a group and we denote it by 

Γ( )Aut .  
2. RESULTS AND DISCUSSIONS 

Graovać and Pisanski in [6] defined an algebraic version of Wiener index and 
they called it as modified Wiener index. Here, by following their work , we can define 
an algebraic approach for generalizing the eccentric connectivity index by 
automorphism group of the graph under consideration. We call this new version of 
eccentric connectivity index as symmetric eccentric connectivity index or modified 
eccentric connectivity index. Assume that  is a graph with automorphism group 

Γ( )Aut , then the modified eccentric connectivity index of  is defined as:  

Γ
ξ



  Γ
( )

ˆ ˆ(Γ) deg ( ) ( ),
u V

u e u                                                 (4) 

where α α ˆ( ) max{ ( , ( ))| (Γ)}.e u d u u Aut  The modified-total eccentricity then can be 
defined as 

Γ
Θ

( )
ˆ ˆ(Γ) ( ).

u V
e u


  For the k-regular graph  those two quantities are 

related as Θξ 
 ˆ(Γ) (Γ)k . 

Theorem 1. [9] Let  is a graph with automorphism group Aut Γ( )  and vertex set 
V(). Let V1, V2, …, Vk be all orbits of action Γ( )Aut  on V(). Then 

Γξ



1

ˆ ˆ(Γ) | (Γ)|deg ( ) ( )
k

i i i
i

V v e v ,                                          (5) 

where vi is an arbitrary vertex of Vi. 
Corollary 2. [9] Let  is a vertex-transitive graph, then ξ ξˆ(Γ) (Γ).  

For given graph , the difference between eccentric connectivity and modified 
eccentric connectivity indices can be defined as follows: 

  ˆ( ) ( ) ( ).ε Γ ξ Γ ξ Γ                                                       (6) 
By Corollary 2, it is clear that for a vertex-transitive graph, we have ε (Γ) 0.  In 
general, the difference number determines the number of orbits of a graph under the 
group automorphism action. In other words, if the action of automorphism group of 
graph on the set of vertices has one orbit, then clearly the difference number is zero 
and the maximum possible of orbits which is equal with the number of vertices yields 
the maximum value of difference number. It should be noted that this value is not 
necessary a positive integer and it may be a negative. However, it seems that this 
value is zero if the considered graph is vertex-transitive and we left it as an open 
problem.  
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Example 1. It is easy to see that the symmetry group of complete graph Kn is 
isomorphic to the symmetric group Sn and so Kn is vertex-transitive with 
ξ  ˆ(K ) ( 1)n n n . Thus Corollary 2 implies that ε( ) 0.nK   

Example 2. Let 
1 2,n nK  is a complete bipartite graph on 1 2n n n   vertices, if 

1 2 / 2n n n  , then /2, /2n nK  is vertex-transitive and Corollary 2 yields that 

/2, /2( ) 0.n nKε   In addition, if 1 2n n , 
1 2,n nK  is not vertex-transitive and clearly 

1 2 1 2, , 1 2
ˆ( ) ( ) 4n n n nK K n nξ ξ  . This means that 

1 2,( ) 0.n nK ε  

Example 3. Let Pn is a path on n vertices, it is not difficult to see that the symmetry 
group of Pn is isomorphic with cyclic group 2 α�  where 

 
 

1 2 1 1 2 3 2
1 2 1 2 3 2

       





( )( ) ( )/ ( )/
.

( )( ) / ( )/
n n n n n is odd
n n n n n is even

 

If n ≥ 2 is even, then 

 


            

( /2) 1 2 2

1
ˆ( ) 2( 1) 4 (2 1) 2( 1) 4 ( / 4) 1 2 2,

n
n

i
P n i n n n n n  

and if n ≥ 3 is odd, then  
  



             
/2 1

2

1

ˆ( ) 2( 1) 4 (2 ) 2( 1) 4 /2 /2 .
n

n
i

P n i n n n  On 

the other hand, by a direct computation, one can see that for n ≥ 2 and even, 
   2( ) (3 /2) 3 2nP n n  and for n ≥ 3 and odd, nP n2( ) 3( 1)/2.   Hence, 

 

 
  

          
22

( / 2) 1
( ) .

(3 1)/ 2 4 / 2 / 2 5

n n n is even
ε Γ

n n n n n is odd
 

Example 4. For the Cartesian product of a path and a cycle on n vertices, the eccentric 

connectivity and modified eccentric connectivity indices, can be computed as follows: 

1) If n is even, then 
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 

    

( ( ) /

1

2

2

2) 1| ( )|( ) 2 | ( )| 3 | ( )| 4 | ( )|
2

2 3 1 ( / 2) 4 5 / 8) (( / 4) 1

(5 5

7

2),

nE C
n

n n n n n
i

E CP C V C E P E P i

n n n n n

n n n





               

   



 





     

( ( )/

2

1

2

2) 1| ( )

( ( / 2) 1

(4 3

| | ( )|ˆ( ) 2 | ( )| 3 | ( )| 4 | ( )| 2
2 2

2 3 1 (

2)

/ 2) 4 / 2) 3

.

nE C
n n

n n n n n
i

n n

n n

E C E CP C V C E P E P i

n n n

n





                      

   



 

 



 

2) If n is odd, then 

 
 

    
 

     

| ( )|/2 1

1

/2 1

1

2

| ( )|( ) | ( )| 2 3 | ( )| 4 | ( )| 4 | ( )|
2

2 3 1 /2 4 1 2( 1)

/2 /2 /22 (2 4 3 1),

nE C
n

n n n n n n
i

n

i

E CP C V C E P E P i E P

n n n

n n n

n i n

n n n









                        
 



 

        
 

  







 

     
 

 

   

( )/2 1

1

/2

2

1

1

( ) ( ) ( )ˆ( ) | ( )| 2 3 | ( )| 4 2 4
2 2 2

2 3 1 / 2 4 / 2 2 2

8 1

/ 2

6 / 2 .
3

/ 2

nE C
n n n

n n n n
i

n

i

E C E C E CP C V C E P i

n n n n i n

n n nn









                                       



 
 

       
 
   











Thus, by using the definition of difference number, we have 

    
 






 


2 2

2

2

4 4 3 1

( ) |2
( ) .

/ 2 / 2 | 2n n

n n
P C

n n n

n n

n n n
 

Example 5. Let nS  is a star graph on n vertices, then the vertices of nS  can be divided 
in to sets. The vertex of degree 1n  composes a singleton orbit and the other vertices 
compose the second orbit. This means that the automorphism group of nS  is 

isomorphic with symmetric group ( 1)Sym n . Hence, ˆ( ) 2( 1)nS n   . On the other 



MODIFIED ECCENTRIC CONNECTIVITY INDEX OF FULLERENES 
 

5 
 

Journal of M
athem

atical N
anoScience

 

hand ( ) 3( 1)nS n   . Thus, nε S n( ) 1  . Similarly, for Wheel graph nW  on n vertices 
  ˆ( ) 7( 1)nW n  and   ( ) 6( 1)nW n . Then we conclude that  ( ) 1nε W n . 

3.  Application in fullerene graphs 
A graph is called three regular or cubic, if the degree of each vertex is three. It 

is said to be 3-connected, if there does not exist a set of two vertices whose removal 
disconnects the graph. A planar, cubic and 3-connected graph is called a fullerene 
graph if all faces are pentagons and hexagons. The importance of fullerene graphs is 
for their applications in fullerene chemistry. This new topic has been developed after 
pioneering work of Kroto et al. [11]. The mathematical properties of fullerene graphs 
are a new branch of nanoscience started by pioneering work of Fowler et al. in [5].  

The aim of this section is to compute the modified eccentric connectivity index 
for two classes of fullerenes, namely fullerene series 20 4nF  (n≥3) and 20 6nF   (n≥4), see 
Figures 1,3 respectively. The symmetry group of the fullerene 20 4nF  is 2 . The 
symmetry group of fullerene graph 20 6nF   is isomorphic to non-cyclic abelian group 

2 2  , when n=5i-1 (i≥1) and otherwise it is isomorphic with cyclic group 2 . 
 

 

 
Figure 1. 2-D and 3-D graph 20 4nF for n = 3. 
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Figure 2. 2-D and 3-D graph 20 6nF  for n = 4. 
 
In Table 1, the eccentric connectivity of fullerenes 20 4( )nFξ   are computed, 

3≤n≤16. For n≥17 we have the following theorem for the eccentric connectivity of this 
class of fullerenes. 

 
Theorem 3. The eccentric connectivity of the fullerene 20 4nF   (n≥17) is 

ξ    2
20 4( ) 90 84 45.nF n n                                                        (7) 

Proof. By means of group action of automorphism group of 20 4nF  on the set of 
vertices, one can see that there are five types of vertices of fullerene graph as reported 
in the following table, see also Figure 3. 
 

Types of vertices ( )e u  No. 

Type 1 2n+2 7 

Type 2 2n+1 11 

Type 3 2n 16 

Type 4 n+1 10 

Type 5 2n-i (1≤i≤n-2) 20 
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1

2

3
4

5

 

Fig. 3. Five different types of vertices in fullerene 20 4nF  , where n≥17. 

n ξ 20 4( )nF  n ξ 20 4( )nF  

3 1740 10 10317 
4 2724 11 12141 
5 3699 12 14205 
6 4773 13 16449 
7 5949 14 18927 
8 7257 15 21588 
9 8673 16 24444 

Table 1. The eccentric connectivity index of 20 4( )nFξ   for 3≤n≤16. 

By continuing this method, the eccentric connectivity polynomial of the 
fullerene 20 4nF   (n ≥17), can be computed as follows (see Fig. 3): 

2 1
2 1 2 2 2 1 2 1

20 4
1( , ) 60 21 33 48 30 .

1

n
n n n n n

n
xECP F x x x x x x

x


   




    


 

Thus, ξ 2
20 4( ) 90 84 45nF n n     and the proof is completed. 

Theorem 4. For the fullerene graph 20 4nF  for 17n , we have 
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ε 


 



 

2

2 4 20

90 216 3
( )

15
90 16 261

.
2n

n is even
F

n is odd
n n
n n

 

Proof. By applying the methods of [1,4] for n ≥ 3 we have: 

ξ 


  

20 4

27300ˆ( ) .
0

216300n

n is even
F

n is odd
n
n

                                         (8) 

The proof can be resulted from Eq.(7) and Eq.(8). 
Theorem 5. The eccentric connectivity of the fullerene nF20 6  (n≥17) is 

nF n n2
20 6( ) 90 96 54.   ξ                                                        (9) 

Proof. By means of group action of automorphism group of nF20 6 on the set of 
vertices, one can see that there are five types of vertices of fullerene graph as reported 
in the following table, see also Fig. 4. 
 

Types of vertices ( )e u  No. 

Type 1 2n+2 8 

Type 2 2n+1 12 

Type 3 2n 16 

Type 4 n+1 10 

Type 5 2n-i (1≤i≤n-2) 20 

 
By continuing this method, the eccentric connectivity polynomial of the fullerene 

nF20 6  (n ≥17), can be computed as follows (see Fig. 4): 
n

n n n n n
n

xECP F x x x x x x
x

2 1
2 1 2 2 2 1 2 1

20 6
1( , ) 60 24 36 48 30 .

1


   




    


 

Thus, nF n n2
20 6( ) 90 96 54   ξ  and the proof is completed. 

Theorem 6. For the fullerene graph 20 6nF   for 17n , we have 

n nF n2
20 6( ) 5090 58 .4 8   ε  

Proof. By applying the methods of [1,4] for n ≥ 4 we have: 

20 6
ˆ( ) 600 534.nF nξ                                                 (10) 

The proof can be resulted from Eq.(9) and Eq.(10). 
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2
3

45

 

Fig. 4. five different types of vertices in fullerene nF20 6 , where n≥17. 

n 20 6( )nFξ   n 20 6( )nFξ   

4 2838 11 12288 
5 3774 12 14364 
6 4854 13 16620 
7 6030 14 19110 
8 7368 15 21780 
9 8796 16 24648 

10 10452   

Table 2. The eccentric connectivity index of nF20 6( )ξ  for 4≤n≤16. 

 

4. CONCLUSION 
In this paper, we computed the modified eccentric connectivity index of two infinite 
families of fullerene graphs and then we obtained the difference between eccentric 
connectivity and modified eccentric connectivity indices.  
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