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ABSTRACT. Fullerenes are carbon-cage molecules in which a number of carbon atoms are 
bonded in a nearly spherical configuration. The connective eccentric index of graph G is 
defined as C(G)= aV(G) deg(a)ε(a)-1, where ε(a) is defined as the length of a maximal path 
connecting a to another vertex of G. In the present paper we compute some bounds of the 
connective eccentric index and then we calculate this topological index for two infinite 
classes of fullerenes. 
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1. INTRODUCTION  

In theoretical chemistry molecular structure descriptor or topological indices, are 
used to compute properties of chemical compounds. Throughout this paper, graph 
means simple connected graph. The vertex and edge sets of a graph G are denoted by 
V(G) and E(G), respectively. If x, y  V(G) then the distance d(x, y) between x and y is 
defined as the length of a minimum path connecting x and y. The eccentric 
connectivity index of the molecular graph G, (G), was proposed by Sharma, Goswami 
and Madan [1]. It is de ined as (G) = uV(G)deg (u) ε(u), where deg(x) denotes the 
degree of the vertex x in G and ε(u) = max{d(x, u) | x  V(G)}, [2-6]. The radius r(G) and 
diameter d(G) of G are defined as the minimum and maximum eccentricity among 
vertices of G, respectively. The total eccentricity index define as ( )( ) ( )u V GG u   . 

The connective eccentric index was de ined by Gupta, Singh and Madan [7] as 
follows: 
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( )
deg( )( )

( )u V G
u

C G
u


 


. 

 
Fullerenes are carbon-cage molecules in which a number of carbon atoms are 

bonded in a nearly spherical configuration. It is well – known fact that fullerenes made 
entirely of n carbon atoms, have 12 pentagonal and (n/2  10) hexagonal faces, while 
n  22 is a natural number equal or greater than 20 [8, 9]. Throughout this paper, our 
notations are standard and mainly taken from the standard book of graph theory such 
as [10]. We encourage reader to references [11 – 16] to study some properties of 
connective eccentric index of some nanostructures. 

 
2. RESULT AND DISCUSSION 

 
In this section at first we obtain some bounds of the connective eccentric index and 

then we compute this topological index for vertex – transitive graphs. Finally, we 
compute this topological index for two infinite classes of fullerenes. We begin this 
section by a Lemma related to the regular graphs: 

 
Lemma 1. The connective eccentric index of a k- regular graph is: 

1
( )( ) ( )

a V G
C G k a 


  . 

This Lemma implies for a fullerene graph F, 13 ( )( ) ( )
a V F

C F a 


  .  

Example 2. Suppose Kn denotes the complete graph on n vertices. Then For every 
( )nv V K , deg(v)= n-1 and ε(v)=1. Hence, 1 1 1

a V G
C G n n n( )( ) ( ) ( ).


     

Theorem 3. Let G be a (n, m) graph. Then  
2( )
( )
m

C G
G

 


. 

Proof. Let a, b, c and d be positive integers. Then one can see that easily a c a c
b d b d


 


. 

By using this non – equality we have the following lower bound for connective eccentric 
index: 

2( )
( )

( )

deg( )deg( )( )
( ) ( ) ( )

u V G
u V G

u V G

uu m
C G

u u G






  




  
. 

Theorem 4. Let G be a (n, m) graph. Then  

2 1/ ( ) ( ) ( )m d G C G n n    

With right equality if and only if nG K . 
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Proof. Four upper bound, since for every vertex u of graph, ε(u) ≥ 1 and deg(u) ≤ n-1, 
so we have 1( ) ( )C G n n   . Clearly equality holds for complete graph Kn. Conversely, if 

1( ) ( )C G n n    then, for every vertex u, ε(u) = 1 and deg(u) = n-1. Hence, nG K . 
For lower bound it is easy to see that for every vertex u of G, ( ) ( )u d G  . Thus,  

2( )
deg( )( ) / ( )

( )u V G

u
C G m d G

d G



  . 

Let Cn be a fullerene graph on n vertices. For every vertex u in fullerene C20, 5( )u  , 
(Fig. 1). Since C20 is the smallest fullerene, then for every vertex in Cn, ( ) 5.u   This 

implies 3 3 5
5( )( ) /n u V G

C C n


  . 

 
Fig. 1. 2 – dimensional graph of fullerene C20. 

 
3. Vertex - Transitive Graphs 

 
A bijection σ  on vertices set of graph G is named an automorphism of graph if it 
preserves the edge set. In other words, σ  is an automorphism if e = uv is an edge, then 
σ σ σ( ) ( ) ( )e u v  is an edge of E. Let ( ) { : , }Aut G V V is bijection   , then Aut(G) 
under the composition of mappings forms a group. Aut(G) acts transitively on V if for 
any vertices u and v in V there is α ( )Aut G  such that α( )u v .  
 

Lemma 5. Suppose G is a graph, A1, A2, …, At are the orbits of Aut(G) under its natural 

action on V(G) and i ix A , 1 i t  . Then 1
1( ) | |deg( ) ( )t

j j jj
C G A x x 


  . In 

particular, if G is vertex transitive then 1( ) .| ( )| . ( )C G k V G r G   for some k. 
Proof. It is easy to see that if vertices u and v are in the same orbit, then there is an 
automorphism   such that ( ) .u v   choose a vertex x such that ( ) ( , ).u d u x   Since   
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is onto, for every vertex y there exists the vertex w such that ( ).y w  Thus 
( , ) ( ( ), ( )) ( , )d v y d u w d u w     and so  

( ) ( )( ) max{ ( , )} max{ ( , )} ( )y V G w V Gv d v y d u w u      . 

 On the other hand, it is a trivial fact that the vertices of a given orbit have equal 

degrees. Therefore, 1
1( ) | |deg( ) ( )t

j j jj
C G A x x 


  . If G is vertex transitive then it is 

k – regular graph, for some k and ( ) .| ( )| / ( )C G k V G r G  . This completes our proof. 
 

Lemma 6 [16]. The molecular graph of a polyhex nanotorus (Fig. 2) is vertex 
transitive. 
 
Theorem 7. 3 2( [ , ]) /([ / ] )C T p q pq p q   . 
Proof. By Fig. 2, it can easily seen that |V(T[p,q])| = pq. By Lemma 6, T[p, q] is vertex 
transitive and by Lemma 5, 3( [ , ]) / ( )C T p q pq x   , for a vertex x. Now the proof is 
follows from this fact that 2( ) [ / ]x p q   , proving the result. 

1 2 p

2

q

 
Fig. 2. A 2 –dimensional lattice for T[p, q]. 

 
4. Connective eccentric index of two classes of fullerenes 

 
The goal of this section is computing the connective eccentric index of two infinite 
classes of fullerenes, namely C12n+2 and C20n+40. At first consider an infinite class of 
fullerene with exactly 12n + 2 vertices and 18n + 3 edges, depicted in Fig. 3. In Table 1, 
the eccentricity of every vertex of C12n+2 fullerenes is computed for 1 ≤ n ≤ 9. If n ≥ 10 
then a general formula for the connective eccentric index of C12n+2 is as follows: 
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Theorem 8.  

12 2
1

1 30( ) 36 .
n

n
i

C C
n i n





 


     

Proof. By Fig. 2 and by using GAP [15] software, one can see that there are three types 
of vertices of fullerene graph C12n+2. These are the vertices of the central and outer 
pentagons and other vertices of C12n+2. By computing the eccentricity of these vertices 
we have the following table: 
 

Vertices ε(x) No. 

The Type 1 Vertices 2n 8 
The Type 2 Vertices n 6 

Other Vertices n+i (1 ≤ i ≤ n) 12 
 

Some exceptional cases are given in the Table 1: 
 

Table 1. Some exceptional cases of C12n+20 fullerenes. 

Fullerenes Exceptional connective eccentric index for 1 ≤ n ≤ 9 

C26 72/5+1 
C38 114/7 
C50 36/7 + 102/8 + 12/9 
C62 72/8 + 72/9 + 42/10 
C74 36/8 + 72/9 + 54/10 + 36/11 + 24/12 
C86 72/9 + 54/10 + 36/11 + 36/12 + 36/13 + 24/14 
C98 12/9 + 18/10 + 12/11 + 12/12 + 12/13 + 12/14 + 12/15 + 8/16 
C110 18/10 + 12/11 + 12/12 + 12/13 + 12/14 + 12/15 + 12/16 + 12/17 + 

8/18 
 

By using these calculations and Fig. 3, the Theorem is proved. 
Consider now an in inite class of fullerene with exactly 20n + 40 vertices and 

30n + 60 edges, depicted in Fig. 4. In Table 2, the eccentricity of vertices of C20n+40 
fullerenes are computed for 1 ≤ n ≤10. If n ≥ 11 then a general formula for the 
connective eccentric index of C20n+40 is as follows: 

 
Theorem 9.  

20 40
0

1 1 160 30
4 2 5 2 6

( )    ( ).
n

n
i

C C
n i n n





  

   
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Proof. Similar to proof of Theorem 8, from Fig. 4, one can see that there are three 
types of vertices of fullerene graph C20n+40. 

 
Fig. 3. The molecular graph of the fullerene C12n+2 for n = 4. 

 

These are the vertices of the central and outer pentagons and other vertices of 
C20n+40. By computing the eccentricity of these vertices we have the following table: 
 

Vertices ε(x) No. 
The Type 1 Vertices 2n + 6 10 
The Type 2 Vertices 2n + 5 10 

Other Vertices n+4+i (0 ≤ i ≤ n+1) 20 
 
Some exceptional cases are given in the Table 2: 
 

Table 2. Some exceptional cases of C20n+40 fullerenes. 

Fullerenes Exceptional connective eccentric index for 1 ≤ n ≤ 10 
C60 20 
C80 240/11 
C100 60/11+240/12 
C120 120/12+210/13+30/14 
C140 60/12+120/13+180/14+30/15+30/16 
C160 120/13+120/14+120/15+60/16+30/17+30/18 
C180 60/13+120/14+120/15+90/16+60/17+60/18+30/19 
C200 60/14+120/15+90/16+60/17+90/18+60/19+60/20+60/21+30/22+30/23 
C220 120/15+90/16+60/17+90/18+60/19+60/20+60/21+60/22+60/23+30/24+30/25 

C240 
60/25+90/16+20/17+90/18+60/19+60/20+60/21+60/22+60/23+60/24+60/25+ 
30/26+30/27 
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By using these calculations and Fig. 4, the Theorem is proved.   
 

 
Fig. 4. The molecular graph of the fullerene C20n+40 for n = 3. 

 
5. Conclusion 
Topological descriptors are very important tools in chemical graph theory. Among 
them topological indices role a fundamental map in predicting chemical phenomena. 
The connective eccentric index is a topological index was defined by Gupta, Singh and 
Madan. In this paper this topological index of two infinite classes of fullerene graphs 
were computed. 
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