On Zagreb Indices of Pseudo-regular Graphs

Tamás RÉti ${ }^{\text {a }}$, Ivan Gutman ${ }^{\text {b }}$ and Damir VukičEvićc ${ }^{\text {c }}$
${ }^{a}$ Széchenyi István University, Egyetem tér 1, 9026 Györ, Hungary, e-mail: reti@sze.hu
${ }^{b}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, e-mail: gutman@kg.ac.rs ${ }^{\text {cDepartment of Mathematics, University of Split, N. Tesle 12, }}$ 21000 Split, Croatia, e-mail: vukicevi@pmfst.hr (Received September 24, 2011)

Abstract

Properties of the Zagreb indices of pseudo-regular graphs are established, with emphasis on the Zagreb indices inequality. The relevance of the results obtained for the theory of nanomolecules is pointed out.

1. Introduction: Zagreb indices

Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, thus possessing n vertices and m edges. The degree $d(v)$ of the vertex $v \in V(G)$ is the number of first neighbors of v. The edge of the graph G, connecting the vertices u and v, will be denoted by $u v$. Throughout this paper, the graphs considered are assumed to be connected.

In mathematical chemistry, two simple graph invariants

$$
M_{1}=M_{1}(G):=\sum_{v \in V(G)} d(v)^{2} \quad \text { and } \quad M_{2}=M_{2}(G):=\sum_{u v \in E(G)} d(u) d(v)
$$

were first time encountered in connection with the study of the structure-dependency of total π-electron energy [1] and soon thereafter used for modeling of branchingbased properties of alkanes [2]. Eventually, these two structure-descriptors where
named Zagreb group indices [3]. Nowadays these are commonly referred to as the first $\left(M_{1}\right)$ and second $\left(M_{2}\right)$ Zagreb indices.

For information on the two Zagreb indices and a number of similar molecular structure descriptors, the readers should consult the books [4-6] and/or the reviews [7-11]. Of the countless published papers on Zagreb indices, we mention only the most recent ones [12-32], in which references to earlier works can be found.

2. Introduction: Pseudo-regular graphs

Let $m(u)$ be the average degree of the vertices adjacent to the vertex $u \in V(G)$, that is,

$$
m(u):=\frac{1}{d(u)} \sum_{u v \in E(G)} d(v) .
$$

Define by

$$
\langle m(G)\rangle=\frac{1}{n} \sum_{u \in V(G)} m(u)
$$

the average neighbor degree number of the graph G.
A graph is said to be regular (of degree r) is all its vertices are of equal degree (equal to r). A graph is called pseudo-regular [33,34] if there exists a positive constant $p=p(G)$, such that the average degree of each vertex of G is equal to p. Of course, every regular graph is also pseudo-regular. There, however, exist pseudo-regular graphs in which the vertex degrees assume N different values for $N=2$ (biregular graphs), $N=$ 3 (triregular graphs), $N=4$, etc. Two examples are given in Fig. 1.

The relevance of pseudo-regular graphs for the theory of nanomolecules and nanostructures should become evident from the following. There exist polyhedral (planar, 3-connected) graphs and infinite periodic planar graphs belonging to the family of the pseudo-regular graphs.

Among polyhedra, the deltoidal hexecontahedron possesses this property, see Fig.2. Its edge-graph is pseudo-regular with $p=4$. The deltoidal hexecontahedron is a Catalan polyhedron with 60 deltoid faces, 120 edges, and 62 vertices, with degrees 3 , 4 , and 5 . Its 62 vertices are characterized by the following vertex degree distribution: $n_{3}=20, n_{4}=30$, and $n_{5}=12$. The average degree of its vertices is $240 / 62=3.87968$.

An exceptional property of the deltoidal hexecontahedron is that in each vertex, the average degrees of the neighbor vertices is equal to 4 . Indeed, the average neighbor degree number of the edge graph G_{H} of the deltoidal hexecontahedron is

$$
\begin{aligned}
\left\langle m\left(G_{H}\right)\right\rangle & =\frac{1}{n} \sum_{u \in V(G)} m(u)=\frac{1}{62}\left(20 \cdot \frac{4+4+4}{3}+30 \cdot \frac{3+5+3+5}{4}+12 \cdot \frac{4+4+4+4+4}{5}\right) \\
& =\frac{1}{62}(20 \cdot 4+30 \cdot 4+12 \cdot 4)=\frac{62 \cdot 4}{62}=4 .
\end{aligned}
$$

Fig. 1. Examples of pseudo-regular graphs. For the top graph $N=3$, the central vertex must have degree equal to $p^{2}-p+1$, and here $p=3$. For the bottom graph $N=4$, the central vertex must have degree equal to $p^{2}-3 p+1$, and here $p=6$.

Fig. 2. The deltoidal hexecontahedron; for details see text.

A variety of other chemically relevant polyhedra and polyhedra-type structures, whose graphs are pseudo-regular, can be found in the books [35-37] and other works by Diudea. Therefore, the study of the properties of pseudo-regular graphs may be of some value for nano-science.

3. Relations between the Zagreb indices of pseudo-regular graphs

We first recall that in the case of regular graphs (and thus for the molecular graphs of fullerenes and the majority of nanotubes and similar nanomolecules), the structure-dependency of the two Zagreb indices is trivial:

$$
M_{1}=n r^{2}=2 m r \quad \text { and } \quad M_{2}=m r^{2}=\frac{1}{2} n r^{3}
$$

where, as before, n and m are, respectively, the number of vertices and edges, whereas r is the degree of any vertex. In chemically relevant cases, $r=3$.

In the case of pseudo-regular graphs, the situation with the Zagreb indices is somewhat less simple.

We start with two previously established lemmas.
Lemma 1. [30] Denote by $[d(G)]$ the average degree of G. For a connected simple graph G, the inequality $\langle m(G)\rangle \geq 2 m / n=[d(G)]$ holds, with equality if and only if G is regular.

Connective Eccentric Index of Fullerenes

Lemma 2. [38] For a connected graph G

$$
M_{1}(G)=\sum_{u \in V(G)} m(u) d(u)
$$

and

$$
2 M_{2}(G)=\sum_{u \in V(G)} m(u) d(u)^{2} .
$$

Proposition 1. If G is pseudo-regular, i. e., $m(u)=p$ holds for all $u \in V(G)$, then

$$
\begin{equation*}
p(G)=\langle m(G)\rangle=\frac{2 M_{2}(G)}{M_{1}(G)} \geq[d(G)] \tag{1}
\end{equation*}
$$

with equality if and only if G is regular.

Proof. The inequality (1) is the consequence of Lemma 2. From this it follows that for a pseudo-regular graph G, the relations $M_{1}(G)=2 m p$ and $M_{2}(G)=m p^{2}$ hold.

Consider now the graph invariant $T(G)$, defined as

$$
\begin{equation*}
T=T(G):=\frac{m M_{1}(G)}{n M_{2}(G)} . \tag{2}
\end{equation*}
$$

It follows that $T \leq 1$ if and only if, $M_{1} / n \leq M_{2} / m$, and $\mathrm{T}<1$ if and only if, $M_{1} / n<M_{2} / m$.
Recall that the inequality $M_{1} / n \leq M_{2} / m$ was subject of numerous studies, starting with [39]. It is often referred to as the Zagreb indices inequality. For details see the reviews $[10,11]$, the recent papers [13-17,21,23,24,27-29,31,32], and the references cited therein.

Proposition 2. If the graph G is pseudo-regular, but not regular, then the strict Zagreb indices inequality ($M_{1} / n \leq M_{2} / m$) holds.

Proof. From Eqs. (1) and (2) it follows that

$$
\begin{equation*}
T(G)=\frac{m M_{1}(G)}{n M_{2}(G)}=[d(G)] \frac{M_{1}(G)}{2 M_{2}(G)}=\frac{[d(G)]}{p(G)} \leq 1 \tag{3}
\end{equation*}
$$

and equality is attained in (3) if and only if G is regular. Consequently, the inequality (3) is strict if G is a non-regular pseudo-regular graph.

We now pay attention to a special class of pseudo-regular graphs, denoted by $G(p)$, whose one representative is depicted in Fig. 3. For these graphs, $p=4,5,6, \ldots$, and the central vertex has degree $p^{2}-3 p+3$. It is easy to verify that the average vertex degree of $G(p)$ is:

$$
[d(G(p))]=\frac{2 m}{n}=\frac{2(p-1)\left(p^{2}-3 p+3\right)}{1+(p-2)\left(p^{2}-3 p+3\right)}
$$

from which it immediately follows $\lim _{p \rightarrow \infty}[d(G(p))]=2$, implying

$$
\begin{equation*}
\lim _{p \rightarrow \infty} T(G(p))=\lim _{p \rightarrow \infty} \frac{[d(G(p))]}{p}=0 \tag{4}
\end{equation*}
$$

Fig. 3. A connected triregular pseudo-regular graph, denoted by $G(p)$; here: $p=5$.
From relation (4) we deduce the following:
Proposition 3. It is possible to construct connected graphs for which the invariant $T(G)$ is an arbitrary small positive number and tends to zero as $n \rightarrow \infty$. The sequence $G(5), G(6), G(7), \ldots$ provides an example of such graphs. More specifically, for the graphs $G(p)$, shown is Fig. 3,

$$
\frac{M_{1}(G(p))}{n}=\frac{2\left(p^{2}-3 p+3\right)(p-1) p}{\left(p^{2}-3 p+3\right)(p-2)+1} \quad \text { and } \quad \frac{M_{2}(G(p))}{m}=p^{2}
$$

and therefore both M_{1} / n and M_{2} / m tend to infinity as p (or n or m) tend to infinity. However, for $p \rightarrow \infty$, the quotient of $M_{1}(G(p)) / n$ and $M_{2}(G(p)) / m$ tends to zero.

Proposition 4. If G is pseudo-regular, i. e., $m(u)=p$ holds for all $u \in V(G)$, and if m is the number of its edges, then

$$
\begin{equation*}
M_{1}(G)=\frac{M_{2}(G)}{p}+m p \tag{5}
\end{equation*}
$$

Proof. For a pseudo-regular graph G, the following relations hold: $M_{1}(G)=2 m p$ and $M_{2}(G)=m p^{2}$. From this, the claim follows.

In connection with Eq. (5) we make the following observation. There exists a particular class Π of connected graphs, characterized by the following property: For any $G \in \Pi$ with edge number m, there exists a positive number $p=p(G)$, such that

$$
\begin{equation*}
M_{1}(G)=\frac{M_{2}(G)}{P}+m P \tag{6}
\end{equation*}
$$

holds. It may be that $p(G)$ is always a positive integer.
According to our considerations, the following graphs are included in the class $\Pi:$
a) P-dominant graphs (having one or two dominant degrees); see [31] for details
b) Pseudo-regular graphs
c) In addition, there exist connected graphs that are neither P dominant nor pseudo-regular, belonging to the class Π.

To demonstrate the case c), consider the triregular graph G_{D}, depicted in Fig. 4, having degree set $D\left(G_{D}\right)=\{3,4,5\}$. For this graph, $n\left(G_{D}\right)=7, m\left(G_{D}\right)=12, M_{1}\left(G_{D}\right)=86$, and $M_{2}\left(G_{D}\right)=152$. It is easy to check that G_{D} has no domination degree [31], and is not pseudo-regular. Nevertheless, for $p=4$, the equality (6) is obeyed:

$$
M_{1}\left(G_{D}\right)=\frac{M_{2}\left(G_{D}\right)}{4}+4 m\left(G_{D}\right)=\frac{152}{4}+4 \cdot 12=86
$$

Fig. 4. A non-pseudo-regular and non P-dominant graph G_{D}, satisfying identity (6). In connection with relation (6) we have some further observations.

Proposition 5. A connected or disconnected graph G belongs to class Π if and only if inequality $M_{1}^{2}(G)-4 m M_{2} \geq 0$ holds.

Proof. Starting with equation (6), consider the polynomial function of second degree $Z_{G}(p)$ defined as

$$
Z_{G}(P)=m P^{2}-M_{1} P+M_{2}
$$

It is easy to see that if $Z_{G}(p)$ has real roots (one or two), then these are positive numbers. Moreover, the function $Z_{G}(p)$ has (one or two) positive roots if and only if, $M_{1}^{2}(G)-4 m M_{2} \geq 0$ holds for its discriminant.

Lemma 3. [40] Let G be a simple connected graph. Then,

$$
M_{2} \geq \frac{4 m^{3}}{n^{2}}
$$

The equality is attained if and only if graph is regular.
Proposition 6. Let G be a connected graph satisfying the Zagreb indices equality, i. e., let the condition $M_{1}(G) / n=M_{2}(G) / m$ hold. Then there exists a positive number P that satisfies identity (6).

Proof. If there is a number P that satisfies Eq.(6), then

$$
\frac{n}{m} M_{2}=\frac{M_{2}}{P}+m P
$$

should be fulfilled. This leads to the polynomial function $J_{G}(P)$ of second degree, given as

$$
J_{G}(P)=m P^{2}-\frac{n M_{2}}{m} P+M_{2}
$$

It is enough to verify that for the discriminant of $J_{G}(P)$ the inequality

$$
\left.\left(\frac{n M_{2}}{m}\right)^{2}-4 m M_{2}=M_{2}\left(\frac{n^{2}}{m^{2}} M_{2}-4 m\right)\right) \geq 0
$$

holds. From Lemma 3, it follows that

$$
\left.\left(\frac{n^{2}}{m^{2}} M_{2}-4 m\right)\right) \geq 0
$$

with equality if and only if G is regular. This implies the claim.

We say that a graph G is k-end-degree regular if there exists a positive integer k, such that condition $d(u)+d(v)=k$ holds for each edge $u v \in E(G)$.

Proposition 7. For each k-end-degree regular graph, there is a positive number P, such that Eq. (6) is obeyed.

Proof. If there is a number P that satisfies Eq. (6), then it is obviously positive since the left-hand side of Eq. (6) is positive and its right hand-side is of the same sign as P. Hence, it is enough to show that $M_{1}^{2}-4 m M_{2} \geq 0$. It holds:

$$
\begin{aligned}
& M_{1}^{2}-4 m M_{2}=\left(\sum_{u \in V(G)} d(u)^{2}\right)^{2}-4 m \sum_{u v \in E(G)} d(u) d(v) \\
& =\left(\sum_{u \in V(G)} \sum_{v: u v \in E(G)} d(u)\right)^{2}-4 m \sum_{u v \in E(G)} d(u) d(v) \\
& =\left(\sum_{u v \in E(G)}(d(u)+d(v))\right)^{2}-4 m \sum_{u v \in E(G)} d(u) d(v) \\
& =m^{2} k^{2}-4 m \sum_{u v \in E(G)} d(u)[k-d(u)]=m \sum_{u v \in E(G)}\left(k^{2}-4 d(u)[k-d(u)]\right) .
\end{aligned}
$$

Consider the function $f(x)=x \cdot(k-x)$. Simple analysis shows that its maximum is at x $=k / 2$ and that $f(x) \leq k^{2} / 4$. Therefore

$$
m \sum_{u v \in E(G)}\left(k^{2}-4 d(u)[k-d(u)]\right) \geq m \sum_{u v \in E(G)}\left(k^{2}-4 \cdot \frac{k^{2}}{4}\right)=0 .
$$

This proves the Proposition.

4. Acknowledgment

The partial support of the Croatian Ministry of Science, Education and Sports (grants no. 177-0000000-0884 and 037-0000000-2779), of the Serbian Ministry of Science (grant no. 174033), and of the project Gregas within EuroGIGA Collaborative Research Project are greatfully acknowledged.

References

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[2] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[3] A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983) 21-55.
[4] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[5] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, WileyVCH, Weinheim, 2009.
[6] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications Vols.I \& II, Univ. Kragujevac, Kragujevac, 2010.
[7] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[8] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[9] N. Trinajstić, S. Nikolić, A. Miličević, I. Gutman, On Zagreb indices, Kem. Ind. 59 (2010) 577-589 (in Croatian).

Connective Eccentric Index of Fullerenes

[10] B. Liu, Z. You, A survey on comparing Zagreb indices, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010, pp. 227-239.
[11] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (2011) 581-593.
[12] Y. Feng, X. Hu, S. Li, On the extremal Zagreb index of graphs with cut edges, Acta Appl. Math. 110 (2010) 667-684.
[13] B. Horoldagva, S. G. Lee, Comparing Zagreb indices for connected graphs, Discr. Appl. Math. 158 (2010) 1073-1078.
[14] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 433-440.
[15] G. Caporossi, P. Hansen, D. Vukicević, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 441-451.
[16] Y. Huang. B. Liu, M. Zhang, On comparing the variable Zagreb indices, MATCH Commun. Math. Comput. Chem. 63 (2010) 453-460.
[17] M. Zhang, B. Liu, On comparing variable Zagreb indices for unicyclic graphs MATCH Commun. Math. Comput. Chem. 63 (2010) 461-468.
[18] S. Li, M. Zhang, Sharp upper bounds for Zagreb indices of bipartite graphs with given diameter, Appl. Math. Lett. 24 (2011) 131-137.
[19] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011) 1026-1030.
[20] A. Ilić, M. Ilić, B. Liu, On the upper bounds for the first Zagreb index, Kragujevac J. Math. 35 (2011) 173-182.
[21] V. Andova, S. Bogoev, D. Dimitrov, M. Pilipczuk, R. Škrekovski, On the Zagreb index inequality of graphs with prescribed vertex degrees, Discr. Appl. Math. 159 (2011) 852--858.
[22] G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.
[23] V. Andova, N. Cohen, R. Škrekovski, Graph classes (dis)satisfying the Zagreb indices inequality, MATCH Commun. Math. Comput. Chem. 65 (2011) 647-658.
[24] B. Liu, M. Zhang, Y. Huang, Comparing variable Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 671-684.
[25] V. Andova, M. Petruševski, Variable Zagreb indices and Karamata's inequality, MATCH Commun. Math. Comput. Chem. 65 (2011) 685-690.
[26] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[27] D. Vukičević, I. Gutman, B. Furtula, V. Andova, D. Dimitrov, Some observations on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 66 (2011) 627645.
[28] S. Bogoev, A proof of an inequality related to variable Zagreb indices for simple connected graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 647-668.
[29] S. Stevanović, On the relation between the Zagreb indices, Croat. Chem. Acta 84 (2011) 17-19.
[30] T. Došlić, T. Réti, D. Vukičević, On the vertex degree indices of connected graphs, Chem. Phys. Lett. 512 (2011) 283-286.
[31] T. Réti, On the relationships between the first and second Zagreb indices, MATCH Commun. Math. Comput. Chem. 68 (2012), in press.
[32] K. C. Das I. Gutman, B. Horoldagva, Comparing Zagreb indices and coindices of trees, MATCH Commun. Math. Comput. Chem. 68 (2012), in press.
[33] A. Yu, M. Lu, F. Tian, On the spectral radius of graphs, Lin. Algebra Appl. 387 (2004) 41-49.
[34] Y. Hong, X. D. Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees, Discr. Math. 296 (2005) 187-197.
[35] M. V. Diudea (Ed.), Nanostructures: Novel Architecture, Nova, New York, 2006.
[36] M. V. Diudea, C. L. Nagy, Periodic Nanostructures, Springer, Amsterdam, 2007.
[37] M. V. Diudea, Nanomolecules and Nanostructures, Univ. Kragujevac, Kragujevac, 2010.
[38] K. C. Das, Maximizing the sum of the squares of the degrees, Discr. Math. 285 (2004) 57-66.
[39] P. Hansen, D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80 (2007) 165-168.
[40] A. Ilić, D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681-687.

