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ABSTRACT. Properties of the Zagreb indices of pseudo-regular graphs are established, with 
emphasis on the Zagreb indices inequality. The relevance of the results obtained for the 
theory of nanomolecules is pointed out. 

 

 
1. INTRODUCTION: ZAGREB INDICES 

Let G be a graph with vertex set  1 2( ) { , , , }nV G v v v  and edge set 

 1 2( ) { , , , }mE G e e e , thus possessing n vertices and m edges. The degree ( )d v  of the 

vertex ( )v V G  is the number of first neighbors of v. The edge of the graph G, 

connecting the vertices u and v, will be denoted by uv . Throughout this paper, the 

graphs considered are assumed to be connected. 

In mathematical chemistry, two simple graph invariants 

 



   2
1 1

( )

( ): ( )
v V G

M M G d v        and       


  2 2
( )

( ): ( ) ( )
uv E G

M M G d u d v  

were first time encountered in connection with the study of the structure-dependency 

of total π-electron energy [1] and soon thereafter used for modeling of branching-

based properties of alkanes [2]. Eventually, these two structure-descriptors where 
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named Zagreb group indices [3]. Nowadays these are commonly referred to as the first 

(M1) and second (M2) Zagreb indices.  

 For information on the two Zagreb indices and a number of similar molecular 

structure descriptors, the readers should consult the books [4-6] and/or the reviews 

[7-11]. Of the countless published papers on Zagreb indices, we mention only the most 

recent ones [12-32], in which references to earlier works can be found. 

 

2. INTRODUCTION: PSEUDO-REGULAR GRAPHS 
 

 Let ( )m u  be the average degree of the vertices adjacent to the vertex ( )u V G , 

that is, 



 
( )

1
( ): ( )

( )
uv E G

m u d v
d u

. 

Define by 



   
1

u V ( G )

m(G ) m(u )
n

 

 

the average neighbor degree number of the graph G . 

 A graph is said to be regular (of degree r) is all its vertices are of equal degree 

(equal to r). A graph is called pseudo-regular [33,34] if there exists a positive constant 

p = p(G), such that the average degree of each vertex of G is equal to p. Of course, every 

regular graph is also pseudo-regular. There, however, exist pseudo-regular graphs in 

which the vertex degrees assume N different values for N = 2 (biregular graphs), N = 

3(triregular graphs), N = 4, etc. Two examples are given in Fig. 1. 

The relevance of pseudo-regular graphs for the theory of nanomolecules and 

nanostructures should become evident from the following. There exist polyhedral 

(planar, 3-connected) graphs and infinite periodic planar graphs belonging to the 

family of the pseudo-regular graphs. 

Among polyhedra, the deltoidal hexecontahedron possesses this property, see 

Fig.2. Its edge-graph is pseudo-regular with p = 4. The deltoidal hexecontahedron is a 

Catalan polyhedron with 60 deltoid faces, 120 edges, and 62 vertices, with degrees 3, 

4, and 5. Its 62 vertices are characterized by the following vertex degree distribution: 

3 20n , 4 30n , and 5 12n . The average degree of its vertices is 240/62 =3.87968 . 

An exceptional property of the deltoidal hexecontahedron is that in each 

vertex, the average degrees of the neighbor vertices is equal to 4. Indeed, the average 

neighbor degree number of the edge graph GH of the deltoidal hexecontahedron is 
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 



         
         

 


       


( )

1 1 4 4 4 3 5 3 5 4 4 4 4 4
( ) ( ) 20 30 12

62 3 4 5

1 62 4
20 4 30 4 12 4 4 .

62 62

H
u V G

m G m u
n

 

 

 
 

Fig. 1. Examples of pseudo-regular graphs. For the top graph N = 3, the central vertex 

must have degree equal to  2 1p p , and here p = 3. For the bottom graph N = 4, the 

central vertex must have degree equal to  2 3 1p p , and here p= 6. 
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Fig. 2. The deltoidal hexecontahedron; for details see text. 

 

 A variety of other chemically relevant polyhedra and polyhedra-type 

structures, whose graphs are pseudo-regular, can be found in the books [35-37] and 

other works by Diudea. Therefore, the study of the properties of pseudo-regular 

graphs may be of some value for nano-science. 

 

3. RELATIONS BETWEEN THE ZAGREB INDICES OF PSEUDO-REGULAR GRAPHS 
 

 We first recall that in the case of regular graphs (and thus for the molecular 

graphs of fullerenes and the majority of nanotubes and similar nanomolecules), the 

structure-dependency of the two Zagreb indices is trivial: 

 2
1 2M nr mr           and           2 3

2
1

2
M mr nr  

where, as before, n and m are, respectively, the number of vertices and edges, whereas 

r is the degree of any vertex. In chemically relevant cases, r=3. 

 In the case of pseudo-regular graphs, the situation with the Zagreb indices is 

somewhat less simple.  

 We start with two previously established lemmas. 

Lemma 1. [30] Denote by [d(G)] the average degree of G. For a connected simple 

graph G, the inequality     ( ) 2 / ( )m G m n d G  holds, with equality if and only if G is 

regular. 
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Lemma 2. [38] For a connected graph G 

 



 1
( )

( ) ( ) ( )
u V G

M G m u d u  

and 



  2
2

( )

2 ( ) ( ) ( )
u V G

M G m u d u . 

Proposition 1. If G is pseudo-regular, i. e., ( )m u p  holds for all ( )u V G , then  

   2

1

2 ( )
( ) ( ) ( )

( )

M G
p G m G d G

M G
     (1) 

with equality if and only if G is regular.  

 

Proof.  The inequality (1) is the consequence of Lemma 2. From this it follows that for 

a pseudo-regular graph G, the relations 1( ) 2M G mp  and  2
2( )M G mp  hold.               ■ 

 

Consider now the graph invariant T(G), defined as 

 

   1

2

( )
( ) :

( )

mM G
T T G

nM G
 .     (2) 

It follows that 1T   if and only if, 1 2/ /M n M m , and T<1 if and only if, 1 2/ /M n M m . 

 Recall that the inequality 1 2/ /M n M m  was subject of numerous studies, 

starting with [39]. It is often referred to as the Zagreb indices inequality. For details 

see the reviews [10,11], the recent papers [13-17,21,23,24,27-29,31,32], and the 

references cited therein. 

 

Proposition 2. If the graph G is pseudo-regular, but not regular, then the strict Zagreb 

indices inequality ( 1 2/ /M n M m ) holds. 

 

Proof.  From Eqs. (1) and (2) it follows that 

 

  
 

   1 1

2 2

( )( ) ( )
( ) ( ) 1

( ) 2 ( ) ( )

d GmM G M G
T G d G

nM G M G p G
   (3) 

and equality is attained in (3) if and only if G is regular. Consequently, the inequality 

(3) is strict if G is a non-regular pseudo-regular graph.     ▄ 
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 We now pay attention to a special class of pseudo-regular graphs, denoted by 

G(p), whose one representative is depicted in Fig. 3. For these graphs, p = 4, 5, 6, …, 

and the central vertex has degree p2 – 3p + 3. It is easy to verify that the average 

vertex degree of G(p) is: 

 
  

 
   

2

2

2 2( 1)( 3 3)
( ( ))

1 ( 2)( 3 3)

m p p p
d G p

n p p p
 

 

from which it immediately follows  


lim ( ( )) 2
p

d G p , implying 

 

 
 

 
( ( ))

lim ( ( )) lim 0
p p

d G p
T G p

p
.     (4) 

 

 

 
 

Fig. 3. A connected triregular pseudo-regular graph, denoted by G(p); here: p = 5. 
 

 From relation (4) we deduce the following: 

Proposition 3. It is possible to construct connected graphs for which the invariant 

T(G) is an arbitrary small positive number and tends to zero as n . The sequence 

(5), (6), (7),G G G  provides an example of such graphs.  More specifically, for the 

graphs G(p), shown is Fig. 3,  
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  


   

2
1

2

( ( )) 2( 3 3)( 1)

( 3 3)( 2) 1

M G p p p p p

n p p p
          and           22( ( ))M G p

p
m

 

and therefore both M1/n and M2/m tend to infinity as p  (or n or m) tend to infinity. 

However, for p , the quotient of 1( ( ))/M G p n  and 2( ( ))/M G p m  tends to zero.  

 

Proposition 4. If G is pseudo-regular, i. e., m(u) = p holds for all  ( )u V G , and if m is 

the number of its edges, then 

 

 2
1

( )
( )

M G
M G mp

p
.     (5) 

Proof. For a pseudo-regular graph G, the following relations hold: M1(G) = 2mp  and 

M2(G) = mp2. From this, the claim follows.        ▄ 

 

In connection with Eq. (5) we make the following observation. There exists a 

particular class   of connected graphs, characterized by the following property: For 

any Gwith edge number m, there exists a positive number p = p(G), such that 

 

 2
1

( )
( )

M G
M G mP

P
    (6) 

holds. It may be that p(G) is always a positive integer. 

According to our considerations, the following graphs are included in the class 

 : 

a) P-dominant graphs (having one or two dominant degrees); see [31] 

for details 

b) Pseudo-regular graphs 

c) In addition, there exist connected graphs that are neither P-

dominant nor pseudo-regular, belonging to the class  .  

 

To demonstrate the case c), consider the triregular graph GD, depicted in Fig. 4, having 

degree set ( ) {3,4,5}DD G . For this graph, ( ) 7Dn G , m(GD) = 12, M1(GD) = 86, and 

M2(GD) = 152.  It is easy to check that GD has no domination degree [31], and is not 

pseudo-regular. Nevertheless, for p = 4, the equality (6) is obeyed: 

     2
1

( ) 152
( ) 4 ( ) 4 12 86

4 4
D

D D
M G

M G m G . 
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Fig. 4. A non-pseudo-regular and non P-dominant graph GD, satisfying identity (6). 

In connection with relation (6) we have some further observations.  

 

Proposition 5. A connected or disconnected graph G belongs to class Π if and only if   

inequality   2
1 2( ) 4 0M G mM  holds. 

 

Proof. Starting with equation (6), consider the polynomial function of second degree 

ZG(p) defined as 

  2
1 2( )GZ P mP M P M  

 

It is easy to see that if ZG(p) has real roots (one or two), then these are positive 

numbers. Moreover, the function ZG(p) has (one or two) positive roots if and only if, 

 2
1 2( ) 4 0M G mM  holds for its discriminant.        ■ 

 

Lemma 3. [40] Let G be a simple connected graph. Then,  

 


3

2 2

4m
M

n
 . 

 

The equality is attained if and only if graph is regular. 

Proposition 6. Let G be a connected graph satisfying the Zagreb indices equality, i. e., 

let the condition 1 2( )/ ( )/M G n M G m  hold. Then there exists a positive number P that 

satisfies identity (6). 

 

Proof. If there is a number P  that satisfies Eq.(6) , then  
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 2
2

Mn
M mP

m P
 

should be fulfilled. This leads to the polynomial function JG(P) of second degree, given 

as 

  2 2
2( )G

nM
J P mP P M

m
 

It is enough to verify that for the discriminant of JG(P) the inequality  

 


         

2 2
2

2 2 22
4 4 ) 0

nM n
mM M M m

m m
 

holds. From Lemma 3, it follows that  

 


  

 

2

22
4 ) 0

n
M m

m
 

 

with equality if and only if G is regular. This implies the claim.     ■ 

 

 We say that a graph G is k-end-degree regular if there exists a positive integer 

k, such that  condition ( ) ( )d u d v k   holds for each edge  ( )uv E G . 

 

Proposition 7. For each k-end-degree regular graph, there is a positive number P, 

such that Eq. (6) is obeyed. 

 

Proof. If there is a number P  that satisfies Eq. (6), then it is obviously positive since 

the left-hand side of Eq. (6) is positive and its right hand-side is of the same sign as P . 

Hence, it is enough to show that  2
1 24 0M mM . It holds: 

   

    

 
   

 
 

 

 

  

 

 


   

 


  
 


   
 

     

 

  

 

 

2

2 2
1 2

2

:

2

2 2 2

4 ( ) 4 ( ) ( )

( ) 4 ( ) ( )

( ) ( ) 4 ( ) ( )

4 ( )[ ( )] 4 ( )[ ( )] .

u V G uv E G

u V G v uv E G uv E G

uv E G uv E G

uv E G uv E G

M mM d u m d u d v

d u m d u d v

d u d v m d u d v

m k m d u k d u m k d u k d u
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Consider the function      f x x k x . Simple analysis shows that its maximum is at x 

= k/2 and that    2/4f x k . Therefore  

 
    


     

 
 

2
2 24 ( )[ ( )] 4 0 .

4uv E G uv E G

k
m k d u k d u m k  

 

This proves the Proposition.         ■ 
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