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Article info:  Abstract 
One of the new research fields in plasticity is related to choosing a proper 
non-associated flow rule (NAFR), instead of the associated one (AFR), to 
predict the experimental results more accurately. The idea of the current 
research is derived from combining von Mises and Tresca criteria in the 
places of yield and plastic potential surfaces in rate-independent plasticity.  
This idea is implemented using backward Euler method in non-linear finite 
element simulation. The results are compared with the experimental data for 
an internally pressurized thick-walled cylinder and it is demonstrates that, 
using the proposed NAFR in rate-independent plasticity, the experimental 
results could be predicted more accurately. Finally, it can be said that the 
current research confirms the results of the previous works on rate-dependent 
plasticity (viscoplasticity) in steady state conditions.   
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1. Introduction  
 
In recent years, employing non-associated flow 
rule (NAFR) in plasticity for describing the 
behavior of materials has become very 
common. Below, the works of other authors on 
non-linear finite element simulations and also 
employment of non-associated flow rule are 
reviewed. 
Stoughton and Yoon [1] proposed a non-
associated flow rule based on a pressure 
sensitive yield criterion with isotropic 
hardening. Significance of their work was in 
that thee model distorted the shape of the yield 

function in tension and compression and fully 
accounted for the strength differential effect 
(SDE). Oliver et al. [2] presented an 
implicit/explicit scheme for non-linear 
constitutive models. Their proposed scheme 
provided additional computability to the solid 
mechanic problems, in which robustness was an 
important issue. This scheme could provide 
important advantageous in terms of 
computational cost compared to the implicit 
integration schemes. Stoughton and Yoon [3] 
showed that, under certain conditions, an 
intermediate solution existed to the equations of 
motion for the dynamic elastic-plastic 
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deformation of materials using constitutive laws 
based on non-associated flow rule. They 
suggested that an initial perturbation in the 
stress could develop from a quiescent state on 
the yield surface. The existence of this 
indeterminate solution was alleged to 
theoretically discourage the use of non-
associated flow rules for both dynamic and 
quasi-static analyses. Cvitanic et al. [4] 
developed a finite element formulation based on 
non-associated plasticity. The yield and plastic 
potential were considered as two different 
functions with a functional form. Algorithmic 
formulations of constitutive models that utilized 
associated or non-associated flow rule were 
derived by the application of implicit return 
mapping procedure. Valoroso and Rosati [5] 
presented a general projected algorithm for 
general isotropic three-invariant plasticity 
method under plane stress conditions. They 
provided a closed-form intrinsic algorithm 
linearization and a novel expression of the 
consistent tangent tensor. Stoughton and Yoon 
[6] calibrated and evaluated five material 
models ranging in complexity from a von Mises 
model based on isotopic hardening to a non-
associated flow rule model based on anisotropic 
hardening. The model was expected to lead to 
significant improvement in stress prediction 
under the conditions dominated by proportional 
loading. It was expected to directly improve the 
accuracy of spring back, tearing, and earning 
predictions for these processes. Gao et al. [7] 
used experimental and numerical studies and 
demonstrated that stress state had strong effects 
on both plastic response and ductile fracture 
behavior of an aluminum 5083 alloy. As a 
result, the hydrostatic stress and the third 
invariant of the stress deviator (related to the 
Lode angle) needed to be incorporated into the 
material modeling. Taherizadeh et al. [8] 
developed an anisotropic material model based 
on a non-associated flow rule, mixed isotropic-
kinematic hardening and implemented it in a 
user-defined material (UMAT) subroutine for 
the commercial finite element code ABAQUS. 
Their results showed that their non-associated, 
mixed hardening model significantly improved 
the prediction of earing in the cup drawing 
process and the prediction of springback in the 

sidewall of drawn channel sections, even when 
a simple quadratic constitutive model was used. 
Taherizadeh et al. [9] developed a generalized 
finite element formulation of stress integration 
method for non-quadratic yield functions and 
potentials with mixed non-linear hardening 
under non-associated flow rule. Different 
approaches to analyzing the anisotropic 
behavior of sheet materials were also compared. 
Gao et al. [10] described a plasticity model for 
isotropic materials, which was a function of the 
hydrostatic stress as well as the second and 
third invariants of the stress deviator with 
special attention to adopting the non-associated 
flow rule and presenting its finite element 
implementation, including integration of the 
constitutive equations using backward Euler 
method and formulation of the consistent 
tangent moduli. Moayyedian and Kadkhodayan 
[11] presented a new first and second 
differentiation of a general yield surface and 
implemented it for different time stepping 
schemes including explicit, trapezoidal implicit, 
and fully implicit time stepping schemes in 
rate-dependant plasticity. Moayyedian and 
Kadkhodayan [12] presented a new non-
associated viscoplastic flow rule (NAVFR) by 
combining von Mises and Tresca loci in the 
place of yield and plastic potential functions 
and vice versa using fully implicit time stepping 
scheme. Moayyedian and Kadkhodayan [13] 
used the new first and second differentiation of 
a yield function and comparing explicit, semi-
implicit and implicit algorithms in rate-
independent plasticity and showed that the fully 
implicit scheme was more accurate than others 
considering the experimental results. 
Moayyedian and Kadkhodayan [14] introduced 
a Modified Yld2000-2d II by inserting modified 
Yld2000-2d and Yld2000-2d in place of yield 
and plastic potential functions, respectively, to 
depict the behavior of anisotropic pressure 
sensitive sheet metals. Moayyedian and 
Kadkhodayan [15] modified the Burzynski 
criterion used for pressure-sensitive isotropic 
materials for anisotropic pressure sensitive 
sheet metals based on non-AFR to describe the 
behavior of asymmetric anisotropic sheet 
metals. Ghaei and Taherizadeh [16] presented a 
model to describe the anisotropic behavior of 
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sheet metals at both yield stresses and plastic 
strain ratios using the non-AFR and quadratic 
yield and potential functions. Additionally, to 
reproduce accurate prediction of cyclic plastic 
deformation phenomena, a two-surface mixed 
isotropic-nonlinear kinematic hardening model 
was combined with the quadratic non-AFR 
anisotropic formulation. 
The main goal of this study is derived from 
combining von Mises and Tresca surfaces in 
place of yield and plastic potential surfaces. 
Although von Mises and Tresca surfaces are 
independent from hydrostatic pressure, it is 
demonstrated that the proposed NAFR can 
predict the experimental results more accurately 
than the AFR. To show the ability of the new 
proposed method, an internally pressurized 
thick-walled cylinder is considered with 
perfectly plastic and linear-isotropic hardening 
behaviors of material and coded in Compaq 
Visual Fortran Professional, Edition 6.5.0, and 
the obtained results are compared with the 
experimental data. To model this problem, the 
following references in plasticity and non-linear 
finite element are employed: Owen and Hinton 
[17], Souza Neto et al. [18], Simo and Hughes 
[19], Zienkiewicz and Taylor [20], Crisfield 
[21], Hill [22], and Khan and Hung [23]. It is 
shown that, with increasing hardening and also 
approaching of the Lode parameter to 1 , 
 1  , the difference between the 
presented NAFR and the corresponding AFR 
increases.  
In the current research, the computation of the 
first and second differentiations of a yield and 
plastic potential function in its simplified 
matrix form is based the earlier works by 
Moayyedian and Kadkhodayan [11-13]. 
Finally, it can be said that the proposed NAFR 
can be implemented in both rate- and rate-
independent plasticity using the proposed 
procedure. 
 
2. Matrix formulation of backward Euler 
scheme with NAFR 
 
To model a thick walled pressure vessel it is 
demonstrated the Backward Euler method is 
more accurate than the others by Moayyedian 

and Kadkhodayan [13] therefore this method is 
accepted in current research. For three 
dimensional stress space any 6 1  vector is 
shown with symbol   and any 6 6 matrix is 
shown with symbol   . In the following the 
formulation of backward Euler method with 
non-associated plasticity in non-linear finite 
element is derived. 
The yield condition in a state of stress can be 
shown with following equation: 

     
 

, 0YF f
G g

    


   
 

 
(1) 

in which F is yield condition and f defines 
yield surface. G g  defines the plastic 
potential surface,    is the stress vector, and 
  is the hardening parameter. It is assumed 
that    T

pd d   ; therefore, the work 
hardening hypothesis is confirmed. The 
increment direction of the plastic strain vector  
   from NAFR can be found as follows: 

   pd d b    (2) 

where d   is the plastic multiplier and  b is:  

 

, , , , ,

T
T

x y x yz xz xy

gb

g g g g g g



     

    
       
        

 (3) 

For one-dimensional linear-isotropic hardening 
with NAFR in any load step, it can be shown 
that: 

 1

1

1

1

1

n n

n n

n Y p p

n
Y p p

n

H

gH
f

   

  











    

 
   
 

 (4) 

where H   is the plastic modulus and  p   is 
the effective plastic strain. Then, the equations 
in Eq. (5) can be obtained. The following steps 
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have to be followed in a fully implicit 
algorithm: 

 

 

 
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


 




 



 
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 
      

 
              



 
(5) 

1. Assume that plastic loading, i.e. 1 0critical
nF   , 

the plastic flow residual  1nR  , and the yield 
condition can be defined as: 

      1
1 1 1

1
1 1 1

1

,

p p n
n n n n

n
n n n

n

gR
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f
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

 


  


  



          


      

 (6) 

where         1 1 1
p

n n nD      , in 

which   is the strain vector and  D  is the 
elastic stiffness matrix.  
2. Linearize the above equation. Because 
 1n  and 

np are assumed to be fixed during 
return-mapping stage, then 

       1
1 1

k kp
n nD 
     and we have: 
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
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 
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

    
  
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

  
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 (7) 

Some relations appear in Eq. (8) and the 
Hessian matrix is in Eq. (9). 
3. Solve the linearized problem to obtain Eq. 
(10). 
 

 

 

1 1
1

1 1 1 1

1 1

1 1
1

n n
n

n n n n

n n

n n
n

F fa

H g g f
f f

G gb

 


 

 

 


   

 

 


               
                  
          

     
 

 (8) 

   
1

1 1
1 1

n
n n

bD 



 

 
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  (9) 

 
 

 
 

     
 

 

 
 

     

 
 

     
 

 

     

       

       

2 1
1

1
1 1 1

1

1 1 1

1
1 1 1

1

1 1

2
1 1 1

1
1 1

k

k

k

k

k
k n

n k
T k k n

n n n k
n

T k k
n n n

k
T k k n

n n n k
n

kk
n n

k k k
n n n

kp
n n

F
ga b H
f

a R
ga b H
f

R b

D







 





  



  


  



 

  


 


 
  

 

  

    
   
    
 

 (10) 

4. Update the plastic strain   
1

kp
n   and the 

consistency parameter  
1

k
n   as in Eq. (11) and 

Eq. (12). 
 

        1

1 1 1

k k kp p p
n n n  



      
 (11) 

and 
     1 2

1 1 1
k k k

n n n  
         (12) 

The procedure summarized above is simply a 
systematic application of Newton's method to 
solve the system of Eq. (6) that results in the 
computation of the closest point projection 
from the trial state onto the yield surface. The 
geometric interpretation of the iteration scheme 
is illustrated in Fig. 1. Note that, in this implicit 
procedure, normality is enforced at the final 
(unknown) iteration. The described procedure 
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considers non-associated flow rule; if it is 
assumed that g f , the relations can be 
obtained for the associated flow rule as well. It 
is noted that, in the above procedure, 
convergence is achieved when 

   1 1
T

n nR R  and 1nF   in Eq. (6) reach the 
prescribed tolerances. 
 
3. Matrix formulation of consistent elastic-
plastic modulus with NAFR 
 
Differentiating the elastic stress-strain 
relationships and the discrete flow rule gives: 

        
   

 

1 1 1

1
1 1 1

1 1

p
n n n

p n
n n n

n n

d D d d

bd d

d b

  

  




  


  

 

  

        
 

 (13) 

Thus, one obtains the following algorithmic 
relationship: 

       1 1 1 1 1n n n n nd d d b         

 
(14) 

On the other hand, differentiating the discrete 
consistency condition 
yields:

 
Fig.  1. Iterative procedure of Euler backward under 
non-associated flow rule, f , yield surface, g , 
potential surface, n , normal to the potential surface. 

    1
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n n n
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ga d H d
f

 
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
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(15) 

Thus, from Eqs. (14) and (15) we have: 

   
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1
1

1
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T
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n Tn
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n

e d
d g H e b

f


 







 


 

(16) 

where, 

    1 1D n ne a    (17) 

Finally, substituting Eq. (18) in (14) yields the 
expression for elastic-plastic relation: 

   1 11n ep nn
d D d  

     
(18) 

where the consistent elastic-plastic modulus is 
defined as follows: 

    
   

11
1

1
1

T
D D

ep nn Tn
D n

n

e e
D g H e b

f








     

 

 

(19) 

where, 

    1 1D n ne b     (20) 

It is noted that employing the non-associated 
flow rule leads the consistent elastic-plastic 
modulus to become non-symmetric. 
The flowchart of non-linear finite element 
employed in the current research in Fig. 1 is 
similar to the work done by Moayyedian and 
Kadkhodayan [12]; but, to use epD   , the 
procedure explained in Sections 2 and 3 must 
be employed.  

 
4. Results and discussion 

 
In this section, an internally pressurized elastic-
plastic thick-walled cylinder (as illustrated in 
Fig. 2) is investigated. The mechanical 
properties are as follows: Young's modulus of 

elasticity 4
22.1 10 dNE

mm
  , Poisson' ratio 
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0.3  , yield stress 
224.0Y

dN
mm

  , plastic 

modulus 
10
EH   , and the inner and outer radii 

of the cylinder as 100a mm  and 200b mm , 
respectively. More explanations of this problem 
exist in the works done by Moayyedian and 
Kadkhodayan [11- 13] and Owen and Hinton 
[17]. 
Using the relations obtained in the previous 
sections for NAFR, different yielding criteria 
and plastic potentials are employed to compare 
the effects on the obtained results (Fig. 3). In 
this part,  V  and  T  stand for the von Mises 
and Tresca criteria, respectively. 

 
Fig. 2. Mesh employed in the elastic-plastic analysis 
of an internally pressurized thick cylinder under 
plane strain conditions. 

 
Moreover, in the forming of    , the first and 
second letters show the yielding criteria and 
plastic potential used in the analysis, 
respectively. The results demonstrate that 
employing von Mises criterion  V V  
overestimates the experimental results as in 
Marcal [24]; but, using NAFR  V T  can 
predict a better estimation than  V V . 

Moreover, using Tresca criterion  T T  
underestimates the experimental results and 
here also using NAFR  T V  gives better 

results than  T T . It is also observed that, 

for 2b
a
 , using  T V  and, for 2b

a
 , using 

 V T  provide better results. 
Figs. 4-7 demonstrate the circumferential strain 

of the outer surface at 2.4r
a
  with increasing 

pressure and circumferential stress distributions 

in the range of 1 2.4r
a

   for perfect-plastic 

and hardeninig materilas. The results represent 
that, with increasing the load and hardening, the 
difference between the presented AFR and 
NAFR is increased. On the other hand, for the  

 
Fig. 3. A Comparing the experimental results and 
 V V ,  V T ,  T V ,  T T . 

 

cylinder geometry of  1.6b
a
 , the flow rule of 

 T V  gives more accurate results (see Figs. 
8-11). These figures show again that, with 
increasing the load and hardening, the 
difference between AFR and NAFR is 
increased. 
Now, two important questions emerge, i.e. 
What is the main reason for the difference 
between employing AFR and NAFR? and On 
what conditions does this difference increase?. 
These questions are discussed below in more 
detail. The previous results in Figs. 4-11 show 
that, with increasing the load and hardening, the 
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difference between AFR and NAFR is 
increased. Another main reason for this 
difference can be attributed to the combination 
of loading (tention-shear). To investigate this 
issue, the Lode parameter, , is considered 

3 tan   , where   is the angle of loading 
vector in deviatoric plane (Moayyedian and 
Kadkhodayan [12]). Figures 12-17 show the 
variation of Lode parameter (in outer surface) 
with internal pressure, radius (in 0   ), and 
angle   when AFR based on both von Mises 
and Tresca yielding criteria is used, 
respectively. As can be apparent, at pure shear, 
the orthogonal vectors to Tresca and von Mises 
surfaces have the same directions (not the same 
values). Now, when loading is such that 

0 , then the difference between the 
directions of the vectors of plastic strain 
increment for von Mises and Tresca decreases. 
On the other hand, when the loading is such 
that 1 , then the difference increases. In 
other words, as the loading condition varies in 
such a way that 1 , then the difference 
between AFR and NAFR becomes higher. 
Figures 13-16 show that the maximum 
difference between the AFR and NAFR 
happens in the outer surface of the cylinder. 
Figures 12-17 demonstrate that, for the current 
loading condition, the Lode parameter is 

0.4   in the outer surface. The differences 
between the results obtained by considering 
perfect-plastic behavior of matrials in Figs. 4 
and 8 and also Figs. 5 and 9 are solely because 
of the combination of loading. However, these 
differences become higher when, in addition to 
the combination of loading, the isotropic 
hardening is also considered (see Figs. 6 and 10 
and also Figs. 7 and 11). Therefore, for the 
problems with non-linear isotropic hardening in 
conjunction with the load condition in 
deviatoric plane as 1 , the difference 
between the presented NAFR and the 
corossponding AFR would be maximum. 
Figure 18 shows the variation of Lode 
parameter with different ratios of  b

a
. It is 

evident that, for both  V V  and  T T  
associated flow rules, there is almost no change 
for Lode parameter versus ratio of outer to inner 

thicknesses. Therefore, it can be expected that 
the differences between the NAFR and AFR, 
i.e. between  V V  and  V T  and also 

 T T and  T V , have to remain constant 

approximately for different ratios of  
b
a

, as can 

be observed in Fig. 3. 
 
 

 
Fig. 4. Comparing  V T  and  T V for 
circumferential strain of the outer surface with 
increasing pressure, perfect-plastic. 
 
 
 

 
Fig. 5. Comparing  V T and  T V for 
circumferential stress distributions, perfect plastic. 
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Fig. 6. Comparing  V T  and  T V  for 
circumferential strain of the outer surface with 
increasing pressure, linear hardening. 
 

 
Fig. 7. Comparing  V T and  T V for 
circumferential stress distributions, linear hardening. 

To more clarity the ability of the new proposed 
method, the subsequent studies can be useful. 
Tresca yield locus can be written as [17]: 

 
1
2

22 cos 0,
6 6YJ          (21) 

or, 
2

2
2 cos

4
YJ 

   (22) 

 
Fig. 8. A Comparing  V T and  T V for 
circumferential strain of the outer surface with 
increasing pressure, perfect plastic. 
 

 
Fig. 9. Comparing  V T and  T V for 
circumferential stress distributions, perfect plastic. 
 
 
where 2J   is the second invariant of the 
deviatoric stress tensor, Y  is the yield stress, 
and   is the angle of loading in deviatoric 
plane, which can be shown as: 

 
3

3
2

2

3 3sin 3
2

J

J



 


 (23) 
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In the above relation, 3J   is the third invariant 
of the deviatoric stress tensor. Using 
trigonometric relations and Eq. (23), it can 
be stated that: 

 
2

2 3
3

2

cos 1
J
J

 


 


 (24) 

where, 

27
4

   (25) 

 
 
Fig. 10. Comparing  V T and  T V for 
circumferential strain of the outer surface with 
increasing pressure, linear hardening. 
 

 
 
Fig. 11. A comparison between  V T and 

 T V  for circumferential stress distributions, 
linear hardening. 

 
Fig. 12. Variation of Lode parameter in outer 
surface of the vessel with increasing the internal 
pressure for perfect-plastic behavior of material and 
von Mises criterion. 
 

in which, 
2

2

sin
sin 3





  (26) 

 
Finally the Tresca locus can be given as: 

2 2
3

2 3
2

1
4
YJJ

J



 
    

 (27) 

Using Eq. (26), the range of   can be 
determined as: 
 

 
Fig. 13. Variation of Lode parameter with radius for 
perfect-plastic behavior of material and von Mises 
criterion. 
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Fig. 14. Variation of Lode parameter versus 
variation of angle for perfect-plastic behavior of 
material and von Mises criterion. 
 
 
3 27
4 16

   or 0.75 1.6875  . 

Some experimental investigations state that the 
plastic potential locus can be determined as 
[22]: 

 
2

3
2 3 2 3

2

, 1 0.73 JG J J J
J

 
     

 (28) 

 
which can predict the behavior of materials 
more precisely than AFR,  V V . 
Comparison of Eq. (27) with Eq. (28) shows 
that the proposed plastic potential function in 
Eq. (28) is nearly equal to that of Tresca locusat 
pure shear. Furthermore, the direction of normal 
to Tresca locus is constant in the range of 

6 6
 
  , hence it may be said that 

considering  V T  can predict the 
experimental results more accurately than 
 V V  according to [22]. Furthermore, Gao, 
et al. [10] presented general yield and plastic 
potential functions as: 

 

 

1
6 3 2 6

1 1 2 1 3

1
6 3 2 6

2 1 2 2 3

27

27

F c J J b J

G c J J b J


   


    

 (29) 

where, 
1
6

1 1 1

1
6

2 2 2

4 1
729

4 1
729

c a b

c a b






       


      

 

 (30) 

By comparing the model with different 
experimental results, it is concluded that 
selecting 1 2 0a a  , 1 60.75b   , and 

2 25b   can predict the experimental data with 
good accuracy. 
From inserting these values in Eq. (29), it may 
be deduced that they nearly use  T V  in 
their numerical calculations, which is more 
accurate than AFR,  T T .  
 

 

 
Fig. 15. Variation of Lode parameter in outer 
surface of the vessel because of increasing the 
internal pressure for perfect-plastic behavior of 
material and Tresca criterion. 
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Fig. 16. Variation of Lode parameter versus the 
variation of radius for perfect-plastic behavior of 
material and Tresca criterion. 

 
Fig. 17. Variation of Lode parameter versus 
variation of angle for perfect-plastic behavior of 
material and Tresca criterion. 
 

 
Fig. 18. Variation of Lode parameter with b

a
. 

5. Conclusions 
 
The proposed NAFR was newly implemented 
with backward Euler method using its 
consistent elastic-plastic operator in rate-
independent plasticity. The results showed that, 
for an internally elastic-plastic thick-walled 
cylinder, considering NAFR could help predict 
the experimental results more accurately than 
taking the corresponding AFR. Moreover, it 
was found that the NAFR of  T V  was 
better than AFR  T T  and also NAFR 

 V T  was better than AFR  V V in terms 
of predicting the experimental results. In 
addition to isotropic hardening, the 
combination of loading (tension-shear) can 
cause difference between the presented NAFR 
and corresponding AFR such that, for 1  , 
this difference increased and, for 0 , this 
difference decreased. Finally it can be said that 
this research confirmed the previous work of 
the present author on rate-dependent plasticity 
in steady state conditions [12]. 
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