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Abstract 
Over the last ten years, robustness of schemes has raised an increasing interest 
among the CFD community. The objective of this article is to solve the quasi-
one-dimensional compressible flow inside a “Shubin nozzle” and to investigate 
Bean-Warming and flux vector splitting methods for numerical solution of 
compressible flows. Two different conditions have been considered: first, there is 
a supersonic flow in the entry and a supersonic flow in the outlet, without any 
shock in the nozzle. Second, there is a supersonic flow in the inlet and a subsonic 
flow in the outlet of the nozzle and a shock occur inside the nozzle. The results 
show that the run time of the flux vector splitting scheme is more than the Bean-
Warming scheme, and, the flux vector splitting scheme is more accurate than the 
Bean-Warming scheme. However the flux vector splitting scheme is more 
complicated.  

  

1. Introduction 
 
Computational fluid dynamics (CFD) methods 
are based on the principles of mass, momentum 
and energy conservation. The computed 
solution provides flow variables such as 
velocity, pressure, temperature, density, 
concentration, etc. at thousands of locations 
within the domain. CFD methods can be 
applied to examine different equipment designs, 
or compare performance under different 
operating conditions.  Studies to examine the 
influence of various parameters on the flow 
behavior can be conducted using CFD methods. 

It also allows for various concepts to be 
examined in a virtual setting, without actually 
building a physical model. In general CFD 
methods are applied to understand the overall 
flow and heat transfer behavior.   
In this paper, two numerical methods are 
investigated: (Bean-Warming and flux vector 
splitting schemes) for solving Euler equations 
in High Mach number flows.  The flux vector 
splitting scheme produces steady shock profiles 
with two interior zones. Numerical solutions by 
first  and second-order schemes, including the 
above split fluxes can be found in Ref [1].  
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The development of implicit finite-difference 
methods for the Euler and Navier–Stokes 
equations is presented by NASA Ames research 
scientists [2-7]. The major limiting drawback to 
the explicit methods is in the application to 
viscous flows where fine grid spacings are 
required to capture boundary layers. Numerical 
stability limitations of the explicit methods led 
many to look at implicit schemes, with their 
inherent unconditional stability. Implicit 
methods, though, were at first hindered by their 
vastly increased numerical work (mainly due to 
the need to invert large sparse matrices). The 
groundbreaking work by Bean and Warming 
led to efficient implicit approximation schemes. 
Steger [8] made contributions in the numerical 
analysis and practical application of implicit 
methods, along with Pulliam and Steger [9, 10] 
(one of the first three-dimensional applications 
of implicit methods).  
Generally, in this paper, focus is on Qusi-One 
dimensional Euler equations and methods 
which apply for numerical solution of Euler 
equations such as Bean-Warming methods and 
Steger and Warming flux vector splitting.  
 
2. Governing equation 
 
The Euler equations for a quasi one-
dimensional flow may be expressed as: 
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Where s is the cross-sectional area assumed 
independent of time, i.e. s=s(x) and: 
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where ρ is density, u is the velocity, p is the 
pressure, and, et is the total energy: 
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3. Numerical issues 
 
Consider an implicit algorithm for Eq. (1). The 
time derivative is approximated by a first-order 
backward difference approximation to provide: 
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We will assume a perfect gas and therefore, 
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With definition of the speed of sound 

as  /pa  , we have: 

 
2

2

2
1

1
uaet 




                                      (8) 

Hence, the Jacobian matrix QE  / will be 
denoted by A and the Jacobian matrix 

QH  / is denoted by B. The eigenvalues of A 
represent the characteristics direction of 
information. Since the flux Jacobian A 
possesses a complete set of eigenvalues and 
eigenvectors, a similarity transformation exist 
such that: 
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Also, X is the eigenvector matrix and X-1 is the 
inverse of the eigenvector matrix.  Moreover, 
recall that the flux vector E possesses the 
homogenous property; therefore, it may be 
splitted into sub-vectors such that each sub-
vectors is associated with positive or negative 
eigenvalues of the flux matrix Jacobian. Thus, 
the eigenvalues may be grouped as positive or 
negative. For a subsonic flow, two of the 
eigenvalues, namely u and u+a, are positive, 
whereas the third eigenvalue, u-a, is negative. 
Therefore, the Jacobian matrix A is splitted 
according to:  

  AAA ,
1  XXDA ,

1  XXDA                                                            
                                                                      (10) 

The elements of the diagonal matrices D+ and 
D- are the positive and negative eigenvalues, i.e. 
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Now, the flux vector E may be splitted 
according to: 
 

QAE                                       
                                                                      (12) 
and, 
 

QAE                                                     (13) 

Note that for a supersonic flow, all three 
eigenvalues are positive and, therefore,  

 
AA                 0A                             (14) 

The flux Jacobian matrices A+ and A- (for the 
subsonic flow) are easily determined by Maple.  

At this point, pause a moment to determine the 
reason for all the mathematical manipulations 
considered so far. Recall that the objective is to 
develop efficient and stable numerical schemes 
to solve a system of hyperbolic PDEs, for the 
time being the model Eq. (1). To investigate the 
stability requirement of the equation, a linear 
stability analysis is employed. The results 
indicate that if one-sided differencing is used 
for the spatial derivatives, it must be a forward 
differencing for the terms associated with the 
negative eigenvalues and a backward 
differencing for the terms associated with the 
positive eigenvalues. This requirement is used 
for the FDEs in which one-sided differences are 
used. A second consideration, a very important 
one, is the specification of the inflow and 
outflow boundary conditions based on the 
eigenvalues. This point will be explored after 
the examination of the FDEs. 
 
4. Implicit formulations 
 
The implicit formulation for the one-
dimensional Euler equation is given by Eq. (4). 
Substitution of Eq. (5) and Eq. (6) into Eq. (4) 
yields: 
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This equation may be expressed in terms of the 
Jacobian matrices A and B as: 
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where I is the identity matrix and 
  QxA  / implies   xQA  / . 
 
5. Steger and Warming Flux Vector Splitting 
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In the flux vector splitting scheme, E and the 
flux Jacobian matrix A are splitted according to 
the previous discussion to provide: 
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Hence, when first-order approximations are 
used, the following finite difference equation is 
obtained:
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6. Bean-Warming 
 
In the Bean-Warming scheme, the implicit 
formulation for the one-dimensional Euler 
equation is given by: 
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Substitution of Eq. (5) and Eq. (6) into Eq. (19) 
and simplifying yields: 
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For stability of numerical solution must add eD  
must be added to iR . For increasing of speed 

iD  must be added to the left- hand side of Eq. 
(20). eD and iD  are given by: 
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7. Results and discussions 
 
Results of the numerical solution using the 
Steger and Warming flux vector splitting 
scheme are presented, and then that of the 
Bean-Warming method are presented. The 
cross-sectional area of the Shubin nozzle is 
defined by: 
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The quasi-one-dimensional Euler equations are 
invariant under the following scaling: 
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The subscript ‘o’ denotes the reservoir 
condition. The inflow condition for this nozzle 
is as follow: 
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And outflow condition when the flow is 
subsonic in the outlet is: 
 
  5156000.0max  outpxp  

 
The results of mesh independency Fig. 1 show 
that results do not change if the number of mesh  
is more than 500. Hence, in this work, we 
consider 1001 girds in x-direction.  
For using the CFL number, the maximum value 
of (u+a) must be known. Therefore, variation of 
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(U+a) along the nozzle are plotted in Figs. 2 
and 3.  

 
 

 

In Fig. 4, distribution of pressure, Mach 
number, density and velocity across the nozzle 
for state which there are not any shock are 
shown. As is clear, the velocity and the Mach 
number are increasing across the nozzle 

whereas the density and the pressure are 
decreasing. 
As is obvious from the Fig. 4, the Mach number 
across the nozzle is more than one. Hence, there 
is not any shock across the nozzle. In Fig. 5(a) 
and (b), results are shown for the state in which 

 

 a shock occurs in the nozzle and the flow is 
subsonic in the outlet. They show that the shock 
occurs exactly in the middle of the nozzle. This 
fact is confirmed by experiments and analytical 
data. 

Fig. 1. Mesh independency in the supersonic inflow and, (a) supersonic, and (b) subsonic out outflow. 

(a) Diagram of M versus x in the flow with
Supersonic inflow and supersonic outflow.

(b) Diagram of M versus x in the flow
with Supersonic inflow and subsonic
outflow.

Fig. 2. (U+a) to x for supersonic outflow 
(without shock). Fig. 3. (U+a) versus x for subsonic 

outflow (with shock). 
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Figure 5(c) shows that CPU time depends on 
the CFL number. It is clear that with increase of 
the CFL number, the CPU time will decrease, 
but it cannot be increased more than 1.4, 
because then the solution will diverge. The best 
amount for CFL number is 1.3 in this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 
 
 
 
 
 

                

                                          (a)                                                                    (b)                                     

 

  (c) 

           

                                      (a)                                                                                      (b) 

Fig. 4. Diagrams of mach and density (a), velocity and pressure (b) versus x by flux vector splitting method. 
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Fig. 5. Diagrams of Mach, density, velocity and pressure versus x (a and b) and diagram of CPU time versus 
CFL using the flux vector splitting method (c). 
 
Generally, the Bean-Warming scheme for the 
condition that the flow is supersonic in the 
outlet, does not have any difference from the 
flux vector splitting scheme. But for the second 
condition, subsonic in outlet the results are 
different. Figure 6(a) and (b) show the variation 
of pressure, velocity, density and Mach number 
along the nozzle, using the Bean-Warming 
scheme, when there is a shock in the nozzle. 
It can be seen that there are fluctuations near 
the location of the shock. These fluctuations 
depend on De. Diagram of CPU time versus 
CFL number Fig. 6(c) shows that the best CFL 
number is 2.3. Comparing the CPU time of the 
two methods in their optimum CFL numbers, 
we notice that the Bean-Warming method is 
faster than the flux vector splitting. The results 
also show that the results from the flux vector 
splitting are more accurate, but the algorithm is 
more complicated also show that the results 
from the flux vector splitting are more accurate, 
but the algorithm is more complicated. 

8. Conclusions 
 
In this paper, we the Qusi-One dimensional 
Euler equation is solved for the flow in a 
Shubin nozzle, using  methods of Steger- 
Warming flux vector splitting and Bean-
Warming. Numerical solution is done for two 
different conditions: without any shock in the 
nozzle and with a shock in the nozzle. From the 
CPU time and the accuracy point of view, it 
was found that both methods have the same 
results when there is not a shock in the nozzle.  
However, when there is a shock, the flux vector 
splitting method is more accurate than the 
Bean-Warming method. However, the flux 
vector splitting is slower and more complicated 
than the Bean-Warming method. All in all, the 
numerical results have a full compliance with 
analytical solutions. Choosing of a suitable CFL 
number is important for having a fast 
convergence to the solution. 
 
 
 

 
 

 

                                         (a)  
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                                          (b) 

(c) 

Fig. 6. Diagrams of mach, density, velocity and 
pressure versus x (ab) and diagram of CPU time 
versus CFL (c). 
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