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Background and Objectives: Large Language Models have demonstrated exceptional 
performance across various NLP tasks, especially when fine-tuned for specific 
applications. Full fine-tuning of large language models requires extensive 
computational resources, which are often unavailable in real-world settings. While 
Low-Rank Adaptation (LoRA) has emerged as a promising solution to mitigate these 
challenges, its potential remains largely untapped in multi-task scenarios. This study 
addresses this gap by introducing a novel hybrid approach that combines LoRA with 
an attention-based mechanism, enabling fine-tuning across tasks while facilitating 
knowledge sharing to improve generalization and efficiency.  This study aims to 
address this gap by introducing a novel hybrid fine-tuning approach using LoRA for 
multi-task text classification, with a focus on inter-task knowledge sharing to enhance 
overall model performance. 

Methods: We proposed a hybrid fine-tuning method that utilizes LoRA to fine-tune 
LLMs across multiple tasks simultaneously. By employing an attention mechanism, this 
approach integrates outputs from various task-specific models, facilitating cross-task 
knowledge sharing. The attention layer dynamically prioritizes relevant information 
from different tasks, enabling the model to benefit from complementary insights.  
Results: The hybrid fine-tuning approach demonstrated significant improvements in 
accuracy across multiple text classification tasks. On different NLP tasks, the model 
showed superior generalization and precision compared to conventional single-task 
LoRA fine-tuning. Additionally, the model exhibited better scalability and 
computational efficiency, as it required fewer resources to achieve comparable or 
better performance. Cross-task knowledge sharing through the attention mechanism 
was found to be a critical factor in achieving these performance gains. 

Conclusion: The proposed hybrid fine-tuning method enhances the accuracy and 
efficiency of LLMs in multi-task settings by enabling effective knowledge sharing 
between tasks. This approach offers a scalable and resource-efficient solution for real-
world applications requiring multi-task learning, paving the way for more robust and 
generalized NLP models.  

 

Keywords: 
Large language model 

Fine-Tuning 

PEFT 

LoRA 

Knowledge sharing 

Attention mechanism 

 

 

 

*Corresponding Author’s 
Email Address: 
Salimi@kashanu.ac.ir 

 

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)                           

Introduction 
Large language models (LLMs) have become essential in 

artificial intelligence, especially for natural language 

processing (NLP) and various other applications. These 

models, characterized by their sophisticated 

architectures and deep neural networks, have 

fundamentally transformed NLP by demonstrating 

unparalleled capabilities in both generating and 

comprehending human language. The impact of LLMs 

extends beyond NLP [1], influencing fields such as 

machine translation, sentiment analysis, and even 

creative writing. Despite their transformative potential, 
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fully fine-tuning these models presents significant 

challenges. The primary obstacle lies in the sheer number 

of parameters, often reaching billions, which necessitates 

substantial computational resources and advanced 

hardware. This complexity not only increases the cost and 

time required for fine-tuning but also raises concerns 

about energy consumption and environmental impact. 

Consequently, researchers are exploring alternative 

approaches such as transfer learning, parameter-efficient 

tuning, and the development of more efficient model 

architectures to mitigate these challenges. 

To utilize an LLM for various tasks, a common approach 

is to fine-tune a pre-trained model on the specific task 

data [2], [3]. Full fine-tuning of a language model can be 

computationally intensive, typically requiring the update 

of all parameters in the pre-trained model, and the fine-

tuned model may end up with as many parameters as the 

original model [4]. To overcome this issue, parameter-

efficient fine-tuning methods like Low-Rank Adaptation 

(LoRA) [5] enable fine-tuning a pre-trained model by 

introducing small LoRA modules for different tasks. In 

these methods, the main parameters of the pre-trained 

model remain fixed, and only the weights of the two low-

rank matrices in LoRA are updated, which are significantly 

fewer in number compared to the main parameters of the 

pre-trained model. 

LoRA significantly reduces the computational 

resources required and enables the fine-tuning process 

across various tasks. For example, thousands of LLaMA 

models [6], fine-tuned using LoRA, are available on 

Hugging Face Hub [7]. These practical applications 

demonstrate that LoRA is not only widely used for fine-

tuning tasks in LLMs but also achieves model accuracy 

comparable to other full-weight fine-tuning methods. The 

lightweight nature of LoRA-based fine-tuning allows for 

training multiple LoRA modules on a single GPU. LoRA-

based fine-tuning systems, such as Alpaca-LoRA [8], 

primarily focus on optimizing single-task fine-tuning and 

have not fully explored efficient strategies for multi-task 

fine-tuning. 

Despite the successes achieved, the majority of 

existing research and systems have focused 

predominantly on single-task fine-tuning, with limited 

exploration of efficient strategies for multi-task fine-

tuning. In this paper, we introduce a hybrid model that 

fine-tunes large language models using the LoRA method, 

enhancing model accuracy by enabling simultaneous 

learning across multiple tasks. This hybrid approach 

employs an attention mechanism to integrate the outputs 

of various tasks, yielding superior performance in diverse 

text classification tasks. 

Existing parameter-efficient fine-tuning techniques, 

such as Low-Rank Adaptation (LoRA), have shown 

promise in reducing computational requirements. 

However, their applications have been largely limited to 

single-task learning, leaving multi-task scenarios 

underexplored. Multi-task learning, with its potential for 

inter-task knowledge sharing, offers significant 

advantages in terms of generalization and resource 

efficiency, yet it poses unique challenges in balancing 

task-specific requirements. To address these challenges, 

we propose a hybrid fine-tuning approach that enhances 

multi-task text classification by leveraging LoRA alongside 

an attention mechanism for effective knowledge sharing. 

The main contributions of this paper are as follows: 

 Hybrid Fine-Tuning Approach: This paper 

introduces a hybrid fine-tuning approach that fine-

tunes large language models (LLMs) using Low-Rank 

Adaptation (LoRA). Unlike traditional fine-tuning 

methods that focus on single tasks, this hybrid 

approach enables simultaneous fine-tuning across 

multiple tasks. The central innovation lies in 

leveraging knowledge sharing between tasks, 

allowing the model to learn from multiple tasks 

concurrently and enhance its overall performance. 

By sharing task-specific knowledge, the model 

improves generalization and accuracy across diverse 

text classification challenges. 

 Advanced Attention Mechanism: The model 

incorporates an attention mechanism that 

facilitates cross-task knowledge integration. This 

attention layer intelligently combines outputs from 

different tasks, allowing the model to dynamically 

focus on the most relevant information from each 

task. As a result, the model benefits from a broader 

understanding of the data, as insights gained from 

one task can enhance the performance on others. 

This inter-task knowledge sharing is a key driver of 

the model’s superior accuracy and efficiency. 

 Improved Computational Efficiency: While 

enhancing accuracy through multi-task knowledge 

sharing, the proposed method also significantly 

optimizes computational resources. By using LoRA, 

the model reduces the number of trainable 

parameters, allowing it to operate efficiently on a 

single GPU without compromising on performance. 

This combination of enhanced learning and reduced 

computational demands makes the approach highly 

suitable for practical, large-scale deployments. 

 Comprehensive Experimental Validation: To 

evaluate the proposed approach, we conduct 

extensive experiments on multiple benchmark 

datasets for diverse text classification tasks. Our 

results demonstrate that the hybrid method 

achieves improved accuracy and efficiency 

compared to both single-task fine-tuning and the 

base model. 

Preliminaries 

This section delves into the preliminary concepts, 
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including the fine-tuning of large language models, 

parameter-efficient fine-tuning methods, and the 

attention mechanism. 

A. Large Language Models 

Large Language Models represent some of the most 

cutting-edge advancements in artificial intelligence, 

characterized by their ability to generate text with high 

precision and quality. These models leverage complex 

architectures and deep neural networks, which enable 

them to produce text that is both coherent and 

contextually appropriate across a diverse array of topics. 

The foundational architecture of these models is built 

upon transformers, a breakthrough introduced in 2017 

that rapidly became a cornerstone in natural language 

processing due to its unparalleled efficacy [9]. Key 

applications of these models include automated content 

generation, machine translation, natural language 

processing, and question-answering systems. LLMs can 

analyse vast amounts of data and learn linguistic patterns, 

allowing them to generate sentences that are logical and 

meaningful, often indistinguishable from text written by 

humans [2]. 

Prominent examples of LLMs include GPT [10] by 

OpenAI, BERT [3], and T5 [11] by Google. These models, 

through the analysis of vast amounts of data, have 

learned intricate linguistic patterns, enabling them to 

generate sentences that are both logical and contextually 

rich, making it challenging to differentiate their output 

from text authored by humans. The primary advantage of 

these models lies in their exceptional ability to 

understand and generate high-quality text across multiple 

languages, as well as to provide accurate responses to 

questions of varying complexity. As a result, LLMs have 

found extensive applications in areas such as machine 

translation, chatbots, automated content creation, and 

even recommendation systems. Given these capabilities, 

LLMs are not only powerful tools for natural language 

processing but have also become foundational pillars in 

the development of AI-driven technologies. However, to 

fully harness their potential, these models often require 

fine-tuning for specific tasks. This fine-tuning is essential 

for optimizing their performance in particular 

applications. 

 In this research, we adopt a hybrid approach using 

Low-Rank Adaptation (LoRA) to fine-tune large language 

models (LLMs) for multi-task text classification. The 

hybrid approach is designed to optimize computational 

efficiency while enhancing model accuracy, primarily by 

facilitating inter-task knowledge sharing. This approach 

enables the model to benefit from the learning outcomes 

of different tasks simultaneously, allowing it to leverage 

relevant information gained across tasks to improve 

overall performance. In this context, our hybrid approach 

ensures that the advantages of multi-task learning—

particularly the ability to transfer knowledge across 

tasks—are fully realized. The dynamic sharing of task-

specific knowledge allows the model to become more 

robust, mitigating issues such as overfitting to a particular 

dataset while also enhancing its ability to adapt to new, 

unseen tasks. By fine-tuning different tasks in parallel and 

allowing for cross-task information flow, our model 

achieves higher performance metrics than traditional 

fine-tuning approaches that isolate task learning. 

B. Fine-Tuning Language Models 

Training a large language model (LLM) from scratch 

requires significant time and financial resources. The use 

of thousands of GPUs can take several days [12] and 

demands substantial financial investment [13]. Fine-

tuning pre-trained models has emerged as an efficient 

way to leverage the benefits of LLMs: fine-tuning is the 

process of adapting a pre-trained model to a specific task 

by training it further on task-specific data, thereby 

improving its performance on that task. This approach has 

gained widespread acceptance, as it allows researchers to 

utilize general-purpose pre-trained models and tailor 

them to meet specific needs. Many organizations, such as 

Meta with their LLaMA models [6], make their pre-trained 

models publicly available. These publicly available pre-

trained models can be fine-tuned for various downstream 

tasks, making fine-tuning the most practical way to 

capitalize on the benefits of LLMs. However, fully fine-

tuning large language models is computationally 

expensive, as it requires updating all the parameters of 

the model. 

C. Parameter-Efficient Fine-Tuning Methods 

Full fine-tuning of large pre-trained models generally 

requires updating all model parameters, often resulting in 

substantial computational costs [4]. In contrast, 

parameter-efficient fine-tuning (PEFT) methods [14] 

selectively adjust only a small number of additional 

parameters, leading to a significant reduction in 

computational and memory resources. One of the most 

advanced PEFT techniques is the Low-Rank Adaptation 

(LoRA) method [5], which achieves efficient fine-tuning by 

keeping the pre-trained model entirely frozen and 

applying weight updates through a trainable low-rank 

decomposition matrix, as illustrated in Fig. 1. 

ℎ = 𝑊0𝑥 + ∆𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥                 (1) 

where 𝑥 represents the input data from the target task, 

𝑊0 ∈ 𝑅𝑑×𝑘  are the weights of the pre-trained model that 

remain fixed, 𝐵 ∈ 𝑅𝑑×𝑟 and 𝐴 ∈ 𝑅𝑟×𝑘 and are the 

trainable low-rank decomposition matrices, where 𝑟 ≪

min⁡(𝑑, 𝑘) is the rank of the decomposition. Fig. 1 

illustrates the LoRA method, which we employed as the 

primary tool for fine-tuning large language models in this 

research.  
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Fig. 1: Reparameterization in LoRA Method [5]. This method 
only trains A and B. The Pretrained Weight of model were 

frozen. 

By utilizing LoRA, our research has been able to 

significantly reduce computational costs while 

simultaneously improving the accuracy and efficiency of 

the models across various text classification tasks. 

D. Attention Mechanism 

The attention mechanism is one of the key innovations 

in modern AI architectures, particularly in transformer-

based models. This mechanism allows models to focus 

more on the relevant and important information within 

the data. Essentially, the attention mechanism assigns 

different weights to different inputs, helping the model to 

select the most important parts of the data for 

processing, thereby improving the overall performance of 

the model. 

In transformer-based models, the attention 

mechanism is implemented as self-attention, where each 

word in a sentence attend to all other words in the same 

sentence. This mechanism consists of three matrices: 

query, key, and value. For each token, the model assigns 

different weights to each of these matrices based on their 

similarity with other tokens. The basic formula for the 

attention mechanism is given as (2). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾

√𝑑𝑘
) 𝑉                    (2) 

where Q is the matrix of queries, K is the matrix of keys, 

and V is the matrix of values. The term 𝑑𝑘  is a 

normalization factor that prevents the resulting values 

from becoming too large due to the dot product of the 

queries and keys. This process enables the model to 

identify and focus on the most relevant and important 

parts of the data [9]. 

To further enhance the model's ability to capture 

complex relationships within the data, the Multi-Head 

Attention mechanism is introduced. In Multi-Head 

Attention, instead of computing a single attention 

function, the model computes multiple attention 

functions (heads) in parallel. Each head independently 

performs the attention operation, capturing different 

aspects of the relationships between words. The outputs 

of these attention heads are then concatenated and 

linearly transformed to form the final output. The formula 

for Multi-Head Attention is as follows: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) =
⁡⁡⁡⁡⁡𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊

0   (3) 

where each ℎ𝑒𝑎𝑑𝑖  is calculated as: 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)                  (4) 

here, 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾  and 𝑊𝑖
𝑉  are the weight matrices for the 

queries, keys, and values for the i-th attention head, and  

𝑊0 is the output weight matrix. The Multi-Head Attention 

mechanism allows the model to jointly attend to 

information from different representation subspaces at 

different positions, providing a more comprehensive 

understanding of the input data [9]. 

The attention mechanism is not only used as a tool to 

enhance the performance of language models, but it can 

also be leveraged to aggregate and combine the outputs 

of multiple models. This application is particularly useful 

in complex systems that require the integration of 

information from various sources. In such scenarios, the 

attention mechanism can assist the model in intelligently 

determining which parts of the different outputs should 

be given more focus, ultimately producing a higher-

quality combined output. In this approach, the outputs of 

several models are fed as inputs to an attention layer. This 

allows the models to flexibly utilize the knowledge and 

information from multiple sources, thereby achieving 

higher accuracy and efficiency in solving complex tasks 

[15]. 

For instance, in a multilingual machine translation 

system, the outputs of different models trained for 

various languages can be combined using the attention 

mechanism to create more accurate and reliable 

translations. Similarly, in recommendation systems or 

data analysis applications, the outputs of multiple models 

can be aggregated using attention to achieve better 

results [16]. The effectiveness of using the attention 

mechanism for output aggregation lies in its ability to 

automatically learn which outputs and their components 

are more significant under different circumstances, 

thereby improving the final output and enhancing 

decision-making quality. 

In this study, we employed an attention mechanism to 

intelligently combine the outputs of fine-tuned multi-task 

models, enabling more effective cross-task knowledge 

sharing. By integrating outputs from multiple tasks, this 

approach allows language models fine-tuned using the 

Low-Rank Adaptation method to draw on the relevant 

insights learned from different tasks concurrently. Instead 

of treating each task as isolated, the attention mechanism 

dynamically identifies and emphasizes critical features 

from each task, thereby enhancing the model's ability to 

generalize across diverse datasets. 
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Related Work 

This section reviews related works in the field, starting 

with a number of studies that have full fine-tuned 

language models, adjusting all model parameters. 

Following this, we introduce several studies that have 

utilized parameter-efficient fine-tuning (PEFT) methods. 

Finally, we discuss works that have employed hybrid fine-

tuning approaches. 

A. Full Fine-Tuning of Language Models 

Fully fine-tuning language models is a widely used 

approach for task-specific optimization. For instance, In 

[17], the authors explore the use of the BERT model for 

sentiment analysis, employing a full fine-tuning approach. 

In this method, the pre-trained BERT model, initially 

trained on a large text corpus, is further fine-tuned on a 

specific sentiment analysis dataset. This involves updating 

all the parameters of the BERT model to adapt it to the 

task at hand. The full fine-tuning process takes advantage 

of BERT's capability to understand the intricate 

dependencies between words in a sentence and to 

leverage various contextual cues. As a result, the fine-

tuned model demonstrates significantly improved 

performance in sentiment analysis tasks. 

Similarly, In another study [18], a new model called 

LUKE is introduced, which is specifically designed to 

enhance the representation of entities within text. LUKE 

incorporates an entity-aware self-attention mechanism, 

allowing the model to pay special attention to entities 

mentioned in the text. By fully fine-tuning the BERT model 

on several tasks related to entity recognition, LUKE is able 

to accurately identify and represent the semantic 

relationships between entities and the surrounding text, 

resulting in better overall performance. 

In the work of Nogueira et al. [19], BERT is utilized to 

enhance the performance of passage re-ranking tasks. 

The approach involves a two-step process: first, an initial 

retrieval system provides a list of candidate passages for 

a given query. Then, the BERT model, which has been fully 

fine-tuned, is used to re-rank these passages. The BERT 

model processes the input queries and candidate 

passages, encoding the sentences and analysing the 

semantic relationships between the words. This allows 

the model to more accurately determine the relevance of 

each passage to the query, improving the final ranking. 

Khashabi et al. [20] introduce the UnifiedQA model, 

which is built on transformer architectures and trained 

using a transfer learning approach. This model is capable 

of answering questions across various formats. The key 

innovation is the unification of all question-answering 

tasks into a single text format, which is then used to fully 

fine-tune the language model. This unification allows the 

model to leverage a larger and more diverse dataset 

during training, leading to increased accuracy and 

flexibility in handling different types of question-

answering tasks. 

Full fine-tuning allows models to adapt 

comprehensively to specific tasks, maximizing their 

performance. However, this approach requires updating 

all model parameters, leading to high computational costs 

and memory requirements, making it less feasible for 

resource-constrained environments or scenarios 

requiring frequent model updates. 

B. Parameter-Efficient Fine-Tuning (PEFT) 

To mitigate the resource demands of full fine-tuning, 

parameter-efficient fine-tuning (PEFT) methods have 

been proposed. Pfeiffer et al. [21] introduced a novel 

approach for adapting transformer models using adapter 

modules. Rather than fully fine-tuning all the parameters 

of the model, this method involves adding a small set of 

new parameters, known as adapters, for each specific 

task. These adapter modules are connected to different 

layers of the transformer model, allowing the model to be 

optimized for various tasks without altering the primary 

parameters of the model. This approach significantly 

reduces the time and computational resources required 

for fine-tuning, while also facilitating the sharing of base 

models across multiple tasks. The results demonstrate 

that using adapter modules can achieve performance 

comparable to full fine-tuning methods, and in some 

cases, even surpass them. 

Li and Liang [22] introduced Prefix-Tuning, another 

PEFT method, where instead of fine-tuning all model 

parameters, a continuous prefix of text is optimized. This 

prefix is added to the input of a transformer model, 

guiding it during text generation. This method offers a 

cost-effective and flexible alternative to traditional full 

fine-tuning approaches. The prefix is directly appended to 

the input sequence, and only a small number of 

parameters related to this prefix are optimized, leaving 

the rest of the model unchanged. The models used in 

their experiments, primarily GPT-2 and other generative 

transformer models, demonstrated that Prefix-Tuning 

could achieve performance similar to, or even better 

than, full fine-tuning while only optimizing a small portion 

of the model's parameters. 

Stickland and Murray [23] proposed the PALs 

(Projected Attention Layers) method, another PEFT 

approach that adapts the BERT model to various tasks by 

replacing standard attention layers with projected 

attention layers. This method allows the model to be 

effectively adapted to various tasks by adding additional 

parameters to the attention layers, which are fine-tuned 

for each specific task. This approach enables efficient 

adaptation without the need to fine-tune all of the 

model's parameters, significantly reducing the 

computational load while maintaining high performance 

across multiple tasks. 



A. Beiranvand et al. 

422  J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 

Zhang et al. [24] introduced LoRA-FA, a novel method 

designed to improve the efficiency of fine-tuning large 

language models. The primary goal of LoRA-FA is to 

reduce the memory overhead associated with fine-tuning 

LLMs by minimizing the need for activation memory 

without sacrificing performance or incurring heavy 

recomputation costs. LoRA-FA works by keeping the low-

rank weight matrix A fixed while only updating the higher-

rank weight matrix B. This effectively reduces the 

activation memory required during the fine-tuning 

process. The method has been extensively tested across 

various models and scales, with empirical results showing 

that LoRA-FA offers comparable accuracy to full 

parameter fine-tuning and LoRA, while significantly 

reducing memory costs.  

PEFT methods significantly reduce computational and 

memory requirements, enabling fine-tuning on resource-

limited devices. However, these methods may not 

achieve the same level of performance improvement as 

full fine-tuning, especially for tasks requiring deep model 

adaptations. 

C. Hybrid Fine-Tuning Approaches 

Hybrid approaches aim to balance the comprehensive 

adaptation of full fine-tuning with the efficiency of PEFT. 

These approaches combine the strengths of both full fine-

tuning and parameter-efficient fine-tuning methods, 

aiming to optimize model performance while minimizing 

computational resources. These approaches leverage the 

comprehensive capabilities of full fine-tuning by updating 

a significant portion of the model's parameters while 

simultaneously employing parameter-efficient 

techniques to reduce the overall computational cost. 

Sar et al. [25] introduced the USE model, designed to 

generate high-quality representations of sentences and 

textual phrases. This model is particularly geared towards 

improving performance across a range of natural 

language processing (NLP) tasks and machine learning 

applications. The USE model employs two main 

architectures for generating vector representations of 

sentences: 

Transformer-based Encoder: This version of the USE 

model is built upon the transformer architecture and 

utilizes the multi-head attention mechanism to 

understand semantic dependencies within the text. Due 

to its ability to model complex relationships between 

words, this architecture is particularly well-suited for 

applications requiring high precision and detail. 

Deep Averaging Network (DAN): This version is lighter 

and faster, focusing on the simplicity of averaging word 

embeddings rather than employing the full transformer 

architecture. 

In [26], the authors propose an approach that 

integrates Low-Rank Adaptation (LoRA) with traditional 

fine-tuning techniques. This hybrid method allows for the 

efficient fine-tuning of large language models by updating 

both a small, low-rank set of parameters and a larger set 

of fully fine-tuned parameters. This combination enables 

the model to achieve high performance with reduced 

computational costs compared to traditional full fine-

tuning methods. 

Similarly, the work by Kim et al. [27] explores a hybrid 

fine-tuning approach that combines Prefix-Tuning with 

full parameter fine-tuning. By optimizing a prefix of 

continuous text in conjunction with full fine-tuning, the 

model benefits from the flexibility and efficiency of 

parameter-efficient methods while retaining the 

comprehensive improvements provided by full fine-

tuning. The results demonstrate that this hybrid approach 

can achieve performance levels comparable to full fine-

tuning while requiring fewer computational resources. 

 Hybrid approaches effectively combine the strengths 

of full and parameter-efficient fine-tuning, achieving a 

good trade-off between performance and resource 

efficiency. However, their complexity can increase 

implementation overhead and may require careful tuning 

to balance the contributions of different components. 

By critically analysing these methods, this paper 

identifies the potential of hybrid approaches to leverage 

the advantages of knowledge sharing and efficiency, 

forming the foundation for the proposed hybrid fine-

tuning method. 

Methodology 

In this section, we introduce a novel hybrid model 

designed to enhance the fine-tuning process of large 

language models (LLMs) using the Low-Rank Adaptation 

(LoRA) technique. Our proposed method is structured to 

combine the strengths of multiple fine-tuned models to 

improve overall accuracy and efficiency in various text 

classification tasks. Each component model in our hybrid 

architecture shares the same pre-trained weights 𝑊∗, but 

has its own learnable parameters ∆𝑊𝑚, which correspond 

to the matrices A and B in the LoRA method. After fine-

tuning for each task, the weights 𝑊𝑚 are defined as: 

𝑊𝑚 = 𝑊∗ + ∆𝑊𝑚                      (5) 

During the fine-tuning process on the data of task m, 

the objective is to optimize ∆𝑊𝑚. For this optimization is 

formulated as follows: 

ℒ(∆𝑊𝑚) = ⁡min
∆𝑊

∑ − log 𝑝(𝑦𝑛⁡|𝑋𝑛; ⁡𝑊
∗ + ∆𝑊𝑚)

𝑁
𝑛=1      (6) 

where N denotes the number of training samples for task 

m, 𝑋𝑛  represents the input samples, and 𝑦𝑛 are their 

corresponding labels. 

Fig. 2 illustrates the proposed framework and the 

integration of these fine-tuned models. 

Each of these fine-tuned models functions as an 

independent module within the proposed framework, as 

depicted on the left side of Fig. 2. These modules are 
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specifically tailored to handle individual tasks by 

employing the LoRA (Low-Rank Adaptation) fine-tuning 

technique. This approach allows for efficient adaptation 

of large language models to specific tasks without 

requiring complete retraining of the model, thus 

optimizing computational resources. For example, as 

shown in the left section of Fig. 2, the i-th module is 

designed for the task of sentiment analysis. The input to 

this module is a sentence, which could represent any 

textual content, such as a review, a social media post, or 

a customer feedback comment. The module processes 

the input and classifies it into one of the predefined 

categories like here: positive or negative sentiment. 

To ensure accurate classification, a task-specific head 

is integrated into the module. This head maps the model's 

internal representations to the class space relevant to the 

sentiment analysis task. This mapping step is crucial for 

transforming the abstract feature representations 

learned by the model into interpretable outputs aligned 

with the specific requirements of the task. 

The training process is guided by the computation of 

an error signal, which quantifies the difference between 

the predicted class and the true class label. This error is 

calculated using the cross-entropy loss function (7), a 

widely used metric in classification problems that 

effectively handles the probabilistic nature of model 

outputs. Once the error is computed, it is backpropagated 

through the network, enabling the model to adjust its 

parameters and improve its performance on the 

sentiment analysis task during subsequent iterations. 

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 = ℒ(𝐻𝑒𝑎𝑑(𝐿𝑀(𝑋)), 𝑦)                                        (7) 

This modular design not only enhances the flexibility of 

the overall framework but also ensures that each module 

is highly specialized and optimized for its respective task, 

ultimately contributing to the robustness and adaptability 

of the proposed system. 

In this way, it is possible to fine-tune 𝑘 distinct modules 

on k different tasks. Each module is trained to learn task-

specific knowledge, ensuring optimal performance for its 

assigned task. This approach ensures that the expertise 

gained by each module is highly specialized, tailored to 

the unique requirements of the respective task. 

The main proposed model, depicted on the right side 

of Fig. 2, is essentially a combination of these individual 

modules. By integrating the knowledge acquired by each 

module, the overall model leverages the specialized 

expertise of all modules to perform complex or 

multifaceted tasks effectively. 

This design allows the system to benefit from the 

modularized training of diverse tasks, enabling a flexible 

and scalable architecture. As a result, the proposed 

framework can tackle multiple tasks simultaneously or 

sequentially by drawing on the task-specific knowledge 

embedded within its constituent modules. This modular 

combination enhances the adaptability and efficiency of 

the model, particularly in multi-task learning scenarios. 

Based on the model depicted in Fig. 2, the outputs of 

the fine-tuned models are initially aggregated using the 

aggregation function Agg1 and converted into a vector. It 

is important to note that these model outputs represent 

the values computed by the language model before 

passing through the softmax layer and being transformed 

into probability values. Subsequently, these aggregated 

values pass through an attention layer. The attention 

layer computes a new vector for each of these input 

vectors, determining how much attention each task's 

output should receive and adjusting the values 

accordingly. All outputs from the attention layer are then 

passed to a second aggregation function, Agg2, and finally 

combined with the output of the neural network layer 

using the Agg3 function, forming the final output of the 

model. 

Aggregation functions are versatile tools designed to 

combine multiple inputs into a singular, cohesive output. 

The most widely used aggregation functions include: 

Mean Function: Computes the average of the input 

values, providing a balanced representation of the data. 

Max/Min Function: Identifies the highest or lowest value 

among the inputs, highlighting the most extreme values. 

Sum Function: Adds up all input values, offering a 

cumulative measure of the inputs. 

These are just a few examples, and a variety of other 

functions can also be utilized depending on the specific 

needs of the task at hand. 

Attention Layer: This layer utilizes the self-attention 

mechanism, where the outputs from the Agg1 function 

serve simultaneously as queries (Q), keys (K), and values 

(V). After applying Agg1, each output from the fine-tuned 

models functions as its own query, key, and value. This 

allows the model to not only focus on its own output but 

also to dynamically attend to the outputs of other models 

fine-tuned on different tasks. This interaction enables the 

model to weigh the relevance of each output in the 

context of the others, leading to a more informed and 

refined final result. 

Normalization: To enhance the model's performance, the 

aggregated data is normalized. Normalizing the data 

ensures that the model inputs fall within a specified 

range, which aids in accelerating the learning process and 

improving prediction accuracy. Moreover, this process 

prevents the model from disproportionately focusing on 

features with larger scales, which could lead to 

imbalances in learning. Overall, data normalization not 

only reduces the model's training time but also helps in 

improving its generalization ability.  
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Fig. 2: The left image depicts a single module undergoing fine-tuning of a language model on a specific task (sentiment analysis) 
using the LoRA method. The right image illustrates the proposed framework, which combines these fine-tuned modules for the 

target task (here, MNLI). 

For normalization, after each aggregation function, a 

normalization layer is added. In this layer, after 

calculating the mean μ and variance 𝜎2, the data is 

normalized according to (8): 

 X̂i =
xi−μ

√σ2+ϵ
       (8) 

where ϵ is a small value added to prevent division by zero. 
Following normalization, by adding two learnable 
parameters, the output of the normalization layer is given 
by 

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽                                    (8) 

During the training phase of the proposed model, only 

the parameters of the Feed-Forward Network (FFN) and 

the attention layers are updated. The language model and 

all k modules remain frozen, with only their learned 

knowledge being shared across tasks. This design allows 

the model to focus on learning the new task (e.g., the 

MNLI task shown in Fig. 2) without altering the 

parameters of the pre-trained language model or the 

task-specific modules. 

By leveraging this knowledge-sharing property, the 

framework can achieve high performance and accuracy 

on previously unseen tasks without the need to fine-tune 

the entire language model for each new task. This 

approach ensures that the expertise gained from prior 

tasks is effectively utilized to generalize to new scenarios, 

significantly reducing the need for extensive retraining. 

Additionally, since the proposed framework employs 

parameter-efficient methods during the module training 

phase, such as LoRA (Low-Rank Adaptation), the 

computational cost of training is kept minimal. Unlike full 

fine-tuning approaches, which require updating the 

entire language model, this method modifies only a small 

subset of parameters. Consequently, the training and 

inference processes are computationally efficient, 

allowing the model to run effectively on a single GPU. 

This efficiency makes the framework practical and 

scalable, particularly in resource-constrained settings, 

while maintaining high performance across both seen and 

unseen tasks. It demonstrates the capability of leveraging 

modular and efficient design principles to achieve robust 

task adaptation with minimal computational overhead. 

Experiments and Results 

To evaluate the effectiveness of the proposed method, 

several experiments were conducted. This section details 

the experiments and the results obtained from them. 

A. Datasets 

To fine-tune and evaluate the model, the GLUE dataset 

[28] was used, which encompasses multiple tasks. The 

details of the dataset are provided in Table 1. 

To assess the generalization ability of the model, four 

additional datasets—STS-B, IMDB, AG News, and TREC—

were employed, none of which were used in the training 

process of the hybrid method. 
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The STS-B dataset, part of the GLUE benchmark [28], is 

designed for evaluating semantic similarity between 

sentence pairs. Each pair is annotated with a similarity 

score ranging from 0 to 5, where higher scores indicate 

greater semantic similarity. 

The IMDB dataset [29], widely used for sentiment 

analysis, contains 50,000 movie reviews evenly split into 

25,000 training samples and 25,000 test samples. Each 

review is labelled as either positive or negative, and the 

dataset is balanced, ensuring equal representation of 

both sentiment classes. 

The AG News dataset [30] is a benchmark dataset used 

for news categorization. It consists of 120,000 training 

samples and 7,600 test samples, categorized into four 

classes: World, Sports, Business, and Science/Technology. 

Each sample includes a title and a brief description of the 

news article, making it ideal for evaluating text 

classification methods. 

The TREC dataset [31], widely utilized for question 

classification, contains 5,452 training questions and 500 

test questions categorized into six main types: 

Abbreviation, Entity, Description, Human, Location, and 

Numeric. These classes are further divided into finer 

subcategories, offering a hierarchical structure that is 

useful for question classification and intent detection 

tasks.  

B. Evaluation Metrics 

In this subsection, we describe the evaluation metrics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

used to assess model performance across different 

datasets, as summarized in Table 1. 

Each metric is selected based on the specific nature 

and objectives of the corresponding task. 

Accuracy is a standard evaluation metric for 

classification tasks. It measures the proportion of 

correctly predicted samples relative to the total number 

of samples. This metric is widely used in datasets such as 

SST-2, IMDB (sentiment analysis), AG_NEWS, TREC, MNLI, 

QNLI, RTE, WNLI (natural language inference), and MRPC, 

QQP (paraphrase detection) [28]. The formula for 

accuracy is given as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                               (9) 

where: 

TP (True Positives): The number of correctly predicted 

positive samples. 

TN (True Negatives): The number of correctly predicted 

negative samples. 

FP (False Positives): The number of incorrectly predicted 

positive samples. 

FN (False Negatives): The number of incorrectly predicted 

negative samples. 

Matthews Correlation Coefficient (MCC) [28] is a 

robust evaluation metric specifically suited for binary 

classification tasks, particularly in scenarios with 

imbalanced datasets. It considers all four categories of the 

confusion matrix (true positives, true negatives, false 

Table 1: Details of the datasets 

Metric Labels #Test #Train #Class Type Task  

Accuracy positive, negative 872 6920 2 Sentiment SST-2 

Single-sentence Matthews_Correlation 
grammatical, 

not_grammatical 
1042 8551 2 acceptability CoLA 

Accuracy 
entailment, neutral, 

contradiction 
9815 392702 3 NLI MNLI 

Sentence-pair 

Accuracy 
entailment, 

not_entailment 
5463 104743 2 NLI QNLI 

Accuracy 
entailment, 

not_entailment 
277 2490 2 NLI RTE 

Accuracy 
entailment, 

contradiction 
72 635 2 NLI WNLI 

Accuracy 
equivalent, 

not_equivalent 
408 3668 2 Paraphrase MRPC 

Accuracy 
equivalent, 

not_equivalent 
40431 363846 2 Paraphrase QQP 

Accuracy positive, negative 25000 25000 2 Sentiment IMDB 

Single-sentence 

Accuracy 
World, Sports, 

Business, 
Science/Technology 

7600 120000 4 
News 

Categorization 
AG_NEWS 

Accuracy 
Abbreviation, Entity, 
Description, Human, 

Location, Numeric 
500 5452 6 

Question 
Classification 

TREC 

Pearson - 1500 5749 Regression 
Sentiment. 
similarity 

STS-B Sentence-pair 
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positives, and false negatives) to provide a balanced 

assessment of model performance. In this study, MCC is 

employed for the CoLA dataset, which focuses on 

grammatical acceptability. The formula for MCC is: 

𝑀𝐶𝐶 =
(𝐹𝑃∗𝐹𝑁)−(𝑇𝑃∗𝑇𝑁)

√(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
                         (10) 

MCC ranges from −1 to +1, where +1 indicates perfect 

prediction, 0 indicates no better than random prediction, 

and −1 indicates total disagreement between prediction 

and observation. 

Pearson Correlation Coefficient [28] is used to 

measure the strength and direction of the linear 

relationship between predicted and actual values in 

regression tasks. It is particularly relevant for the STS-B 

dataset, where the objective is to evaluate semantic 

similarity scores between sentence pairs. A higher 

correlation indicates a stronger agreement between 

predicted and true scores. The formula for the Pearson 

correlation is: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛⁡𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)
2∑ (𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

           (11) 

where: 

𝑥𝑖  and 𝑦𝑖: Predicted and actual values, respectively. 

𝑥̅ and 𝑦̅: Mean of predicted and actual values, 

respectively. 

n: Number of samples. 

A higher correlation value (closer to +1) indicates a 

stronger agreement between predicted and true scores. 

C. Experimental Settings 

For the experiments, the language models DistilBERT 

[32] with approximately 66 million parameters, BERT-

base [3] with approximately 110 million parameters, and 

                                                           
1 https://github.com/Azadeh297/Attention-hybrid-method 

the ELECTRA [33] model in both small and base versions 

with approximately 14 million and 110 million 

parameters, respectively, were used. Each of the tasks 

was fine-tuned individually on these models using the 

LoRA method. The implementations were carried out in 

Python using the Transformers [34] and Huggingface PEFT 

[35] libraries.  

In the experiments, the number of fine-tuned models 

was set to k=9, except for the experiment examining the 

number of tasks, where this variable is adjusted. During 

the LoRA fine-tuning process, the ⁡∆𝑊𝑚 matrices were 

applied to all three matrices—key, value, and query—in 

the language model's attention module with a rank of r=4, 

chosen based on preliminary experiments where this 

value provided a balance between computational 

efficiency and model accuracy.  

Lower values of r were found to reduce the model’s 

expressive power, while higher values increased 

computational costs without significant gains in 

performance. The AdamW optimizer was used in all 

experiments, and the models were trained for 20 epochs. 

The initial learning rate was set to 2𝑒 − 5 with weight 

decay=0.01, and the batch size was 16 for all datasets. We 

employed the NVIDIA GeForce RTX 3090 24GB. The mean 

function was used for both aggregation functions Agg1 

and Agg2, while the sum function was employed for Agg3. 

The number of heads in the model is 4. The code related 

to this paper is available at this link1.  

D. Evaluation of the Proposed Method's Performance 

In this section, we present the results of training the 

proposed method on all datasets after 20 epochs. The 

results, as shown in Table 2 for the two language models 

utilized, indicate the validation accuracy achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  The effectiveness of the proposed method (AttEns) and other methods 

Average SST2 CoLA QNLI MNLI 
MNLI-
mm 

RTE MRPC QQP WNLI Method LLM 

0.3700 0.4908 0.0000 0.4794 0.3178 0.3267 0.4729 0.3161 0.3771 0.5493 Model 

DistilBERT 
0.5763 0.8337 0.1458 0.6908 0.5238 0.5288 0.5523 0.7107 0.7648 0.4366 FFN 
0.6164 0.9162 0.0000 0.7426 0.7426 0.7389 0.4440 0.6838 0.8432 0.4366 FT_LoRA 
0.7348 0.8933 0.3952 0.8473 0.7523 0.7610 0.6642 0.8014 0.8544 0.6447 AttEns 

0.4565 0.5149 0.0950 0.4880 0.3226 0.3302 0.5090 0.6789 0.6066 0.5633 Model 
BERT-
base 

0.5947 0.8589 0.3084 0.6847 0.5294 0.5372 0.5956 0.6985 0.7600 0.3802 FFN 
0.7351 0.9082 0.4993 0.8813 0.7940 0.8087 0.5848 0.7009 0.8615 0.5774 FT_LoRA 
0.7576 0.9105 0.4988 0.8795 0.8007 0.8102 0.6714 0.8186 0.8654 0.5633 AttEns 

0.4477 0.4988 0.0104- 0.5249 0.3216 0.3303 0.5270 0.3137 0.4742 0.5915 Model 
ELECTRA-

Small 
0.5881 0.6938 0.3268 0.7100 0.4787 0.4869 0.5523 0.7132 0.7542 0.5774 FFN 
0.7026 0.8772 0.3463 0.8504 0.7671 0.7823 0.5631 0.7377 0.8362 0.5633 FT_LoRA 
0.7496 0.8853 0.5312 0.8533 0.7708 0.7870 0.6787 0.8235 0.8396 0.5774 AttEns 

0.4568 0.5080 0.020- 0.4946 0.3532 0.3585 0.5018 0.6838 0.3604 0.3943 Model 

ELECTRA-
Base 

0.6703 0.8337 0.5208 0.7810 0.6320 0.6472 0.5956 0.7436 0.8000 0.4788 FFN 

0.7788 0.9288 0.6012 0.9203 0.8607 0.8647 0.7003 0.8431 0.8822 0.4084 FT_LoRA 

0.8126 0.9369 0.6362 0.9211 0.8632 0.8651 0.7689 0.8627 0.8825 0.5774 AttEns 
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The models evaluated are as follows: 

Model: The base language model without any additional 
training or fine-tuning was used to infer the data, and its 
accuracy was calculated. 
FFN: A single neural network layer was added on top of 
the base language model and fine-tuned. In this 
configuration, the parameters of the base model remain 
fixed, and only the parameters of the added neural 
network layer are updated. 
FT_LoRA: The language model was fine-tuned separately 
on the data using the LoRA method. 
AttEns: The proposed method. 

The values listed in Table 2 for all datasets represent 

accuracy, except for the CoLA dataset, where the 

evaluation metric is the Matthews correlation coefficient. 

Based on the results in Table 2, the proposed method has 

achieved the highest accuracy in most tasks. This 

improvement is attributed to the use of the attention 

mechanism and the integration of information from 

multiple tasks, allowing the model to identify more 

complex patterns and thereby achieve higher accuracy. 

To better explain this improvement, consider the QNLI 

task, which is related to natural language inference. In this 

task, the AttEns method achieved an accuracy of over 

92%. One reason for this improvement could be the 

method's ability to recognize complex relationships 

between sentences. For instance, imagine that the model 

needs to compare two sentences to determine whether 

the second sentence is a logical conclusion of the first. In 

traditional methods like FFN or FT_LoRA, this process is 

carried out directly without utilizing information from 

other tasks. However, in the AttEns method, the model 

also leverages information from other tasks, such as 

recognizing contradictions in MNLI and semantic 

sentence matching in QQP. This combination of 

information allows the model to perform better in 

identifying complex relationships, particularly in tasks 

related to natural language inference. 

In tasks like RTE, MRPC, and WNLI, there is a significant 

difference in the accuracy obtained from the proposed 

method compared to the single fine-tuned model. One 

possible reason for this is the smaller number of samples 

in these datasets compared to others. The proposed 

hybrid model has demonstrated higher accuracy in 

situations where limited data is available, potentially 

because the single fine-tuned model might have 

overfitted due to the small dataset size, resulting in 

poorer performance. This finding suggests that the 

proposed method can offer better generalizability even in 

data-limited scenarios. 

By comparing the results obtained from different 

language models, in many cases, the larger language 

model has yielded better results, indicating that using a 

larger language model with more parameters can be 

effective in improving model performance. 

To further evaluate the proposed method, we applied 

it to four additional datasets, IMDB, STS-B, AG_NEWS and 

TREC where the fine-tuned models for these datasets 

were not used in the combination of the proposed 

method. The results are shown in Table 3. According to 

the results, the AttEns method outperformed the FFN and 

FT_LoRA methods on all four datasets. For example, on 

the IMDB dataset, the AttEns method achieved an 

accuracy of 0.9397, which is clearly better than the FFN 

(0.8405) and FT_LoRA (0.8789) methods. This 

improvement in accuracy demonstrates the proposed 

method's high generalization ability to unseen data and 

indicates better performance in real-world scenarios. 

Imagine that the model needs to detect the sentiment of 

a movie review in the IMDB dataset. In traditional 

methods like FFN or FT_LoRA, the model only uses the 

training data from the same dataset, limiting its ability to 

generalize to new data. However, in the AttEns method, 

the model uses the attention mechanism to also leverage 

information from other related tasks. For example, if the 

model learned how to identify similar sentences in the 

QQP dataset, it could enhance this knowledge and apply 

it to better understand the sentiment in movie reviews. 

Table 3: Results of the proposed method on two datasets not 
used in the combination of the proposed method (BERT-base 
language model) 

TREC AG_NEWS IMDB STS-B Method  

0.0180 0.2505 0.4956 -0.0608 Model 

0.7666 0.8942 0.8405 0.2247 FFN 

0.8220 0.9107 0.9397 0.4158 AttEns 

 

On the STS-B dataset, the AttEns method also achieved 

an accuracy of 0.4158, which is an improvement 

compared to other methods. This improved performance 

indicates that the proposed model has high generalization 

ability even in scenarios where data is limited or 

heterogeneous. 

The results show that using the attention mechanism 

and integrating information from various tasks enables 

the model to better identify and analyse complex features 

in new data, which is particularly important in real-world 

scenarios and unseen data. 

E. Evaluating the Impact of k 

In this section, the impact of the number of 

components, k, in the proposed hybrid model is 

examined. The results of this experiment are presented in 

Fig. 3. This chart demonstrates that increasing the 

number of components generally improves the accuracy 

of the hybrid model, although the extent of this 

improvement varies at different points. As observed in 

Fig. 3, the accuracy of the model significantly improves 

when the number of components increases from 3 to 5. 
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This enhancement is due to the increased capacity of 

the model to learn and integrate diverse information from 

various tasks. 

When the number of components reaches 7, accuracy 

continues to improve in some datasets, but the 

improvement is not as pronounced. As the number of 

components increases, the model can examine each part 

of the data with greater detail, resulting in better 

performance. However, while the model continues to 

improve in accuracy, this improvement becomes slower 

compared to earlier stages. This slowdown occurs 

because, with more components, the model needs to 

process more information, requiring more resources for 

complete and optimized processing. This observation 

highlights the importance of selecting an appropriate 

number of components to optimize the model's 

performance. 

 

 

Fig. 3: Results of the proposed method for different values of k 
(BERT-base language model). 

Limitations and Future Work 

While the proposed hybrid fine-tuning method 

demonstrates notable improvements in accuracy and 

computational efficiency, several limitations must be 

acknowledged. Firstly, the method’s effectiveness has 

been primarily validated on text classification tasks. Its 

applicability to other NLP domains, such as sequence 

generation or machine translation, remains unexplored 

and requires further investigation. Secondly, the reliance 

on specific datasets like GLUE may constrain the 

generalizability of the findings to other domains or 

languages. Future research should aim to extend this 

approach to a broader range of datasets and languages 

while examining its compatibility with other parameter-

efficient fine-tuning techniques. Additionally, exploring 

the trade-offs between various aggregation functions and 

attention mechanisms could provide valuable insights for 

further optimizing model performance. 

Results and Discussion 

The results obtained from various datasets indicate 

that the proposed AttEns method consistently 

outperforms traditional fine-tuning approaches such as 

FFN and FT_LoRA across multiple NLP tasks. As shown in 

Table 2, AttEns achieves the highest accuracy in most 

datasets, particularly excelling in QNLI (92.11%), RTE 

(86.51%), and IMDB (93.97%). This improvement is 

primarily due to the model’s ability to integrate task-

specific information through an attention-based 

ensemble mechanism, which enhances its ability to 

identify complex patterns and generalize across tasks. 

Additionally, the method exhibits superior performance 

on datasets with limited samples, such as RTE and MRPC, 

where single-task fine-tuning often leads to overfitting. 

Furthermore, the generalization ability of AttEns is 

evident in its strong performance on IMDB, STS-B, 

AG_NEWS, and TREC, despite these datasets not being 

explicitly incorporated into the model’s training. The 

improvement in STS-B (41.58%) suggests that the 

attention mechanism enables the model to leverage 

knowledge from related tasks, leading to better sentence 

similarity evaluation. Moreover, the analysis of k, the 

number of task components, reveals that increasing k 

enhances performance up to a certain point, after which 

the improvement plateaus due to computational 

constraints. Overall, these results highlight the 

effectiveness of AttEns in improving language model 

accuracy, particularly in multi-task learning and low-data 

scenarios. 

Conclusion  

This paper introduced a hybrid approach for fine-

tuning large language models using the LoRA method, 

which is capable of improving model accuracy by learning 

multiple tasks simultaneously. The results from the 

experiments showed that this method outperformed 

traditional fine-tuning methods, especially on the GLUE 

dataset. The use of the attention mechanism to integrate 

and influence different tasks was one of the main factors 

contributing to the success of this method. Additionally, 

the method demonstrated good generalizability on 

unseen data. Ultimately, this research marks a significant 

step towards reducing computational costs and 

enhancing the efficiency of large language models in 

various natural language processing tasks. 
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NLI  Natural Language Inference 
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PEFT  Parameter-Efficient Fine-Tuning 

MCC  Matthews Correlation Coefficient 

TP  True Positives 

TN  True Negatives 

FP  False Positives 

FN  False Negatives 

FT  Fine Tuning 

FFN  Feed Forward Network 

GLUE  General Language Understanding 

                             Evaluation 

CoLA  Corpus of Linguistic Acceptability 

SST-2  Stanford Sentiment Treebank 

MRPC                 Microsoft Research Paraphrase Corpus 

QQP  Quora Question Pairs 

STS-B  Semantic Textual Similarity Benchmark 

MNLI  Multi-Genre NLI 

QNLI  Question NLI 

RTE  Recognizing Textual Entailment 

WNLI  Winograd NLI 

IMDB  Internet Movie Database 

TREC  Text Retrieval Conference 

AttEns                 Attention Ensemble 

References 

[1] K. I. Roumeliotis, N. D. Tselikas, "Chatgpt and open-ai models: A 
preliminary review," Future Internet, 15(6): 192, 2023. 

[2] T. Brown et al., "Language models are few-shot learners," in Proc. 
Advances in Neural Information Processing Systems 33 (NeurIPS 
2020), 33: 1877-1901, 2020. 

[3] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, "Bert: Pre-training of 
deep bidirectional transformers for language understanding," 
arXiv preprint arXiv:1810.04805, 2018. 

[4] K. Lv, Y. Yang, T. Liu, Q. Gao, Q. Guo, X. Qiu, "Full parameter fine-
tuning for large language models with limited resources," arXiv 
preprint arXiv:2306.09782, 2023. 

[5] E. J. Hu et al., "Lora: Low-rank adaptation of large language 
models," arXiv preprint arXiv:2106.09685, 2021. 

[6] H. Touvron et al., "Llama 2: Open foundation and fine-tuned chat 
models," arXiv preprint arXiv:2307.09288, 2023. 

[7] Hugging Face. https://huggingface.co/, 2023. 

[8] Eric Wang. Alpaca-lora. https://github.com/tloen/alpaca-lora, 
2023. 

[9] A. Vaswani et al., "Attention is all you need," in Proc. Advances in 
neural information processing systems 30 (NIPS 2017), 2017. 

[10] J. Achiam et al., "Gpt-4 technical report," arXiv preprint 
arXiv:2303.08774, 2023. 

[11] C. Raffel et al., "Exploring the limits of transfer learning with a 
unified text-to-text transformer," J. Mach. Learn. Res., 21(140): 1-
67, 2020. 

[12] D. Narayanan et al., "Efficient large-scale language model training 
on gpu clusters using megatron-lm," in Proc. the International 
Conference for High Performance Computing, Networking, 
Storage and Analysis: 1-15, 2021.  

[13] O. Sharir, B. Peleg, Y. Shoham, "The cost of training nlp models: A 
concise overview," arXiv preprint arXiv:2004.08900, 2020. 

[14] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, B. Bossan, 
"Peft: State-of-the-art parameter-efficient fine-tuning methods," 
2022. 

[15] A. Hernández, J. M. Amigó, "Attention mechanisms and their 
applications to complex systems," Entropy, 23(3): 283, 2021. 

[16] S. Dathathri et al., "Plug and play language models: A simple 
approach to controlled text generation," arXiv preprint 
arXiv:1912.02164, 2019. 

[17] C. Sun, X. Qiu, Y. Xu, X. Huang, "How to fine-tune bert for text 
classification?," in Proc. Chinese computational linguistics: 18th 
China National Conference (CCL 2019): 194-206, 2019.   

[18] I. Yamada, A. Asai, H. Shindo, H. Takeda, Y. Matsumoto, "LUKE: 
Deep contextualized entity representations with entity-aware self-
attention," arXiv preprint arXiv:2010.01057, 2020. 

[19] R. Nogueira, K. Cho, "Passage Re-ranking with BERT," arXiv preprint 
arXiv:1901.04085, 2019. 

[20] D. Khashabi et al., "Unifiedqa: Crossing format boundaries with a 
single qa system," arXiv preprint arXiv:2005.00700, 2020. 

[21] J. Pfeiffer et al., "Adapterhub: A framework for adapting 
transformers," arXiv preprint arXiv:2007.07779, 2020. 

[22] X. L. Li, P. Liang, "Prefix-tuning: Optimizing continuous prompts for 
generation," arXiv preprint arXiv:2101.00190, 2021. 

[23] A. C. Stickland, I. Murray, "Bert and pals: Projected attention layers 
for efficient adaptation in multi-task learning," in Proc. 
International Conference on Machine Learning, PMLR: 5986-5995, 
2019.  

[24] L. Zhang, L. Zhang, S. Shi, X. Chu, B. Li, "Lora-fa: Memory-efficient 
low-rank adaptation for large language models fine-tuning," arXiv 
preprint arXiv:2308.03303, 2023. 

[25] D. Cer et al., "Universal sentence encoder," arXiv preprint 
arXiv:1803.11175, 2018. 

[26] N. Shazeer et al., "Outrageously large neural networks: The 
sparsely-gated mixture-of-experts layer," arXiv preprint 
arXiv:1701.06538, 2017. 

[27] X. Wang, L. Aitchison, M. Rudolph, "LoRA ensembles for large 
language model fine-tuning," arXiv preprint arXiv:2310.00035, 
2023. 

[28] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S. R. Bowman, "GLUE: 
A multi-task benchmark and analysis platform for natural language 
understanding," arXiv preprint arXiv:1804.07461, 2018. 

[29] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, C. Potts, 
"Learning word vectors for sentiment analysis," in Proc. the 49th 
Annual Meeting of the Association for Computational Linguistics: 
Human Language Technologies: 142-150, 2011.  

https://ideas.repec.org/a/gam/jftint/v15y2023i6p192-d1156389.html#:~:text=This%20article%20provides%20an%20overview%20of%20the%20training,by%20a%20preliminary%20review%20of%20the%20relevant%20literature.
https://ideas.repec.org/a/gam/jftint/v15y2023i6p192-d1156389.html#:~:text=This%20article%20provides%20an%20overview%20of%20the%20training,by%20a%20preliminary%20review%20of%20the%20relevant%20literature.
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://huggingface.co/
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://user.phil.hhu.de/~cwurm/wp-content/uploads/2020/01/7181-attention-is-all-you-need.pdf
https://user.phil.hhu.de/~cwurm/wp-content/uploads/2020/01/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://arxiv.org/abs/2004.08900
https://arxiv.org/abs/2004.08900
https://www.mdpi.com/1099-4300/23/3/283
https://www.mdpi.com/1099-4300/23/3/283
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2310.00035
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/


A. Beiranvand et al. 

430  J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 

[30] X. Zhang, J. Zhao, Y. LeCun, "Character-level convolutional 
networks for text classification," in Proc. Advances in neural 
information processing systems 28 (NIPS 2015), 2015. 

[31] X. Li, D. Roth, "Learning question classifiers," in Proc. COLING 2002: 
The 19th International Conference on Computational Linguistics, 
2002.  

[32] V. Sanh, L. Debut, J. Chaumond, T. Wolf, "DistilBERT, a distilled 
version of BERT: smaller, faster, cheaper and lighter," arXiv 
preprint arXiv:1910.01108, 2019. 

[33] K. Clark, M.-T. Luong, Q. V. Le, C. D. Manning, "Electra: Pre-training 
text encoders as discriminators rather than generators," arXiv 
preprint arXiv:2003.10555, 2020. 

[34] T. Wolf et al., "Transformers: State-of-the-art natural language 
processing," in Proc. the 2020 Conference on Empirical Methods in 
Natural Language Processing: System Demonstrations:  38-45, 
2020.  

Biographies 
Azadeh Beiranvand Borjele completed 
Bachelor's degree in Software Engineering in 
2005 and Master's degree in Artificial 
Intelligence in 2012 at Shahid Chamran 
University, Ahvaz, Iran. Currently, She is 
currently a doctoral student in Artificial 
Intelligence at University of Kashan, Kashan, 
Iran. Her research interests include graph 
representation learning, graph neural 
networks, large language models and 

dynamic complex networks. 

 Email: a.Beiranvand@grad.kashanu.ac.ir  

 ORCID: 0009-0007-7077-8896  

 Web of Science Researcher ID: NA  

 Scopus Author ID: NA  

 Homepage: 
https://scholar.google.com/citations?user=81IV9sEAAAAJ&hl=en 

 

 Mahdiye Sarhadi Dadiyan completed 
Bachelor's degree in Information Technology 
Engineering in 2010 at Zahedan PNU, Zahedan, 
Iran and Master's degree in Computer 
Engineering (Artificial Intelligence) in 2016 at 
Kharazmi University, Tehran, Iran. Right now, 
She is a doctoral student in Artificial 
Intelligence at University of Kashan, Kashan, 
Iran. Her research interests include 
reinforcement learning, deep learning, large 

language models. 

 Email: mahdiye.sarhadi@grad.kashanu.ac.ir  

 ORCID: 0009-0006-5351-1885  

 Web of Science Researcher ID: NA  

 Scopus Author ID: NA  

 Homepage: NA 

 

Javad Salimi Sartakhti is an Assistant Professor 
of Artificial Intelligence in the department of 
Computer Engineering at the University of 
Kashan, Iran. He obtained his B.Sc. degree in 
computer engineering from the University of 
Kashan and his M.Sc. degree in Software 
Engineering from the Tarbiat Modares 
University, Tehran, Iran, in 2008 and 2013, 
respectively. In January 2017, he obtained his 
Ph.D. degree in Artificial Intelligence at the 
Isfahan University of Technology. He ranked 

first among students of computer engineering in all three degrees. His 
main research interests are LLM, NLP, and Deep learning. 

 Email: salimi@kashanu.ac.ir 

 ORCID: 0000-0003-1183-1232 

 Web of Science Researcher ID: HJY-2812-2023 

 Scopus Author ID: 51864592100 

 Homepage: https://faculty.kashanu.ac.ir/salimi/en 

 

How to cite this paper: 
A. Beiranvand, M. Sarhadi, J. Salimi Sartakhti, “Hybrid fine-tuning of large language models 
using lora: enhancing multi-task text classification through knowledge sharing,” J. Electr. 
Comput. Eng. Innovations, 13(2): 417-430, 2025. 

DOI: 10.22061/jecei.2025.11314.794 

URL: https://jecei.sru.ac.ir/article_2303.html  

 

https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://aclanthology.org/C02-1150.pdf
https://aclanthology.org/C02-1150.pdf
https://aclanthology.org/C02-1150.pdf
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
mailto:a.Beiranvand@grad.kashanu.ac.ir
https://scholar.google.com/citations?user=81IV9sEAAAAJ&hl=en
mailto:mahdiye.sarhadi@grad.kashanu.ac.ir
mailto:salimi@kashanu.ac.ir
https://faculty.kashanu.ac.ir/salimi/en
https://jecei.sru.ac.ir/article_2303.html

