
J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

Doi: 10.22061/jecei.2025.11314.794 417

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Hybrid Fine-Tuning of Large Language Models Using LoRA:
Enhancing Multi-Task Text Classification through Knowledge Sharing

A. Beiranvand, M. Sarhadi, J. Salimi Sartakhti *

Department of Computer Engineering, University of Kashan, Kashan, Iran.

Article Info Abstract

Article History:
Received 02 November 2024
Reviewed 13 January 2025
Revised 12 February 2025
Accepted 02 March 2025

Background and Objectives: Large Language Models have demonstrated exceptional
performance across various NLP tasks, especially when fine-tuned for specific
applications. Full fine-tuning of large language models requires extensive
computational resources, which are often unavailable in real-world settings. While
Low-Rank Adaptation (LoRA) has emerged as a promising solution to mitigate these
challenges, its potential remains largely untapped in multi-task scenarios. This study
addresses this gap by introducing a novel hybrid approach that combines LoRA with
an attention-based mechanism, enabling fine-tuning across tasks while facilitating
knowledge sharing to improve generalization and efficiency. This study aims to
address this gap by introducing a novel hybrid fine-tuning approach using LoRA for
multi-task text classification, with a focus on inter-task knowledge sharing to enhance
overall model performance.

Methods: We proposed a hybrid fine-tuning method that utilizes LoRA to fine-tune
LLMs across multiple tasks simultaneously. By employing an attention mechanism, this
approach integrates outputs from various task-specific models, facilitating cross-task
knowledge sharing. The attention layer dynamically prioritizes relevant information
from different tasks, enabling the model to benefit from complementary insights.
Results: The hybrid fine-tuning approach demonstrated significant improvements in
accuracy across multiple text classification tasks. On different NLP tasks, the model
showed superior generalization and precision compared to conventional single-task
LoRA fine-tuning. Additionally, the model exhibited better scalability and
computational efficiency, as it required fewer resources to achieve comparable or
better performance. Cross-task knowledge sharing through the attention mechanism
was found to be a critical factor in achieving these performance gains.

Conclusion: The proposed hybrid fine-tuning method enhances the accuracy and
efficiency of LLMs in multi-task settings by enabling effective knowledge sharing
between tasks. This approach offers a scalable and resource-efficient solution for real-
world applications requiring multi-task learning, paving the way for more robust and
generalized NLP models.

Keywords:
Large language model

Fine-Tuning

PEFT

LoRA

Knowledge sharing

Attention mechanism

*Corresponding Author’s
Email Address:
Salimi@kashanu.ac.ir

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction
Large language models (LLMs) have become essential in

artificial intelligence, especially for natural language

processing (NLP) and various other applications. These

models, characterized by their sophisticated

architectures and deep neural networks, have

fundamentally transformed NLP by demonstrating

unparalleled capabilities in both generating and

comprehending human language. The impact of LLMs

extends beyond NLP [1], influencing fields such as

machine translation, sentiment analysis, and even

creative writing. Despite their transformative potential,

http://jecei.sru.ac.ir/
http://creativecommons.org/licenses/by/4.0/

A. Beiranvand et al.

418 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

fully fine-tuning these models presents significant

challenges. The primary obstacle lies in the sheer number

of parameters, often reaching billions, which necessitates

substantial computational resources and advanced

hardware. This complexity not only increases the cost and

time required for fine-tuning but also raises concerns

about energy consumption and environmental impact.

Consequently, researchers are exploring alternative

approaches such as transfer learning, parameter-efficient

tuning, and the development of more efficient model

architectures to mitigate these challenges.

To utilize an LLM for various tasks, a common approach

is to fine-tune a pre-trained model on the specific task

data [2], [3]. Full fine-tuning of a language model can be

computationally intensive, typically requiring the update

of all parameters in the pre-trained model, and the fine-

tuned model may end up with as many parameters as the

original model [4]. To overcome this issue, parameter-

efficient fine-tuning methods like Low-Rank Adaptation

(LoRA) [5] enable fine-tuning a pre-trained model by

introducing small LoRA modules for different tasks. In

these methods, the main parameters of the pre-trained

model remain fixed, and only the weights of the two low-

rank matrices in LoRA are updated, which are significantly

fewer in number compared to the main parameters of the

pre-trained model.

LoRA significantly reduces the computational

resources required and enables the fine-tuning process

across various tasks. For example, thousands of LLaMA

models [6], fine-tuned using LoRA, are available on

Hugging Face Hub [7]. These practical applications

demonstrate that LoRA is not only widely used for fine-

tuning tasks in LLMs but also achieves model accuracy

comparable to other full-weight fine-tuning methods. The

lightweight nature of LoRA-based fine-tuning allows for

training multiple LoRA modules on a single GPU. LoRA-

based fine-tuning systems, such as Alpaca-LoRA [8],

primarily focus on optimizing single-task fine-tuning and

have not fully explored efficient strategies for multi-task

fine-tuning.

Despite the successes achieved, the majority of

existing research and systems have focused

predominantly on single-task fine-tuning, with limited

exploration of efficient strategies for multi-task fine-

tuning. In this paper, we introduce a hybrid model that

fine-tunes large language models using the LoRA method,

enhancing model accuracy by enabling simultaneous

learning across multiple tasks. This hybrid approach

employs an attention mechanism to integrate the outputs

of various tasks, yielding superior performance in diverse

text classification tasks.

Existing parameter-efficient fine-tuning techniques,

such as Low-Rank Adaptation (LoRA), have shown

promise in reducing computational requirements.

However, their applications have been largely limited to

single-task learning, leaving multi-task scenarios

underexplored. Multi-task learning, with its potential for

inter-task knowledge sharing, offers significant

advantages in terms of generalization and resource

efficiency, yet it poses unique challenges in balancing

task-specific requirements. To address these challenges,

we propose a hybrid fine-tuning approach that enhances

multi-task text classification by leveraging LoRA alongside

an attention mechanism for effective knowledge sharing.

The main contributions of this paper are as follows:

 Hybrid Fine-Tuning Approach: This paper

introduces a hybrid fine-tuning approach that fine-

tunes large language models (LLMs) using Low-Rank

Adaptation (LoRA). Unlike traditional fine-tuning

methods that focus on single tasks, this hybrid

approach enables simultaneous fine-tuning across

multiple tasks. The central innovation lies in

leveraging knowledge sharing between tasks,

allowing the model to learn from multiple tasks

concurrently and enhance its overall performance.

By sharing task-specific knowledge, the model

improves generalization and accuracy across diverse

text classification challenges.

 Advanced Attention Mechanism: The model

incorporates an attention mechanism that

facilitates cross-task knowledge integration. This

attention layer intelligently combines outputs from

different tasks, allowing the model to dynamically

focus on the most relevant information from each

task. As a result, the model benefits from a broader

understanding of the data, as insights gained from

one task can enhance the performance on others.

This inter-task knowledge sharing is a key driver of

the model’s superior accuracy and efficiency.

 Improved Computational Efficiency: While

enhancing accuracy through multi-task knowledge

sharing, the proposed method also significantly

optimizes computational resources. By using LoRA,

the model reduces the number of trainable

parameters, allowing it to operate efficiently on a

single GPU without compromising on performance.

This combination of enhanced learning and reduced

computational demands makes the approach highly

suitable for practical, large-scale deployments.

 Comprehensive Experimental Validation: To

evaluate the proposed approach, we conduct

extensive experiments on multiple benchmark

datasets for diverse text classification tasks. Our

results demonstrate that the hybrid method

achieves improved accuracy and efficiency

compared to both single-task fine-tuning and the

base model.

Preliminaries

This section delves into the preliminary concepts,

Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification through Knowledge Sharing

J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 419

including the fine-tuning of large language models,

parameter-efficient fine-tuning methods, and the

attention mechanism.

A. Large Language Models

Large Language Models represent some of the most

cutting-edge advancements in artificial intelligence,

characterized by their ability to generate text with high

precision and quality. These models leverage complex

architectures and deep neural networks, which enable

them to produce text that is both coherent and

contextually appropriate across a diverse array of topics.

The foundational architecture of these models is built

upon transformers, a breakthrough introduced in 2017

that rapidly became a cornerstone in natural language

processing due to its unparalleled efficacy [9]. Key

applications of these models include automated content

generation, machine translation, natural language

processing, and question-answering systems. LLMs can

analyse vast amounts of data and learn linguistic patterns,

allowing them to generate sentences that are logical and

meaningful, often indistinguishable from text written by

humans [2].

Prominent examples of LLMs include GPT [10] by

OpenAI, BERT [3], and T5 [11] by Google. These models,

through the analysis of vast amounts of data, have

learned intricate linguistic patterns, enabling them to

generate sentences that are both logical and contextually

rich, making it challenging to differentiate their output

from text authored by humans. The primary advantage of

these models lies in their exceptional ability to

understand and generate high-quality text across multiple

languages, as well as to provide accurate responses to

questions of varying complexity. As a result, LLMs have

found extensive applications in areas such as machine

translation, chatbots, automated content creation, and

even recommendation systems. Given these capabilities,

LLMs are not only powerful tools for natural language

processing but have also become foundational pillars in

the development of AI-driven technologies. However, to

fully harness their potential, these models often require

fine-tuning for specific tasks. This fine-tuning is essential

for optimizing their performance in particular

applications.

 In this research, we adopt a hybrid approach using

Low-Rank Adaptation (LoRA) to fine-tune large language

models (LLMs) for multi-task text classification. The

hybrid approach is designed to optimize computational

efficiency while enhancing model accuracy, primarily by

facilitating inter-task knowledge sharing. This approach

enables the model to benefit from the learning outcomes

of different tasks simultaneously, allowing it to leverage

relevant information gained across tasks to improve

overall performance. In this context, our hybrid approach

ensures that the advantages of multi-task learning—

particularly the ability to transfer knowledge across

tasks—are fully realized. The dynamic sharing of task-

specific knowledge allows the model to become more

robust, mitigating issues such as overfitting to a particular

dataset while also enhancing its ability to adapt to new,

unseen tasks. By fine-tuning different tasks in parallel and

allowing for cross-task information flow, our model

achieves higher performance metrics than traditional

fine-tuning approaches that isolate task learning.

B. Fine-Tuning Language Models

Training a large language model (LLM) from scratch

requires significant time and financial resources. The use

of thousands of GPUs can take several days [12] and

demands substantial financial investment [13]. Fine-

tuning pre-trained models has emerged as an efficient

way to leverage the benefits of LLMs: fine-tuning is the

process of adapting a pre-trained model to a specific task

by training it further on task-specific data, thereby

improving its performance on that task. This approach has

gained widespread acceptance, as it allows researchers to

utilize general-purpose pre-trained models and tailor

them to meet specific needs. Many organizations, such as

Meta with their LLaMA models [6], make their pre-trained

models publicly available. These publicly available pre-

trained models can be fine-tuned for various downstream

tasks, making fine-tuning the most practical way to

capitalize on the benefits of LLMs. However, fully fine-

tuning large language models is computationally

expensive, as it requires updating all the parameters of

the model.

C. Parameter-Efficient Fine-Tuning Methods

Full fine-tuning of large pre-trained models generally

requires updating all model parameters, often resulting in

substantial computational costs [4]. In contrast,

parameter-efficient fine-tuning (PEFT) methods [14]

selectively adjust only a small number of additional

parameters, leading to a significant reduction in

computational and memory resources. One of the most

advanced PEFT techniques is the Low-Rank Adaptation

(LoRA) method [5], which achieves efficient fine-tuning by

keeping the pre-trained model entirely frozen and

applying weight updates through a trainable low-rank

decomposition matrix, as illustrated in Fig. 1.

ℎ = 𝑊0𝑥 + ∆𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥 (1)

where 𝑥 represents the input data from the target task,

𝑊0 ∈ 𝑅𝑑×𝑘 are the weights of the pre-trained model that

remain fixed, 𝐵 ∈ 𝑅𝑑×𝑟 and 𝐴 ∈ 𝑅𝑟×𝑘 and are the

trainable low-rank decomposition matrices, where 𝑟 ≪

min⁡(𝑑, 𝑘) is the rank of the decomposition. Fig. 1

illustrates the LoRA method, which we employed as the

primary tool for fine-tuning large language models in this

research.

A. Beiranvand et al.

420 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

Fig. 1: Reparameterization in LoRA Method [5]. This method
only trains A and B. The Pretrained Weight of model were

frozen.

By utilizing LoRA, our research has been able to

significantly reduce computational costs while

simultaneously improving the accuracy and efficiency of

the models across various text classification tasks.

D. Attention Mechanism

The attention mechanism is one of the key innovations

in modern AI architectures, particularly in transformer-

based models. This mechanism allows models to focus

more on the relevant and important information within

the data. Essentially, the attention mechanism assigns

different weights to different inputs, helping the model to

select the most important parts of the data for

processing, thereby improving the overall performance of

the model.

In transformer-based models, the attention

mechanism is implemented as self-attention, where each

word in a sentence attend to all other words in the same

sentence. This mechanism consists of three matrices:

query, key, and value. For each token, the model assigns

different weights to each of these matrices based on their

similarity with other tokens. The basic formula for the

attention mechanism is given as (2).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾

√𝑑𝑘
) 𝑉 (2)

where Q is the matrix of queries, K is the matrix of keys,

and V is the matrix of values. The term 𝑑𝑘 is a

normalization factor that prevents the resulting values

from becoming too large due to the dot product of the

queries and keys. This process enables the model to

identify and focus on the most relevant and important

parts of the data [9].

To further enhance the model's ability to capture

complex relationships within the data, the Multi-Head

Attention mechanism is introduced. In Multi-Head

Attention, instead of computing a single attention

function, the model computes multiple attention

functions (heads) in parallel. Each head independently

performs the attention operation, capturing different

aspects of the relationships between words. The outputs

of these attention heads are then concatenated and

linearly transformed to form the final output. The formula

for Multi-Head Attention is as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) =
⁡⁡⁡⁡⁡𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊

0 (3)

where each ℎ𝑒𝑎𝑑𝑖 is calculated as:

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (4)

here, 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 and 𝑊𝑖
𝑉 are the weight matrices for the

queries, keys, and values for the i-th attention head, and

𝑊0 is the output weight matrix. The Multi-Head Attention

mechanism allows the model to jointly attend to

information from different representation subspaces at

different positions, providing a more comprehensive

understanding of the input data [9].

The attention mechanism is not only used as a tool to

enhance the performance of language models, but it can

also be leveraged to aggregate and combine the outputs

of multiple models. This application is particularly useful

in complex systems that require the integration of

information from various sources. In such scenarios, the

attention mechanism can assist the model in intelligently

determining which parts of the different outputs should

be given more focus, ultimately producing a higher-

quality combined output. In this approach, the outputs of

several models are fed as inputs to an attention layer. This

allows the models to flexibly utilize the knowledge and

information from multiple sources, thereby achieving

higher accuracy and efficiency in solving complex tasks

[15].

For instance, in a multilingual machine translation

system, the outputs of different models trained for

various languages can be combined using the attention

mechanism to create more accurate and reliable

translations. Similarly, in recommendation systems or

data analysis applications, the outputs of multiple models

can be aggregated using attention to achieve better

results [16]. The effectiveness of using the attention

mechanism for output aggregation lies in its ability to

automatically learn which outputs and their components

are more significant under different circumstances,

thereby improving the final output and enhancing

decision-making quality.

In this study, we employed an attention mechanism to

intelligently combine the outputs of fine-tuned multi-task

models, enabling more effective cross-task knowledge

sharing. By integrating outputs from multiple tasks, this

approach allows language models fine-tuned using the

Low-Rank Adaptation method to draw on the relevant

insights learned from different tasks concurrently. Instead

of treating each task as isolated, the attention mechanism

dynamically identifies and emphasizes critical features

from each task, thereby enhancing the model's ability to

generalize across diverse datasets.

Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification through Knowledge Sharing

J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 421

Related Work

This section reviews related works in the field, starting

with a number of studies that have full fine-tuned

language models, adjusting all model parameters.

Following this, we introduce several studies that have

utilized parameter-efficient fine-tuning (PEFT) methods.

Finally, we discuss works that have employed hybrid fine-

tuning approaches.

A. Full Fine-Tuning of Language Models

Fully fine-tuning language models is a widely used

approach for task-specific optimization. For instance, In

[17], the authors explore the use of the BERT model for

sentiment analysis, employing a full fine-tuning approach.

In this method, the pre-trained BERT model, initially

trained on a large text corpus, is further fine-tuned on a

specific sentiment analysis dataset. This involves updating

all the parameters of the BERT model to adapt it to the

task at hand. The full fine-tuning process takes advantage

of BERT's capability to understand the intricate

dependencies between words in a sentence and to

leverage various contextual cues. As a result, the fine-

tuned model demonstrates significantly improved

performance in sentiment analysis tasks.

Similarly, In another study [18], a new model called

LUKE is introduced, which is specifically designed to

enhance the representation of entities within text. LUKE

incorporates an entity-aware self-attention mechanism,

allowing the model to pay special attention to entities

mentioned in the text. By fully fine-tuning the BERT model

on several tasks related to entity recognition, LUKE is able

to accurately identify and represent the semantic

relationships between entities and the surrounding text,

resulting in better overall performance.

In the work of Nogueira et al. [19], BERT is utilized to

enhance the performance of passage re-ranking tasks.

The approach involves a two-step process: first, an initial

retrieval system provides a list of candidate passages for

a given query. Then, the BERT model, which has been fully

fine-tuned, is used to re-rank these passages. The BERT

model processes the input queries and candidate

passages, encoding the sentences and analysing the

semantic relationships between the words. This allows

the model to more accurately determine the relevance of

each passage to the query, improving the final ranking.

Khashabi et al. [20] introduce the UnifiedQA model,

which is built on transformer architectures and trained

using a transfer learning approach. This model is capable

of answering questions across various formats. The key

innovation is the unification of all question-answering

tasks into a single text format, which is then used to fully

fine-tune the language model. This unification allows the

model to leverage a larger and more diverse dataset

during training, leading to increased accuracy and

flexibility in handling different types of question-

answering tasks.

Full fine-tuning allows models to adapt

comprehensively to specific tasks, maximizing their

performance. However, this approach requires updating

all model parameters, leading to high computational costs

and memory requirements, making it less feasible for

resource-constrained environments or scenarios

requiring frequent model updates.

B. Parameter-Efficient Fine-Tuning (PEFT)

To mitigate the resource demands of full fine-tuning,

parameter-efficient fine-tuning (PEFT) methods have

been proposed. Pfeiffer et al. [21] introduced a novel

approach for adapting transformer models using adapter

modules. Rather than fully fine-tuning all the parameters

of the model, this method involves adding a small set of

new parameters, known as adapters, for each specific

task. These adapter modules are connected to different

layers of the transformer model, allowing the model to be

optimized for various tasks without altering the primary

parameters of the model. This approach significantly

reduces the time and computational resources required

for fine-tuning, while also facilitating the sharing of base

models across multiple tasks. The results demonstrate

that using adapter modules can achieve performance

comparable to full fine-tuning methods, and in some

cases, even surpass them.

Li and Liang [22] introduced Prefix-Tuning, another

PEFT method, where instead of fine-tuning all model

parameters, a continuous prefix of text is optimized. This

prefix is added to the input of a transformer model,

guiding it during text generation. This method offers a

cost-effective and flexible alternative to traditional full

fine-tuning approaches. The prefix is directly appended to

the input sequence, and only a small number of

parameters related to this prefix are optimized, leaving

the rest of the model unchanged. The models used in

their experiments, primarily GPT-2 and other generative

transformer models, demonstrated that Prefix-Tuning

could achieve performance similar to, or even better

than, full fine-tuning while only optimizing a small portion

of the model's parameters.

Stickland and Murray [23] proposed the PALs

(Projected Attention Layers) method, another PEFT

approach that adapts the BERT model to various tasks by

replacing standard attention layers with projected

attention layers. This method allows the model to be

effectively adapted to various tasks by adding additional

parameters to the attention layers, which are fine-tuned

for each specific task. This approach enables efficient

adaptation without the need to fine-tune all of the

model's parameters, significantly reducing the

computational load while maintaining high performance

across multiple tasks.

A. Beiranvand et al.

422 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

Zhang et al. [24] introduced LoRA-FA, a novel method

designed to improve the efficiency of fine-tuning large

language models. The primary goal of LoRA-FA is to

reduce the memory overhead associated with fine-tuning

LLMs by minimizing the need for activation memory

without sacrificing performance or incurring heavy

recomputation costs. LoRA-FA works by keeping the low-

rank weight matrix A fixed while only updating the higher-

rank weight matrix B. This effectively reduces the

activation memory required during the fine-tuning

process. The method has been extensively tested across

various models and scales, with empirical results showing

that LoRA-FA offers comparable accuracy to full

parameter fine-tuning and LoRA, while significantly

reducing memory costs.

PEFT methods significantly reduce computational and

memory requirements, enabling fine-tuning on resource-

limited devices. However, these methods may not

achieve the same level of performance improvement as

full fine-tuning, especially for tasks requiring deep model

adaptations.

C. Hybrid Fine-Tuning Approaches

Hybrid approaches aim to balance the comprehensive

adaptation of full fine-tuning with the efficiency of PEFT.

These approaches combine the strengths of both full fine-

tuning and parameter-efficient fine-tuning methods,

aiming to optimize model performance while minimizing

computational resources. These approaches leverage the

comprehensive capabilities of full fine-tuning by updating

a significant portion of the model's parameters while

simultaneously employing parameter-efficient

techniques to reduce the overall computational cost.

Sar et al. [25] introduced the USE model, designed to

generate high-quality representations of sentences and

textual phrases. This model is particularly geared towards

improving performance across a range of natural

language processing (NLP) tasks and machine learning

applications. The USE model employs two main

architectures for generating vector representations of

sentences:

Transformer-based Encoder: This version of the USE

model is built upon the transformer architecture and

utilizes the multi-head attention mechanism to

understand semantic dependencies within the text. Due

to its ability to model complex relationships between

words, this architecture is particularly well-suited for

applications requiring high precision and detail.

Deep Averaging Network (DAN): This version is lighter

and faster, focusing on the simplicity of averaging word

embeddings rather than employing the full transformer

architecture.

In [26], the authors propose an approach that

integrates Low-Rank Adaptation (LoRA) with traditional

fine-tuning techniques. This hybrid method allows for the

efficient fine-tuning of large language models by updating

both a small, low-rank set of parameters and a larger set

of fully fine-tuned parameters. This combination enables

the model to achieve high performance with reduced

computational costs compared to traditional full fine-

tuning methods.

Similarly, the work by Kim et al. [27] explores a hybrid

fine-tuning approach that combines Prefix-Tuning with

full parameter fine-tuning. By optimizing a prefix of

continuous text in conjunction with full fine-tuning, the

model benefits from the flexibility and efficiency of

parameter-efficient methods while retaining the

comprehensive improvements provided by full fine-

tuning. The results demonstrate that this hybrid approach

can achieve performance levels comparable to full fine-

tuning while requiring fewer computational resources.

 Hybrid approaches effectively combine the strengths

of full and parameter-efficient fine-tuning, achieving a

good trade-off between performance and resource

efficiency. However, their complexity can increase

implementation overhead and may require careful tuning

to balance the contributions of different components.

By critically analysing these methods, this paper

identifies the potential of hybrid approaches to leverage

the advantages of knowledge sharing and efficiency,

forming the foundation for the proposed hybrid fine-

tuning method.

Methodology

In this section, we introduce a novel hybrid model

designed to enhance the fine-tuning process of large

language models (LLMs) using the Low-Rank Adaptation

(LoRA) technique. Our proposed method is structured to

combine the strengths of multiple fine-tuned models to

improve overall accuracy and efficiency in various text

classification tasks. Each component model in our hybrid

architecture shares the same pre-trained weights 𝑊∗, but

has its own learnable parameters ∆𝑊𝑚, which correspond

to the matrices A and B in the LoRA method. After fine-

tuning for each task, the weights 𝑊𝑚 are defined as:

𝑊𝑚 = 𝑊∗ + ∆𝑊𝑚 (5)

During the fine-tuning process on the data of task m,

the objective is to optimize ∆𝑊𝑚. For this optimization is

formulated as follows:

ℒ(∆𝑊𝑚) = ⁡min
∆𝑊

∑ − log 𝑝(𝑦𝑛⁡|𝑋𝑛; ⁡𝑊
∗ + ∆𝑊𝑚)

𝑁
𝑛=1 (6)

where N denotes the number of training samples for task

m, 𝑋𝑛 represents the input samples, and 𝑦𝑛 are their

corresponding labels.

Fig. 2 illustrates the proposed framework and the

integration of these fine-tuned models.

Each of these fine-tuned models functions as an

independent module within the proposed framework, as

depicted on the left side of Fig. 2. These modules are

Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification through Knowledge Sharing

J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 423

specifically tailored to handle individual tasks by

employing the LoRA (Low-Rank Adaptation) fine-tuning

technique. This approach allows for efficient adaptation

of large language models to specific tasks without

requiring complete retraining of the model, thus

optimizing computational resources. For example, as

shown in the left section of Fig. 2, the i-th module is

designed for the task of sentiment analysis. The input to

this module is a sentence, which could represent any

textual content, such as a review, a social media post, or

a customer feedback comment. The module processes

the input and classifies it into one of the predefined

categories like here: positive or negative sentiment.

To ensure accurate classification, a task-specific head

is integrated into the module. This head maps the model's

internal representations to the class space relevant to the

sentiment analysis task. This mapping step is crucial for

transforming the abstract feature representations

learned by the model into interpretable outputs aligned

with the specific requirements of the task.

The training process is guided by the computation of

an error signal, which quantifies the difference between

the predicted class and the true class label. This error is

calculated using the cross-entropy loss function (7), a

widely used metric in classification problems that

effectively handles the probabilistic nature of model

outputs. Once the error is computed, it is backpropagated

through the network, enabling the model to adjust its

parameters and improve its performance on the

sentiment analysis task during subsequent iterations.

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 = ℒ(𝐻𝑒𝑎𝑑(𝐿𝑀(𝑋)), 𝑦) (7)

This modular design not only enhances the flexibility of

the overall framework but also ensures that each module

is highly specialized and optimized for its respective task,

ultimately contributing to the robustness and adaptability

of the proposed system.

In this way, it is possible to fine-tune 𝑘 distinct modules

on k different tasks. Each module is trained to learn task-

specific knowledge, ensuring optimal performance for its

assigned task. This approach ensures that the expertise

gained by each module is highly specialized, tailored to

the unique requirements of the respective task.

The main proposed model, depicted on the right side

of Fig. 2, is essentially a combination of these individual

modules. By integrating the knowledge acquired by each

module, the overall model leverages the specialized

expertise of all modules to perform complex or

multifaceted tasks effectively.

This design allows the system to benefit from the

modularized training of diverse tasks, enabling a flexible

and scalable architecture. As a result, the proposed

framework can tackle multiple tasks simultaneously or

sequentially by drawing on the task-specific knowledge

embedded within its constituent modules. This modular

combination enhances the adaptability and efficiency of

the model, particularly in multi-task learning scenarios.

Based on the model depicted in Fig. 2, the outputs of

the fine-tuned models are initially aggregated using the

aggregation function Agg1 and converted into a vector. It

is important to note that these model outputs represent

the values computed by the language model before

passing through the softmax layer and being transformed

into probability values. Subsequently, these aggregated

values pass through an attention layer. The attention

layer computes a new vector for each of these input

vectors, determining how much attention each task's

output should receive and adjusting the values

accordingly. All outputs from the attention layer are then

passed to a second aggregation function, Agg2, and finally

combined with the output of the neural network layer

using the Agg3 function, forming the final output of the

model.

Aggregation functions are versatile tools designed to

combine multiple inputs into a singular, cohesive output.

The most widely used aggregation functions include:

Mean Function: Computes the average of the input

values, providing a balanced representation of the data.

Max/Min Function: Identifies the highest or lowest value

among the inputs, highlighting the most extreme values.

Sum Function: Adds up all input values, offering a

cumulative measure of the inputs.

These are just a few examples, and a variety of other

functions can also be utilized depending on the specific

needs of the task at hand.

Attention Layer: This layer utilizes the self-attention

mechanism, where the outputs from the Agg1 function

serve simultaneously as queries (Q), keys (K), and values

(V). After applying Agg1, each output from the fine-tuned

models functions as its own query, key, and value. This

allows the model to not only focus on its own output but

also to dynamically attend to the outputs of other models

fine-tuned on different tasks. This interaction enables the

model to weigh the relevance of each output in the

context of the others, leading to a more informed and

refined final result.

Normalization: To enhance the model's performance, the

aggregated data is normalized. Normalizing the data

ensures that the model inputs fall within a specified

range, which aids in accelerating the learning process and

improving prediction accuracy. Moreover, this process

prevents the model from disproportionately focusing on

features with larger scales, which could lead to

imbalances in learning. Overall, data normalization not

only reduces the model's training time but also helps in

improving its generalization ability.

A. Beiranvand et al.

424 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

Fig. 2: The left image depicts a single module undergoing fine-tuning of a language model on a specific task (sentiment analysis)
using the LoRA method. The right image illustrates the proposed framework, which combines these fine-tuned modules for the

target task (here, MNLI).

For normalization, after each aggregation function, a

normalization layer is added. In this layer, after

calculating the mean μ and variance 𝜎2, the data is

normalized according to (8):

 X̂i =
xi−μ

√σ2+ϵ
 (8)

where ϵ is a small value added to prevent division by zero.
Following normalization, by adding two learnable
parameters, the output of the normalization layer is given
by

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽 (8)

During the training phase of the proposed model, only

the parameters of the Feed-Forward Network (FFN) and

the attention layers are updated. The language model and

all k modules remain frozen, with only their learned

knowledge being shared across tasks. This design allows

the model to focus on learning the new task (e.g., the

MNLI task shown in Fig. 2) without altering the

parameters of the pre-trained language model or the

task-specific modules.

By leveraging this knowledge-sharing property, the

framework can achieve high performance and accuracy

on previously unseen tasks without the need to fine-tune

the entire language model for each new task. This

approach ensures that the expertise gained from prior

tasks is effectively utilized to generalize to new scenarios,

significantly reducing the need for extensive retraining.

Additionally, since the proposed framework employs

parameter-efficient methods during the module training

phase, such as LoRA (Low-Rank Adaptation), the

computational cost of training is kept minimal. Unlike full

fine-tuning approaches, which require updating the

entire language model, this method modifies only a small

subset of parameters. Consequently, the training and

inference processes are computationally efficient,

allowing the model to run effectively on a single GPU.

This efficiency makes the framework practical and

scalable, particularly in resource-constrained settings,

while maintaining high performance across both seen and

unseen tasks. It demonstrates the capability of leveraging

modular and efficient design principles to achieve robust

task adaptation with minimal computational overhead.

Experiments and Results

To evaluate the effectiveness of the proposed method,

several experiments were conducted. This section details

the experiments and the results obtained from them.

A. Datasets

To fine-tune and evaluate the model, the GLUE dataset

[28] was used, which encompasses multiple tasks. The

details of the dataset are provided in Table 1.

To assess the generalization ability of the model, four

additional datasets—STS-B, IMDB, AG News, and TREC—

were employed, none of which were used in the training

process of the hybrid method.

Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification through Knowledge Sharing

J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 425

The STS-B dataset, part of the GLUE benchmark [28], is

designed for evaluating semantic similarity between

sentence pairs. Each pair is annotated with a similarity

score ranging from 0 to 5, where higher scores indicate

greater semantic similarity.

The IMDB dataset [29], widely used for sentiment

analysis, contains 50,000 movie reviews evenly split into

25,000 training samples and 25,000 test samples. Each

review is labelled as either positive or negative, and the

dataset is balanced, ensuring equal representation of

both sentiment classes.

The AG News dataset [30] is a benchmark dataset used

for news categorization. It consists of 120,000 training

samples and 7,600 test samples, categorized into four

classes: World, Sports, Business, and Science/Technology.

Each sample includes a title and a brief description of the

news article, making it ideal for evaluating text

classification methods.

The TREC dataset [31], widely utilized for question

classification, contains 5,452 training questions and 500

test questions categorized into six main types:

Abbreviation, Entity, Description, Human, Location, and

Numeric. These classes are further divided into finer

subcategories, offering a hierarchical structure that is

useful for question classification and intent detection

tasks.

B. Evaluation Metrics

In this subsection, we describe the evaluation metrics

used to assess model performance across different

datasets, as summarized in Table 1.

Each metric is selected based on the specific nature

and objectives of the corresponding task.

Accuracy is a standard evaluation metric for

classification tasks. It measures the proportion of

correctly predicted samples relative to the total number

of samples. This metric is widely used in datasets such as

SST-2, IMDB (sentiment analysis), AG_NEWS, TREC, MNLI,

QNLI, RTE, WNLI (natural language inference), and MRPC,

QQP (paraphrase detection) [28]. The formula for

accuracy is given as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9)

where:

TP (True Positives): The number of correctly predicted

positive samples.

TN (True Negatives): The number of correctly predicted

negative samples.

FP (False Positives): The number of incorrectly predicted

positive samples.

FN (False Negatives): The number of incorrectly predicted

negative samples.

Matthews Correlation Coefficient (MCC) [28] is a

robust evaluation metric specifically suited for binary

classification tasks, particularly in scenarios with

imbalanced datasets. It considers all four categories of the

confusion matrix (true positives, true negatives, false

Table 1: Details of the datasets

Metric Labels #Test #Train #Class Type Task

Accuracy positive, negative 872 6920 2 Sentiment SST-2

Single-sentence Matthews_Correlation
grammatical,

not_grammatical
1042 8551 2 acceptability CoLA

Accuracy
entailment, neutral,

contradiction
9815 392702 3 NLI MNLI

Sentence-pair

Accuracy
entailment,

not_entailment
5463 104743 2 NLI QNLI

Accuracy
entailment,

not_entailment
277 2490 2 NLI RTE

Accuracy
entailment,

contradiction
72 635 2 NLI WNLI

Accuracy
equivalent,

not_equivalent
408 3668 2 Paraphrase MRPC

Accuracy
equivalent,

not_equivalent
40431 363846 2 Paraphrase QQP

Accuracy positive, negative 25000 25000 2 Sentiment IMDB

Single-sentence

Accuracy
World, Sports,

Business,
Science/Technology

7600 120000 4
News

Categorization
AG_NEWS

Accuracy
Abbreviation, Entity,
Description, Human,

Location, Numeric
500 5452 6

Question
Classification

TREC

Pearson - 1500 5749 Regression
Sentiment.
similarity

STS-B Sentence-pair

A. Beiranvand et al.

426 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

positives, and false negatives) to provide a balanced

assessment of model performance. In this study, MCC is

employed for the CoLA dataset, which focuses on

grammatical acceptability. The formula for MCC is:

𝑀𝐶𝐶 =
(𝐹𝑃∗𝐹𝑁)−(𝑇𝑃∗𝑇𝑁)

√(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
 (10)

MCC ranges from −1 to +1, where +1 indicates perfect

prediction, 0 indicates no better than random prediction,

and −1 indicates total disagreement between prediction

and observation.

Pearson Correlation Coefficient [28] is used to

measure the strength and direction of the linear

relationship between predicted and actual values in

regression tasks. It is particularly relevant for the STS-B

dataset, where the objective is to evaluate semantic

similarity scores between sentence pairs. A higher

correlation indicates a stronger agreement between

predicted and true scores. The formula for the Pearson

correlation is:

𝑃𝑒𝑎𝑟𝑠𝑜𝑛⁡𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)
2∑ (𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

 (11)

where:

𝑥𝑖 and 𝑦𝑖: Predicted and actual values, respectively.

𝑥̅ and 𝑦̅: Mean of predicted and actual values,

respectively.

n: Number of samples.

A higher correlation value (closer to +1) indicates a

stronger agreement between predicted and true scores.

C. Experimental Settings

For the experiments, the language models DistilBERT

[32] with approximately 66 million parameters, BERT-

base [3] with approximately 110 million parameters, and

1 https://github.com/Azadeh297/Attention-hybrid-method

the ELECTRA [33] model in both small and base versions

with approximately 14 million and 110 million

parameters, respectively, were used. Each of the tasks

was fine-tuned individually on these models using the

LoRA method. The implementations were carried out in

Python using the Transformers [34] and Huggingface PEFT

[35] libraries.

In the experiments, the number of fine-tuned models

was set to k=9, except for the experiment examining the

number of tasks, where this variable is adjusted. During

the LoRA fine-tuning process, the ⁡∆𝑊𝑚 matrices were

applied to all three matrices—key, value, and query—in

the language model's attention module with a rank of r=4,

chosen based on preliminary experiments where this

value provided a balance between computational

efficiency and model accuracy.

Lower values of r were found to reduce the model’s

expressive power, while higher values increased

computational costs without significant gains in

performance. The AdamW optimizer was used in all

experiments, and the models were trained for 20 epochs.

The initial learning rate was set to 2𝑒 − 5 with weight

decay=0.01, and the batch size was 16 for all datasets. We

employed the NVIDIA GeForce RTX 3090 24GB. The mean

function was used for both aggregation functions Agg1

and Agg2, while the sum function was employed for Agg3.

The number of heads in the model is 4. The code related

to this paper is available at this link1.

D. Evaluation of the Proposed Method's Performance

In this section, we present the results of training the

proposed method on all datasets after 20 epochs. The

results, as shown in Table 2 for the two language models

utilized, indicate the validation accuracy achieved.

Table 2: The effectiveness of the proposed method (AttEns) and other methods

Average SST2 CoLA QNLI MNLI
MNLI-
mm

RTE MRPC QQP WNLI Method LLM

0.3700 0.4908 0.0000 0.4794 0.3178 0.3267 0.4729 0.3161 0.3771 0.5493 Model

DistilBERT
0.5763 0.8337 0.1458 0.6908 0.5238 0.5288 0.5523 0.7107 0.7648 0.4366 FFN
0.6164 0.9162 0.0000 0.7426 0.7426 0.7389 0.4440 0.6838 0.8432 0.4366 FT_LoRA
0.7348 0.8933 0.3952 0.8473 0.7523 0.7610 0.6642 0.8014 0.8544 0.6447 AttEns

0.4565 0.5149 0.0950 0.4880 0.3226 0.3302 0.5090 0.6789 0.6066 0.5633 Model
BERT-
base

0.5947 0.8589 0.3084 0.6847 0.5294 0.5372 0.5956 0.6985 0.7600 0.3802 FFN
0.7351 0.9082 0.4993 0.8813 0.7940 0.8087 0.5848 0.7009 0.8615 0.5774 FT_LoRA
0.7576 0.9105 0.4988 0.8795 0.8007 0.8102 0.6714 0.8186 0.8654 0.5633 AttEns

0.4477 0.4988 0.0104- 0.5249 0.3216 0.3303 0.5270 0.3137 0.4742 0.5915 Model
ELECTRA-

Small
0.5881 0.6938 0.3268 0.7100 0.4787 0.4869 0.5523 0.7132 0.7542 0.5774 FFN
0.7026 0.8772 0.3463 0.8504 0.7671 0.7823 0.5631 0.7377 0.8362 0.5633 FT_LoRA
0.7496 0.8853 0.5312 0.8533 0.7708 0.7870 0.6787 0.8235 0.8396 0.5774 AttEns

0.4568 0.5080 0.020- 0.4946 0.3532 0.3585 0.5018 0.6838 0.3604 0.3943 Model

ELECTRA-
Base

0.6703 0.8337 0.5208 0.7810 0.6320 0.6472 0.5956 0.7436 0.8000 0.4788 FFN

0.7788 0.9288 0.6012 0.9203 0.8607 0.8647 0.7003 0.8431 0.8822 0.4084 FT_LoRA

0.8126 0.9369 0.6362 0.9211 0.8632 0.8651 0.7689 0.8627 0.8825 0.5774 AttEns

Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification through Knowledge Sharing

J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 427

The models evaluated are as follows:

Model: The base language model without any additional
training or fine-tuning was used to infer the data, and its
accuracy was calculated.
FFN: A single neural network layer was added on top of
the base language model and fine-tuned. In this
configuration, the parameters of the base model remain
fixed, and only the parameters of the added neural
network layer are updated.
FT_LoRA: The language model was fine-tuned separately
on the data using the LoRA method.
AttEns: The proposed method.

The values listed in Table 2 for all datasets represent

accuracy, except for the CoLA dataset, where the

evaluation metric is the Matthews correlation coefficient.

Based on the results in Table 2, the proposed method has

achieved the highest accuracy in most tasks. This

improvement is attributed to the use of the attention

mechanism and the integration of information from

multiple tasks, allowing the model to identify more

complex patterns and thereby achieve higher accuracy.

To better explain this improvement, consider the QNLI

task, which is related to natural language inference. In this

task, the AttEns method achieved an accuracy of over

92%. One reason for this improvement could be the

method's ability to recognize complex relationships

between sentences. For instance, imagine that the model

needs to compare two sentences to determine whether

the second sentence is a logical conclusion of the first. In

traditional methods like FFN or FT_LoRA, this process is

carried out directly without utilizing information from

other tasks. However, in the AttEns method, the model

also leverages information from other tasks, such as

recognizing contradictions in MNLI and semantic

sentence matching in QQP. This combination of

information allows the model to perform better in

identifying complex relationships, particularly in tasks

related to natural language inference.

In tasks like RTE, MRPC, and WNLI, there is a significant

difference in the accuracy obtained from the proposed

method compared to the single fine-tuned model. One

possible reason for this is the smaller number of samples

in these datasets compared to others. The proposed

hybrid model has demonstrated higher accuracy in

situations where limited data is available, potentially

because the single fine-tuned model might have

overfitted due to the small dataset size, resulting in

poorer performance. This finding suggests that the

proposed method can offer better generalizability even in

data-limited scenarios.

By comparing the results obtained from different

language models, in many cases, the larger language

model has yielded better results, indicating that using a

larger language model with more parameters can be

effective in improving model performance.

To further evaluate the proposed method, we applied

it to four additional datasets, IMDB, STS-B, AG_NEWS and

TREC where the fine-tuned models for these datasets

were not used in the combination of the proposed

method. The results are shown in Table 3. According to

the results, the AttEns method outperformed the FFN and

FT_LoRA methods on all four datasets. For example, on

the IMDB dataset, the AttEns method achieved an

accuracy of 0.9397, which is clearly better than the FFN

(0.8405) and FT_LoRA (0.8789) methods. This

improvement in accuracy demonstrates the proposed

method's high generalization ability to unseen data and

indicates better performance in real-world scenarios.

Imagine that the model needs to detect the sentiment of

a movie review in the IMDB dataset. In traditional

methods like FFN or FT_LoRA, the model only uses the

training data from the same dataset, limiting its ability to

generalize to new data. However, in the AttEns method,

the model uses the attention mechanism to also leverage

information from other related tasks. For example, if the

model learned how to identify similar sentences in the

QQP dataset, it could enhance this knowledge and apply

it to better understand the sentiment in movie reviews.

Table 3: Results of the proposed method on two datasets not
used in the combination of the proposed method (BERT-base
language model)

TREC AG_NEWS IMDB STS-B Method

0.0180 0.2505 0.4956 -0.0608 Model

0.7666 0.8942 0.8405 0.2247 FFN

0.8220 0.9107 0.9397 0.4158 AttEns

On the STS-B dataset, the AttEns method also achieved

an accuracy of 0.4158, which is an improvement

compared to other methods. This improved performance

indicates that the proposed model has high generalization

ability even in scenarios where data is limited or

heterogeneous.

The results show that using the attention mechanism

and integrating information from various tasks enables

the model to better identify and analyse complex features

in new data, which is particularly important in real-world

scenarios and unseen data.

E. Evaluating the Impact of k

In this section, the impact of the number of

components, k, in the proposed hybrid model is

examined. The results of this experiment are presented in

Fig. 3. This chart demonstrates that increasing the

number of components generally improves the accuracy

of the hybrid model, although the extent of this

improvement varies at different points. As observed in

Fig. 3, the accuracy of the model significantly improves

when the number of components increases from 3 to 5.

A. Beiranvand et al.

428 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

This enhancement is due to the increased capacity of

the model to learn and integrate diverse information from

various tasks.

When the number of components reaches 7, accuracy

continues to improve in some datasets, but the

improvement is not as pronounced. As the number of

components increases, the model can examine each part

of the data with greater detail, resulting in better

performance. However, while the model continues to

improve in accuracy, this improvement becomes slower

compared to earlier stages. This slowdown occurs

because, with more components, the model needs to

process more information, requiring more resources for

complete and optimized processing. This observation

highlights the importance of selecting an appropriate

number of components to optimize the model's

performance.

Fig. 3: Results of the proposed method for different values of k
(BERT-base language model).

Limitations and Future Work

While the proposed hybrid fine-tuning method

demonstrates notable improvements in accuracy and

computational efficiency, several limitations must be

acknowledged. Firstly, the method’s effectiveness has

been primarily validated on text classification tasks. Its

applicability to other NLP domains, such as sequence

generation or machine translation, remains unexplored

and requires further investigation. Secondly, the reliance

on specific datasets like GLUE may constrain the

generalizability of the findings to other domains or

languages. Future research should aim to extend this

approach to a broader range of datasets and languages

while examining its compatibility with other parameter-

efficient fine-tuning techniques. Additionally, exploring

the trade-offs between various aggregation functions and

attention mechanisms could provide valuable insights for

further optimizing model performance.

Results and Discussion

The results obtained from various datasets indicate

that the proposed AttEns method consistently

outperforms traditional fine-tuning approaches such as

FFN and FT_LoRA across multiple NLP tasks. As shown in

Table 2, AttEns achieves the highest accuracy in most

datasets, particularly excelling in QNLI (92.11%), RTE

(86.51%), and IMDB (93.97%). This improvement is

primarily due to the model’s ability to integrate task-

specific information through an attention-based

ensemble mechanism, which enhances its ability to

identify complex patterns and generalize across tasks.

Additionally, the method exhibits superior performance

on datasets with limited samples, such as RTE and MRPC,

where single-task fine-tuning often leads to overfitting.

Furthermore, the generalization ability of AttEns is

evident in its strong performance on IMDB, STS-B,

AG_NEWS, and TREC, despite these datasets not being

explicitly incorporated into the model’s training. The

improvement in STS-B (41.58%) suggests that the

attention mechanism enables the model to leverage

knowledge from related tasks, leading to better sentence

similarity evaluation. Moreover, the analysis of k, the

number of task components, reveals that increasing k

enhances performance up to a certain point, after which

the improvement plateaus due to computational

constraints. Overall, these results highlight the

effectiveness of AttEns in improving language model

accuracy, particularly in multi-task learning and low-data

scenarios.

Conclusion

This paper introduced a hybrid approach for fine-

tuning large language models using the LoRA method,

which is capable of improving model accuracy by learning

multiple tasks simultaneously. The results from the

experiments showed that this method outperformed

traditional fine-tuning methods, especially on the GLUE

dataset. The use of the attention mechanism to integrate

and influence different tasks was one of the main factors

contributing to the success of this method. Additionally,

the method demonstrated good generalizability on

unseen data. Ultimately, this research marks a significant

step towards reducing computational costs and

enhancing the efficiency of large language models in

various natural language processing tasks.

Author Contributions

All authors contributed equally to the conception,

design, methodology, data analysis, manuscript

preparation, and revision of this research. All authors

have reviewed and approved the final version of the

manuscript.

Acknowledgment

We sincerely thank the authors of previous studies

whose work has informed and inspired this research. We

Hybrid Fine-Tuning of Large Language Models Using LoRA: Enhancing Multi-Task Text Classification through Knowledge Sharing

J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025 429

also extend our heartfelt appreciation to the respected

referees for their thorough review of this paper.

Conflict of Interests

The authors declare that there is no conflict of

interests regarding the publication of this manuscript.

Abbreviations

NLP Natural Language Processing

NLI Natural Language Inference

LLM Large Language Model

LoRA Low Rank Adaptation

PEFT Parameter-Efficient Fine-Tuning

MCC Matthews Correlation Coefficient

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

FT Fine Tuning

FFN Feed Forward Network

GLUE General Language Understanding

 Evaluation

CoLA Corpus of Linguistic Acceptability

SST-2 Stanford Sentiment Treebank

MRPC Microsoft Research Paraphrase Corpus

QQP Quora Question Pairs

STS-B Semantic Textual Similarity Benchmark

MNLI Multi-Genre NLI

QNLI Question NLI

RTE Recognizing Textual Entailment

WNLI Winograd NLI

IMDB Internet Movie Database

TREC Text Retrieval Conference

AttEns Attention Ensemble

References

[1] K. I. Roumeliotis, N. D. Tselikas, "Chatgpt and open-ai models: A
preliminary review," Future Internet, 15(6): 192, 2023.

[2] T. Brown et al., "Language models are few-shot learners," in Proc.
Advances in Neural Information Processing Systems 33 (NeurIPS
2020), 33: 1877-1901, 2020.

[3] J. Devlin, M. W. Chang, K. Lee, K. Toutanova, "Bert: Pre-training of
deep bidirectional transformers for language understanding,"
arXiv preprint arXiv:1810.04805, 2018.

[4] K. Lv, Y. Yang, T. Liu, Q. Gao, Q. Guo, X. Qiu, "Full parameter fine-
tuning for large language models with limited resources," arXiv
preprint arXiv:2306.09782, 2023.

[5] E. J. Hu et al., "Lora: Low-rank adaptation of large language
models," arXiv preprint arXiv:2106.09685, 2021.

[6] H. Touvron et al., "Llama 2: Open foundation and fine-tuned chat
models," arXiv preprint arXiv:2307.09288, 2023.

[7] Hugging Face. https://huggingface.co/, 2023.

[8] Eric Wang. Alpaca-lora. https://github.com/tloen/alpaca-lora,
2023.

[9] A. Vaswani et al., "Attention is all you need," in Proc. Advances in
neural information processing systems 30 (NIPS 2017), 2017.

[10] J. Achiam et al., "Gpt-4 technical report," arXiv preprint
arXiv:2303.08774, 2023.

[11] C. Raffel et al., "Exploring the limits of transfer learning with a
unified text-to-text transformer," J. Mach. Learn. Res., 21(140): 1-
67, 2020.

[12] D. Narayanan et al., "Efficient large-scale language model training
on gpu clusters using megatron-lm," in Proc. the International
Conference for High Performance Computing, Networking,
Storage and Analysis: 1-15, 2021.

[13] O. Sharir, B. Peleg, Y. Shoham, "The cost of training nlp models: A
concise overview," arXiv preprint arXiv:2004.08900, 2020.

[14] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, B. Bossan,
"Peft: State-of-the-art parameter-efficient fine-tuning methods,"
2022.

[15] A. Hernández, J. M. Amigó, "Attention mechanisms and their
applications to complex systems," Entropy, 23(3): 283, 2021.

[16] S. Dathathri et al., "Plug and play language models: A simple
approach to controlled text generation," arXiv preprint
arXiv:1912.02164, 2019.

[17] C. Sun, X. Qiu, Y. Xu, X. Huang, "How to fine-tune bert for text
classification?," in Proc. Chinese computational linguistics: 18th
China National Conference (CCL 2019): 194-206, 2019.

[18] I. Yamada, A. Asai, H. Shindo, H. Takeda, Y. Matsumoto, "LUKE:
Deep contextualized entity representations with entity-aware self-
attention," arXiv preprint arXiv:2010.01057, 2020.

[19] R. Nogueira, K. Cho, "Passage Re-ranking with BERT," arXiv preprint
arXiv:1901.04085, 2019.

[20] D. Khashabi et al., "Unifiedqa: Crossing format boundaries with a
single qa system," arXiv preprint arXiv:2005.00700, 2020.

[21] J. Pfeiffer et al., "Adapterhub: A framework for adapting
transformers," arXiv preprint arXiv:2007.07779, 2020.

[22] X. L. Li, P. Liang, "Prefix-tuning: Optimizing continuous prompts for
generation," arXiv preprint arXiv:2101.00190, 2021.

[23] A. C. Stickland, I. Murray, "Bert and pals: Projected attention layers
for efficient adaptation in multi-task learning," in Proc.
International Conference on Machine Learning, PMLR: 5986-5995,
2019.

[24] L. Zhang, L. Zhang, S. Shi, X. Chu, B. Li, "Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning," arXiv
preprint arXiv:2308.03303, 2023.

[25] D. Cer et al., "Universal sentence encoder," arXiv preprint
arXiv:1803.11175, 2018.

[26] N. Shazeer et al., "Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer," arXiv preprint
arXiv:1701.06538, 2017.

[27] X. Wang, L. Aitchison, M. Rudolph, "LoRA ensembles for large
language model fine-tuning," arXiv preprint arXiv:2310.00035,
2023.

[28] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S. R. Bowman, "GLUE:
A multi-task benchmark and analysis platform for natural language
understanding," arXiv preprint arXiv:1804.07461, 2018.

[29] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, C. Potts,
"Learning word vectors for sentiment analysis," in Proc. the 49th
Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: 142-150, 2011.

https://ideas.repec.org/a/gam/jftint/v15y2023i6p192-d1156389.html#:~:text=This%20article%20provides%20an%20overview%20of%20the%20training,by%20a%20preliminary%20review%20of%20the%20relevant%20literature.
https://ideas.repec.org/a/gam/jftint/v15y2023i6p192-d1156389.html#:~:text=This%20article%20provides%20an%20overview%20of%20the%20training,by%20a%20preliminary%20review%20of%20the%20relevant%20literature.
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/BERT%20Pre-training%20of%20Deep%20Bidirectional%20Transformers%20for%20Language%20Understanding.pdf
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://huggingface.co/
https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora
https://user.phil.hhu.de/~cwurm/wp-content/uploads/2020/01/7181-attention-is-all-you-need.pdf
https://user.phil.hhu.de/~cwurm/wp-content/uploads/2020/01/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://www.jmlr.org/papers/v21/20-074.html
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://dl.acm.org/doi/abs/10.1145/3458817.3476209
https://arxiv.org/abs/2004.08900
https://arxiv.org/abs/2004.08900
https://www.mdpi.com/1099-4300/23/3/283
https://www.mdpi.com/1099-4300/23/3/283
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/2010.01057
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://proceedings.mlr.press/v97/stickland19a.html?ref=ruder-io
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2310.00035
https://arxiv.org/abs/2310.00035
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/

A. Beiranvand et al.

430 J. Electr. Comput. Eng. Innovations, 13(2): 417-430, 2025

[30] X. Zhang, J. Zhao, Y. LeCun, "Character-level convolutional
networks for text classification," in Proc. Advances in neural
information processing systems 28 (NIPS 2015), 2015.

[31] X. Li, D. Roth, "Learning question classifiers," in Proc. COLING 2002:
The 19th International Conference on Computational Linguistics,
2002.

[32] V. Sanh, L. Debut, J. Chaumond, T. Wolf, "DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter," arXiv
preprint arXiv:1910.01108, 2019.

[33] K. Clark, M.-T. Luong, Q. V. Le, C. D. Manning, "Electra: Pre-training
text encoders as discriminators rather than generators," arXiv
preprint arXiv:2003.10555, 2020.

[34] T. Wolf et al., "Transformers: State-of-the-art natural language
processing," in Proc. the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations: 38-45,
2020.

Biographies
Azadeh Beiranvand Borjele completed
Bachelor's degree in Software Engineering in
2005 and Master's degree in Artificial
Intelligence in 2012 at Shahid Chamran
University, Ahvaz, Iran. Currently, She is
currently a doctoral student in Artificial
Intelligence at University of Kashan, Kashan,
Iran. Her research interests include graph
representation learning, graph neural
networks, large language models and

dynamic complex networks.

 Email: a.Beiranvand@grad.kashanu.ac.ir

 ORCID: 0009-0007-7077-8896

 Web of Science Researcher ID: NA

 Scopus Author ID: NA

 Homepage:
https://scholar.google.com/citations?user=81IV9sEAAAAJ&hl=en

 Mahdiye Sarhadi Dadiyan completed
Bachelor's degree in Information Technology
Engineering in 2010 at Zahedan PNU, Zahedan,
Iran and Master's degree in Computer
Engineering (Artificial Intelligence) in 2016 at
Kharazmi University, Tehran, Iran. Right now,
She is a doctoral student in Artificial
Intelligence at University of Kashan, Kashan,
Iran. Her research interests include
reinforcement learning, deep learning, large

language models.

 Email: mahdiye.sarhadi@grad.kashanu.ac.ir

 ORCID: 0009-0006-5351-1885

 Web of Science Researcher ID: NA

 Scopus Author ID: NA

 Homepage: NA

Javad Salimi Sartakhti is an Assistant Professor
of Artificial Intelligence in the department of
Computer Engineering at the University of
Kashan, Iran. He obtained his B.Sc. degree in
computer engineering from the University of
Kashan and his M.Sc. degree in Software
Engineering from the Tarbiat Modares
University, Tehran, Iran, in 2008 and 2013,
respectively. In January 2017, he obtained his
Ph.D. degree in Artificial Intelligence at the
Isfahan University of Technology. He ranked

first among students of computer engineering in all three degrees. His
main research interests are LLM, NLP, and Deep learning.

 Email: salimi@kashanu.ac.ir

 ORCID: 0000-0003-1183-1232

 Web of Science Researcher ID: HJY-2812-2023

 Scopus Author ID: 51864592100

 Homepage: https://faculty.kashanu.ac.ir/salimi/en

How to cite this paper:
A. Beiranvand, M. Sarhadi, J. Salimi Sartakhti, “Hybrid fine-tuning of large language models
using lora: enhancing multi-task text classification through knowledge sharing,” J. Electr.
Comput. Eng. Innovations, 13(2): 417-430, 2025.

DOI: 10.22061/jecei.2025.11314.794

URL: https://jecei.sru.ac.ir/article_2303.html

https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://aclanthology.org/C02-1150.pdf
https://aclanthology.org/C02-1150.pdf
https://aclanthology.org/C02-1150.pdf
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
mailto:a.Beiranvand@grad.kashanu.ac.ir
https://scholar.google.com/citations?user=81IV9sEAAAAJ&hl=en
mailto:mahdiye.sarhadi@grad.kashanu.ac.ir
mailto:salimi@kashanu.ac.ir
https://faculty.kashanu.ac.ir/salimi/en
https://jecei.sru.ac.ir/article_2303.html

