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Abstract. While ordinal numbers facilitate the comparison between two infinite addresses, no
studies have so far defined and investigated the use of algebraic space structures over an ordinal
nexus. Here, the notions of moduloid over ordinal nexus and homomorphism between two I'- mod-
uloids are defined and some relations between moduloid and ordinal nexus are investigated. More-
over, some of these concepts are fuzzified. By defining the fuzzy subnexuses over a nexus N, it is
shown that if S (i.e., a nonempty subset of N) is a meet closed subset then N is finite. Accordingly,
the present study provides insights into the notions of N, moduloid and its subsets, moduloid over
cyclic nexuses and its subsets, along with supremum of two addresses over ordinal nexuses.
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1 Introduction

The terms formex and plenix were initially presented by H. Nooshin in 1970s (H. Nooshin
(1975) [13]), performing research on the convenient generation of information in order to de-
sign and analyze space structures. These structures were complex and comprised thousands
of elements. With regard to the geometry, one can state that the space structure consists of
many different types of symmetries. Accordingly, it is possible to simplify the generation of
data using the space structures with different symmetries.
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As a necessary first step to use the space structures, formex algebra concepts were ini-
tially introduced (H. Nooshin (1975) [13], H. Nooshin (1984) [14]). Different types of the
geometric forms can be processed and algebraically represented by these concepts. Particu-
larly, structural configurations have been well established on this basis (H. Nooshin and P.
Disney (2000) [15], H. Nooshin and P. Disney (2001) [16], H. Nooshin (2002) [17]). In this
regard, formex algebra was utilized in a user-friendly environment using Formian software
(H. Nooshin and C. Yamamoto (1993) [18]). Subsequently, handling of large amounts of data
required to define a space structure became possible through using the plenix, being a math-
ematical object or an advanced form of database (M. Haristchain and H. Nooshin (1980) [10],
IN. Hee and H. Nooshin (1985) [11]). This term was rooted from the word plenus, which
means full and reflects the capability of a plenix to show mathematical objects in a full spec-
trum. In fact, both explicit constant and generic forms of information can be represented by
a plenix. In other words, any type of information can be contained in a plenix as a paramet-
ric formulation. It is worth noting that the early studies chiefly considered plenices as data
structures.

Currently, a plenix has a generic database nature that can uniquely outperform any other
normal database. This has been achieved in the early 2000s when M. Bolourian was able to
consider the basic idea of a plenix as a mathematical object, comprising an arrangement of
mathematical objects (M. Bolourian (2009) [4] and M. Bolourian [5] and H. Nooshin (2004)
[6]). Notably, two numbers (a vector and a matrix), three sets and a Boolean entity can be
arranged in a plenix, according to Figure 1.

Set set Boolean

Set Number Matrix

| | |

Vector Number

|

Plenix

Figure 1. A schematic representation of a plenix. Generally, the representation of a plenix as a
database goes beyond the normal database, involving a mathematical object that consists of an
arrangement of mathematical objects. Notably, a plenix may contain an array of two numbers, a
vector, a matrix, three sets, and a Boolean entity.

Efforts have been made to establish algebra on the basis of plenices, thereby meaningfully
describing their relations, functions and operations, while also changing properties of the
resultant algebra. Therefore, it has been possible to transform the plenix concept into an
appropriate mathematical system, providing potential applications for different branches of
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human knowledge.

When it comes to the theory of plenices, one should also take into account the concept of
an address, which plays a crucial role in the algebra properties. By representing the position
of an element as a sequence of integers, an address can be simply defined in a plenix. Inter-
estingly, it has been found that an address allows for a simple representation of the structure
of a plenix. In this way, one can describe the formation of a plenix by using a set of ad-
dresses. Moreover, different reflections can be constituted on the basis of the address set in
the plenix. To this end, a graphical method has been employed in order to represent both
the plenix constitution and the address set. The graphical method is capable of showing a
dendrogram of the plenix in a treelike graphical object, being highly effective in helping to
visualize the problems. A nexus is also defined, being indicative of the mathematical object
to correspond to the plenix constitution (M. Bolourian (2009) [4]). The mathematical structure
can be realized in nexus algebra, as explained by Bolourian (M. Bolourian (2009) [4]).

From a general application standpoint, this idea was developed into a mathematical
object, according to the literature (D. Afkhami Taba, A. Hasankhani, M. Bolourian (2012)
[1], D. Afkhami, N. Ahmadkhah, A. Hasankhani (2011) [2], A. A. Estaji, T. Haghdadi, ]J.
Farokhi(2015) [9], M. Haristchain(1980) [10], H. Hedayati and A. Asadi(2014) [12], A. Saeidi
Rashkolia and A. Hasankhani(2011) [19], A. Saeidi(2009) [20], L. Torkzadeh and A. Hasan-
khani (2009) [21]). Later, Estaji was able to define the notion of nexuses over an ordinal (A.
A. Estaji and A. As. Estaji (2015) [8]), being the generalization of a nexus. To supply address
in infinite modes, it is not possible to use an address with finite number of elements. In this
case, addresses defined over ordinals should be utilized. As an advantage, ordinal numbers
are useful to compare two infinite addresses with each other. Nevertheless, no studies have
so far defined and investigated the use of algebraic space structures over an ordinal nexus,
according to the best of our knowledge.

In this paper, a moduloid structure is newly defined over an ordinal nexus. Moreover,
the relationships between subnexuses and y-moduloids are investigated. The action of a -
moduloid homomorphism on the level of an address is also studied. Finally, some fuzzy
concepts are reviewed.

2 Preliminaries

Definition 2.1. A groupoid is defined as a set closed under a binary operation. This binary operation
on an infinite set G is a function such that forms x : G x G into G that assigns a unique member such
as C of G to each member (a,b) of G x G, satisfying the following conditions:

1. The binary operation is defined on its entire domain i.e. G X G

2. The binary operation x is a well-defined function from G x G to G, assigning a single element
of G to each member of G x G.

3. The result of combining two members (a,b) under a binary operation must belong to G. In other
words, the set G is closed with respect to its binary operation.
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4. The binary operation that leads to the combination of both members of the infinite set G is
usually represented by * or o.
- A semigroup G is defined as a groupoid with a binary operation e, satisfying the associative property,
(aeb)ec=uae(bec)Va,bceG
- A monoid G is defined as a semigroup with an identity element.

Definition 2.2. A semiring is defined as a set R with two operations + and e, such that (R, +),
representing a commutative monoid and (R, ®) indicating a semigroup. The operation e is distributive
with respect to +. In other words, one can have the following relations:

ae(b+c)=(aeb)+ (aec)Va,b,ceR
(b+c)ea=(bea)+ (cea),Va,b,ceR
Oea=0e0=0,VacR
where O represents the identity element of monoid (R,+).

Definition 2.3. A moduloid M over the semiring R comprises a commutative groupoid (M, +),
having an identity element and operation e : R x M — M. This is called scalar multiplication. As
well, for all r,s in R, and a,b in M, the equations given below are valid:

() [(r+5)ea=(rea)+(sea);
(ii) ro(atb)=(rea)+(reb);
(iii) (rs)ea=re (sa);

(iv) Dea=re(0=0.

When r € R so that r e a = a, M is then called unitary moduloid over R. For simplicity, on can
consider (M, +,e) as a R-moduloid.

Definition 2.4. An address is defined as a sequence of N* = IN {0} , so that a; = 0 implies a; =0,
for all i > k, where, N* is the set of all non-negative integers, that is, N* = IN(J{0}.

Definition 2.5. A typical finite address is represented by: (ay,ay,...,a,,0,0,...) where a; and n belongs
to IN. Hereafter, this address is denoted by:(ay,ay, ...,a,) and called a finite address.

Definition 2.6. The sequence of all zeros is called the empty address denoted by ( ).
Definition 2.7. A nexus N is a nonempty set of addresses where a finite address is written as follows:
(ay,az,...,a,_1,an) € N = (a1,a,...,ay,-1,t) € N, (Vt)(0 <t <ay,) (i)
For an infinite address, one can write the following expression:
{a;}24,a; € N=Vn e N,(ay,az,...,an) € N (ii)
Note that condition (ii) does imply condition (i).
For example, the set N = {(),(1),(2),(1,1),(1,2),(2,1),(2,2),(2,3),(2,4) } is a nexus.
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Definition 2.8. Let N be a nexus. A nonempty subset S of N is called a subnexus of N, indicating
that S itself is a nexus.

Definition 2.9. Let 6 # A C N. Accordingly, the smallest subnexus of N containing A is called
the subnexus of N generated by A and is denoted by < A >. If A = {ay,a,...,a,}, then, instead of
< A >, one can write (ay,ay, ...,a,). If A contains only one element a, then the subnexus < A > is
called a cyclic subnexus of N. It is clear that {( )} and N are the obvious subnexus of the nexus N.

Definition 2.10. If a = (ay,4ay,...,a,),an 7 0, for some n € N, then a is said to be of level n. The
level of a is denoted by 1(a).

- If a is an infinite sequence of N, then a is said to be of level co.

-Ifa = (), then a is said to be of level 0 (zero).

Definition 2.11. The highest level of M elements is referred to as the rise of M and is represented by
rise(M). Especially, the highest level of the elements of a nexus N can be referred to as the rise of a
nexus N and represented by rise(N).

Definition 2.12. Let N be a nexus and let a = (ay,ay,...,a,) be an address of N. The first term ay is
said to be the stem of a and is denoted by stem(a).

Definition 2.13. Let a = {a;},i € N and b = {b;},i € IN be two addresses. Then a < b ifl(a) =0
or if one of the cases given below is satisfied:
Case 1. If 1(a) =1, that is w = (ay),Ya; € N, and ay < by.
Case 2. If 1 <I(a) < oo, then I(a) < I(b) and a4y < by and for any 1 <i <I(w), a; = b;.
Case 3. If 1(a) = oo, then a = b.

Definition 2.14. Let N be a nexus and let a = (ay,ay,...) and b = (by, by, ...) be two addresses of N.
Now, the operation + is defined on N as follows:
If there exists k so that:
(a1 V bi,aV by,...,a; V bk) €N

But
(a1 Vby,apV by, ...,ap 1 Vb)) €N

Then
a+b= (111 V bi,ay V by,..., a4V bk)

In this case, it can be stated that index(a,b) = k if there is no such a k, then
a+b= (ﬂl V by,ar V bz,...).

In this case, it can be stated that index(a,b) = co. Nevertheless, it should be noted that (aq V by) € N
is always true.

Remark 2.15. We have:
(i) Generally, + is not associative.
(ii) It is possible that a < b but a + ¢ > b + ¢, for some a, b and c in a nexus.
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Consider the following examples:

Example 2.16. Suppose that,

N={(),(1),(2),(3),(1,1),(1,2),(2,1),(3,1)}

Now, consider the addresses

a=(12), b=(2,1), c=(3,1).
Then

(a+b)+c=((1,2)+(2,1))+(3,1) =(2) + (3,1) = (3,1)
On the other hand,
a+(b+c)=(1,2)+(3,1) =(3).

Example 2.17. Consider the nexus N whose generators are the addresses (1,2,3,9) and (2,3,4,8),
namely,

N =< (1,2,3,9),(2,3,4,8) >

Suppose that,

a=(1,2,338), b=1(1,239), c=(2,3,4,7).

As can be seen: a < b but,

a+c=1(2,3,4,8) and b+c=(2,3,4).
Therefore,
a+c>b+c
Definition 2.18. Let N® = IN(J{0,00}, N be a nexus. The scalar multiplication

0o:IN*xN—N

Is defined on N as follows:
(ay,az,...,a,) 0 <r <I(a)

roq— (a1,az,...,a,) L(a) <r,1)0
0r=0

ar=oo

Forallr € N*°,a € N.

Remark 2.19. Let N be nexus. Then (N,+,0) is unitary moduloid over (IN*,V, A,0).
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Definition 2.20. Let N be a N*-moduloid, S be a non-empty subset of N and 0 € S. Then S is called
IN®-moduloid of N, if (S,+,0) is a moduloid over (IN*,V, A,0). The set of all N*-moduloid of N is
denoted by SUBN"™ (N).

Definition 2.21. Let S be a nonempty subset of a nexus N. Then S € SUBYN" (N) if and only if
1) roaeS,VreIN®, Vaes,
2)a+beSsS, Vabes

Remark 2.22. We have:
(i) In general, a subnexus of a nexuse is not a IN*-moduloid.
(ii) In general, a IN®-moduloid of a nexus is not a subnexus.

Example 2.23. Consider the nexus

N={(),(1),(2),(1,1),(1,2),(1,3),(2,1),(2,2) }

and

§={0).(1),(2),(1,1),(1,2)},

S is a subnexus of N but if N is considered as a moduloid, then S is not a IN*-moduloid of N, because
(1,2) and (2) belong to S, but

(1,2)+(2)=(2,2) ¢S
Clearly, each subnexus S of N is closed under dot product, that is,
roweS,VreN, wes.
Example 2.24. Consider the nexus N =< (3,2),(2,2) > and the subset S ={(),(1),(2),(3),(3,2)}
of N.
It is easy to check whether, S is a IN*-submoduloid of N (closed under addition and dot product),

but it is not a subnexus of N because S does not contain the address (3,1).

Definition 2.25. Let N be a nexus, a € N. The cyclic subnexus < a > is a IN*-submoduloid of N.
In particular, if N is a cyclic nexus, then every IN*-submoduloid of N is a IN*-submoduloid.
Generally, it should be noted that every IN*-submoduloid of cyclic nexus N is not a subnexus of N.

Example 2.26. Consider the cyclic nexus
<(2,3,2) >={0,(1),(2),(2,1),(2,2),(2,3),(2,3,1),(2,3,2)}
the subset {(2),(2,3),(2,3,2)} is a IN®-submoduloid of < (2,3,2) > but it is not a subnexus.
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3 Moduloid over an Ordinal Nexus

Definition 3.1. The order relation on the hypothetical set S uses the symbol ("' and has the following
two properties:

Difx,yeS=x(yorx=yorx)y

2)ifx,y,z € S,x(y,y(z=x(z

Definition 3.2. An ordered set is a set as S on which the order relation is defined.
For example, (Z,<)is an order set because: Vx,y € Z*,x <yory < x.

Definition 3.3. An ordered set A where for every x,y € A either x <y ory < x is said to be linearly
ordered or totally ordered.

Definition 3.4. An ordered set A is said to be well-ordered if and only if whenever B is a non-empty
subset of A, then B contains a minimum element.
- Every well-ordered set is linearly ordered.

Definition 3.5. Let(X, <) be a well-ordered set, and a € X. By determining the segment X, of X it
is meant that set X, = {x € X|x(a}.

Definition 3.6. An ordinal number is a well-ordered set a where for all x € a,a, = x.

- The collection of all ordinal numbers constitutes a proper class that is denoted by D.

- Let « be an ordinal. If a € a, then w, is an ordinal. Also, if Y C « is an ordinal, then Y = ay, for
some a4 € a.

- If w and B are ordinals, then a (B is an ordinal.

- Every well-ordered set is isomorphic to a unique ordinal.

Definition 3.7. Consider (D, ), function ¢ : D — D is isomorphic if
Va,p €D, gp(axp) = g(a) x ¢(B).

Definition 3.8. It is common in contemporary set theory to reserve lower-case Greek letters a, 3, ... to
denote ordinals.

- It is also customary to denote the order relation between ordinals by a(Binstead of the two equivalent
forms o C B, « € B though the latter is also fairly common.

- If w is an ordinal, then by definition we will have &« = { p € A| B{a}, That is, an ordinal represents
the set of all smaller ordinals.

- In general, if a is an ordinal, the next ordinal will be a\J{a}. It is customary to denote the first
ordinal after « by « + 1, which is called the (ordinal) successor of x. Thus « +1 = aN{a}. If
B =« + 1, then we define p — 1 = a.

- An ordinal number greater than 0, which is not the successor of any other ordinal, is said to be a
limit ordinal.

- An ordinal that is the successor of another ordinal is called a successor ordinal or non-limit ordinal.

-Ifa,B € D, then either a < B, B <aora =

- If A is a set of ordinals, then |J A is an ordinal.

- If vy is an ordinal, then (vy,V, A\,0) is a semiring where 0 is the least element of 7.

- For undefined terms and notations.
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Definition 3.9. Let v,6 € D, 6 > 1 and v > 1. An address over vy is a function a : § — vy, such that
a(i) = 0 implies that a(j) =0 for all j > i.

- The set of all addresses over <y is denoted by A(y).

- a(0) is called the stem of a. Note that the stem of ( ) is 0.

- Let a : 6 — ybe an address over «y. If for every i € 6, a(i) = 0, then it is called the empty address and
denoted by ().

- If a is a non-empty address, then there exists a unique element a € 6 + 1 such that for every i € a,
a(i) # 0 and for every a <i € 5, a(i) = 0. We denote this address by (a;);c, where a; = a(i) for every
i€ a.

Remark 3.10. Let a = (a;);cq. For B <ua, a|ﬁ, means a|/3 (i) =a(i),Vie B and a|ﬁ(i) =0,Vie
v — B. In other words a|g = (a;)icp. Note that , aly =0= ().

Definition 3.11. Let a: 6 — yand b : B — nbe addresses and & < B. It can be said a = b, if for every
i €90, a;="bj; and for every i € B — 7, b; = 0. In other words, there exists a unique element A € D
such that a = (a;);jcp = b.

Definition 3.12. Let a: 6 — 7y and b: B — 11 be two addresses, then supremum a, b are defined as
follows:

avb:n— vy

oo = {givs s

Definition 3.13. The level of a € A(vy) is said to be:
1) 0a=0
2) B()#a=(ai)icp
The level of a is denoted by 1(a).
Example 3.14. Let a = (a;);cp. The level of ais 2w, 1(a) = 2w.
Definition 3.15. Let a, b be two elements of A(vy). Then we say a < b if 1(a) = 0 or one of the
following cases satisfies for a = (a;)icpand b = (b;)ic:
I.If‘B:1(ZO Sbo
2. If B > 2 is a non-limit ordinal, then a|5_1 = b|ﬁ_1and ag_1 < bﬁ,l.
3. If B is a limit ordinal, then a = b]ﬁ.
Example 3.16. Let a = (a;)ie,, and b = (b;)ico,,- We define a; =i+ 1, for all i € 2w. Therefore,
a <b. Also, let a = (a;);jc5 and b = (b;);cg such that,a; =i+1,b;=i+1, foralli € 4={0,1,2,3}
and ay = 3(4 = by. Thus, a < b.
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Definition 3.17. Let ( ) # a = (a;);cp be an element of A(7). For every 6 € pand 0 <j < as, we
put a'®) : B 41 — + so that, for everyi € B +1,

a; €6
= ji=0

0 otherwise

209

)

In other words, a;”"’ = (a;)ics41, where, as = j, ay = a; forall A €6 .

Remark 3.18. If & in non-limit ordinal, then, a®0) = a0=1%-1) = (g,),c5. Clearly,a®0) = ().

Example 3.19. Let a = (a;)ica. then a'“?) : w +1 — « so that for every i € w , a' /(i) =
a(i),a' ) (w) =
Definition 3.20. A nexus N over 7y is a set of addresses with the following properties:

1)0 # N C A().

2)If () #a=(a;)iep €N, then for every § € pand 0 < j < as, al®) € N
- Note that, this definition is basically a generalization of Definition 2.3. In fact, every nexus is a
nexus over w.
- A nexus defined over an ordinal is called an ordinal nexus.

Example 3.21. Let a = (a;);e, S0 that, for all i € w, a; =1, therefore N = {a|, |\ € w} is a nexus
over w. In other words, N = {(1),(1,1),(1,1,1,...) }.

Example 3.22. Let a = (a;)iep0 € A(7y). Then N = {al%)) ‘ Vo €2w,0 <j<as}isanexus.

Theorem 3.23. Every non-empty address inducing a nexus, is denoted by (a)7. We have:
(i) If B is a limit ordinal, then (a)Y = {a(/) ’ deB,0<j<as}U{a}.
(i) If B is a non-limit ordinal, then (a)Y = {a(*}) ‘ e p,0<j<as}
(iii) (a)Y = {b e N|b <a}.

Proof. (i): Let 0 #a = (a;)icp € A(7) and Let B be a limit ordinal. We show that N = {als)) ‘ o€
B,0<j<as}{a}isanexusover . Let a%)) € Nand a®®/) = b= (b;);cs,1 so that, VA € §,b; =
a;,bs = j, We show that, V&' € 6 + 1, (V) (0 <j < by),b(‘slfjl) € N we have two cases:

case 1. &' =, then

. b)\/\eé,:(s ayAed .
pONIN ={ JA=8=6 = jA=6 =a®)(A)
0 otherwise 0 otherwise

because € 8,0 <j < a;. Hence, p@i') e N.
case 2. &' € J then

. by A€ o’ a) A e & .
pONN =S fa=8 ={jr=8 =alb)
0 otherwise 0 otherwise
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Hence, b¢"J') € N. Therefore N is a nexus.

(ii): If B is a non-limit ordinal, then according to Remark 3.18, N = { a(*/) ‘ dep,0<j<as}
is a nexus.

(iii): It is obvious that (a)” C {b € N|b < a}. Conversely, if b <a and b = (b;);cp we will
have two cases,
case 1. If § is a non-limit ordinal, then b|ﬁ_1 = ‘1’/3—1 and bg_1 <ag_1100-1: Thus, foralli €y

a;i € ﬁ —1
bi=q bg1i=p—-10
0 otherwise
Hence, foralli € v, b; = a?ﬁ_l'bﬁ -1 therefore b € (a)7.
case 2. If Bis a limit ordinal, then b = 4| g- Thus, foralli €

b — a; 1€ :B
") 0otherwise
Hence, for all i € ,b; = afﬁ 0) ; therefore b € (a)7. O

Remark 3.24. Let N be the set of addresses over «y. Then N is a nexus over <yif and only if 6 = N C
A(7y) and for every (a,b) € N x A(7),b < a, implies that b € N.

Definition 3.25. Let N be a nexus over oy and 6 # M C N. M is called a subnexus of N, if M itself is
a nexus over 7. The set of all subnexuses of N is denoted by Sub(N). It is clear that (), N represents
the trivial subnexuses of the nexus N.

Remark 3.26. If N is a nexus over y and { M; };c; C Sub(N), then J;c; M; € Sub(N) and ;1 M; €
Sub(N).

Definition 3.27. Let N be a nexus over y and X C N. The smallest subnexus of N containing X is
called the subnexus generated by X and denoted by < X >. If |X| =1, then < X > is called a cyclic
subnexus of N.

4 Relation between Subnexuses and y-Moduloid

Henceforth, 7 is an ordinal number and N is a nexus over 7.

Definition 4.1. Let a = (a;)icp and b = (b;);c; be two addresses of N. The operation @ is defined as
follows:
If there exists 11 € 7y so that (aV b)|, € N (aVb)|, ;€ N, thena®b=: (aVb)|, € N.

In this case, one may write indexg\‘;’b) = 1. If there is no such a n, then indexg\?’b) = 7. In other words,

we write a ® b =:a \V b. In this case, B or J is equal to .
However, note that always (ag V by) € N, where ag and by are the first terms of a and b respectively.
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Remark 4.2. For all non-empty addresses a,b € N
1) adb=bDa
2) a®0=0
3) l(a®b) <I(a)VI(b)

Example 4.3. Let ai:{O}%'ybyai(O):iforalli:1,2,3andfor4§i§7,
ai:{O,l}—>’ybya4(]’):1, a5(j)=j+1, a6(0):2 a (1)_1 a’(0) =3, and let a’ (1) =
Therefore a°Va®(1)=2,a°Vva®0) =2, and a®> ®a® =a’Vvab: {0, 1}—)7,N {()}U{ ’]z—

-, 7}. Also, (a° & a®) = a?; therefore, (a° V a®)|y = a® € N, but (a°V a®)|, ¢ N, 1(a° & a®) =
1§2_l( %) Vv 1(ab).

Remark 4.4. Let N be a nexus over v, A € w and a = (a;)icpy € N. Clearly, we have

a = (ap,a1,a2,...,4p—1).

For example, let a°,a*,a?, ...,a” be as defined in Example 4.3, then a° = (a )160 =(),at=

(i
(1), a* = (a;)ier = (2), 03 = (a;)icr = (3), a* = (a;)ica = (1,1), @° = (@)ic2 = (1 2)
(ai)iez = (1,2),a” = (a;)ie2 = (3,1).

Lemma 4.5. Let a and b be two addresses in N.
(i) If a < bthena ® b =b.
(ii) In a cyclic nexus N, since every two addresses are comparable.
Then the summation of two addresses will be equal to the greater summaand.

Proof. (i). Suppose that a = (a;);cp. Since a < b, we have two cases:
Case 1: B is a non-limit ordinal, so a|g_; = b|g_; and ag_1 < bg_q, thus (a V b)[z = bg.
Case 2: B is a limit ordinal, then a[; = b[g=a,s0 (aVb)|g=bthusa®b=D.
(ii). If N is cyclic, thena@b=aora® b =Vb. O

Definition 4.6. The scalar multiplication (dot product) e is defined on as follows:

o:yXxN—N
(@,b) = al g = (4i)icang

Where a = (a;)icp
Remark 4.7. Leta € Nand a € -y, then l(x @ a) <1(a).
Lemma 4.8. Let a = (a;)iep € N,6 € Dand 6 < . Then a @ (a|;) = a|,g

Proof. According to Remark 3.10. a|; = (4;)ics. Hence a o (al;) = a ® (a;)ics = (ai)icans =
a|omﬁ' H

Theorem 4.9. (N, ®, o) is moduloid over (y,V,A,0). For simplicity, Nis called, a y-moduloid.
We show that, the following properties are valid:
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(). (aNB)ea=ne(Ben)
(ii)). xo(adb)=(nea)d (xeb)
(iii). (aVB)ea=(xea)P (xeb)
(iv) Dea=0e0=0
Forallw,p € yand a,b € N.

Proof. (i). Leta, B € v,a = (a;)iesthen @ (Boa) = o (a|g.s) = alyp(prs) = l(appins = (& A
B)ea

(ii). Let a = (a;)icp and b = (b;);cs is be two elements of N. Without loss of generality,
suppose that B<o.1f index%’b) =1, thenane (adb)=ne(aV b)‘n =(aVv b)’a/\;y
On the other hand v e 2 = 4|, pandweb = b, s- Now, consider the following two cases:
Case 1: Leta < B < 4. If & <y, then

nea®aeb=al,,® bl,,=a,® b, (sincea <5) = (aVb)], = (V)]

Now, if «)#, then

xeadueb=al, P b|,(sincea)y) = (aV b)ﬂ(sinceindexg\?’b) =1)=(aVDb)ny
thusneaPaeb=ne(adpb).
Case 2: Let B < a <, then
nea=al,z=alg=a

xeb=Db|, ., =b|,

If « <y thatis, p<a<y. Sinceindexg\‘;’b) =1,thenneaGaeb= (adb)|,= (aVD)|,.

On the other hand

xe (a®b) = (aVh)|,p, (@ <y) = (aVB)], = (aV )

therefore, v @ (1 b)) =neadaeb.
Now, if a)1, thena 2 = 4|, 5 = a|gand x @ b = b|, 5 = b|,. Therefore,

weadaeb=(adb)|, = (aVbh), = (aVb)|,, =a@eb).

Case3.If <d<a,thenaeadaeb=al, ;& bl,,;=a[g®b|;=(aVD)|, = (aVD)]
ne(adb)|, =ae(adb)
Ifindex%’b):'ythenﬁ:'yorézfy,so,fxo(a@b):oco(a\/b):oco((a\/b)|7):(a\/b)|
(aVD)l,
On the other hand, without loss of generality, suppose that, 3 =y, Hencean e a = a|,, x o b =
b|, s, we have two cases:

() Ifa <, thenneadaeb=al,dbl,= (aVDb),.

any -

YA —
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) Ifa)s, thenneadaeb=a|, ® b= (aVb),.
(iii). Let a, B € v and B(a, a = (4;)ics € N, then, (x V) @ea=nea=a|,,;.
On the other hand a ¢ 4 = af,,; and pea = afg,,;. Since AL <JAw, s0,x0adpea=

a’é/\’)/ = (IX v ﬁ) ea.
(iv). Let a = (a;);cp be an elements of N, thenOea=0e (a|)) = al; =0 O

Example 4.10. we define ® := (w + 1) x N — N as follows

al, 1(a))A)0

) al(a) <A)0
7A=Y 0A=0
aA=w

Forall v € w+1and a € N. So, every N*-moduloid is a unitary w + 1-moduloid.
Henceforth, we write xa instead of « @ a, for all « € yand a € N.

Remark 4.11. If y is a non-limit ordinal and N is a moduloid over «y. Then
(y—1a=aVaeN
Hence, in this case, Nis a unitary y-moduloid.

Definition 4.12. Let (N,®,e,0) be a moduloid over vy and let S be a nonempty subset of N and
()=0¢€S. Then S is called submoduloid of N, if (S,®,0) is a - moduloid over (vy,V,A,0). The set
of all submoduloids of N is denoted by SUB],(N).

Remark 4.13. In general, for y-submoduloids M, T of N, MUT is not vy -moduloids of N.

Example 4.14. Consider v-moduloid N of Example 4.3, we defined M = {0,a',a®} and T = {0,a?,a®}.
Therefore, M and N are «y- submoduloids, but, MJT = {0,a',a?,a°,a®} is not y-submoduloid
becausea® @ a® = a’ ¢ MJN.

Example 4.15. Consider the nexus
N ={(0),(1),(2),(3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)}
and submoduloids,

A={0),1),(1,1),(1,2)} and B={(),(1),(2),(2,1)}-

So, AUB ={0,(1),(2),(2),(2,1),(1,2)} is not y-moduloid of N because, (1,2) € MUUN, (2,1) €
MUN but (1,2) & (2,1) = (2,2) ¢ MUN.

Remark 4.16. If N is a y-moduloid and {M;};c; C SUB}(N), then ;c; M; € SUB](N).

Proof. It is evident. O
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Definition 4.17. If N is a nexus and A is an ordinal number, then, by definition of dot product
eANeN={Aalae N} ={aec N|l(a) <A} =I(A).

Therefore, according to the above theorem, A @ N will be a ~y-submoduloid of N, for every A € -y and
it is called A-cut of N.

Remark 4.18. Let N be a y-moduloid and let M be -y-submoduloid of N. Then for every A € y, A @ M
is a y-submoduloid of N.

Theorem 4.19. Let N be a «y-moduloid and o € -y. Consider the subset

Ny ={a € N|stem(a) =a} ={a e N|a(0) =a} | J{()}

The subset Ny is a y-submoduloid of N and it is called a-stem.

Proof. Let a,b € Ny. Thus, a = (a;);cp, a(0) = & and b = (b;);cs, b(0) = & . By definition of
y-moduloid summation, (a2 & b)(0) =a(0) V b(0) = a V a = a. Therefore, (a & b) € N,. Now,
suppose that a € N,, and A € y. Hence, by definition of dot product, (Aa)(0) = a for A # 0
and (Aa)(0) =0= () € N, for A =0. Thus Aa € N,. Hence, N, is y-moduloid of N. O

5 7y-Muduloid Homomorphism

In this section M and N are y-moduloids.

Definition 5.1. Let N and M be two y-moduloids and let f : N — M be a function. Then, f is
called ~y-moduloid homomorphism if:

(i) fla® b) = f(a)® f(b), Va,b € N

(ii) f(Aa) = Af(a)Va € N, VA €

Moreover, if is injective (surjective), (bijective) then f is said to be a «y-moduloid monomorphism
(epimorphism), (isomorphism). The kernel of f is defined by f~1({0}) and denoted by Kerf.

Lemma 5.2. Let a be an address in «y-moduloid N and a®vit) = q(®272) j, £ 0 = j,. Then §; = dand
j1=j2:6
Proof. If 61 # &5, then we have two cases:

Case 1. 81 € &,. So, a1 (8)) = al®22)(5,) implies j, = 0, which is a contradiction.

Case 2. 6, € 6;. Similar to Case ], j; = 0, which is also a contradiction.

Hence, &; = 5. Now, al®i1) (8;) = a(®22) (§,)and therefore j; = j. O
Lemma 5.3. Let a be on address in y-moduloid. Then,

aOvisy) @y g(02dsy) — 5 (01V02]s1vs,)
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Proof. Without loss of generality, suppose that J; € é,, then

a;i € a;i € o
2 (01dsy) ® a(02ds,) — jsi=0 @R js,i=06 =
0 otherwise 0 otherwise
( a;i €
j51Va52i:51 a;i € o a;i €61V .

, ) ). . (Vo s )
aji€dh—0 = ]521—52 = ](51V(521—5 =a Vo2
J5, 1 =102 0 otherwise 0 otherwise

| 0 otherwise

]

Example 5.4. Le a = (a;);cq, S0 that, for all i € w, a; = a(i) =3 and b = (b;);e,, such that, for all
i € w, by =b(i) = 1. We defined N = (a)?, M = (b)7. According to Remark 3.18, N = { a(®/) ‘ o€

w,0(j <asyU{()} and M = { (%) ‘ 0 €w,0(j <bs}tU{()} and according to Theorems 3.23 and

4.9, M and N are y-moduloids. On the other hand, we defined f : N — M by f(a®9)) = p(o1),
£(a©0)) = p00) for all § € B, 0(j < as. By Lemma 5.2, f is well-defined and by Lemma 5.3, we have
f(a(fﬁ,jsl) @ a(52/7'52)) _ f(a((51V52/f«51v52)) = p(01v21) = p(l) @ p2V), Forall A €y, f(Aad)) =

f(ale? ‘/\A(Hl) = b }A/\(Hl = A = Af(alo))

Therefore, f is «y-moduloid homomorphism and ker f = {0} = a(%%). Note that, f is not one to one.

Theorem 5.5. Let f : N — M be a y-moduloid homomorphism. Then
(i) f(0) =0
(ii)) Ifa,b € N,a <, then f(a) ® f(b) = f(b).
(iii) Ifa € N,I(a) = a, then [(f(a)) <wand f(a|,) = f(a), (YA)(I(f(a)) <A <I(a).
(i0) If1(f(a)) = 1(a) then f(al,) = bl,, (YA)(A < 1(a)).

Proof. (ii):Ifa <b, thena® b= b. Therefore, f(a®b) = f(a) ® f(b) = f(b)
(iii) : If f(a) =0, the result is obvious. Let a = (4;);cq, and let b = f(a) = (b;);cp # 0, since

f(wa) = af (a).
Therefore, ab = af(a) = f(aa) = f(a) = b, so,(f(a)) =1(b) < a. Therefore

flaly) = f(Aa) = Af(a) = f(a), (VA)(I(f(a)) <A < I(a))
(iv) : Forall A <I(a) = I(f(a), f(al];) = f(Aa) = Af(a) = f(a)]}-
Theorem 5.6. Let f : N — M be a y-moduloid homomorphism and rise(N) = « and rise(M) = B.
Then:

(i) If f is y-moduloid monomorphism then o < B.
(ii) If f is y-moduloid epimorphism then o > B.
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Proof. (i) : Leta = (a;)iecq be an address in N and f(a) =b = (b;);cq. If B(x, then 6 < B(x, and
f(al,) = f(a) =0b,(VA)(0 < A < a). Therefore, f is not y-moduloid monomorphism, which
is a contradiction.
(ii): Let f be y-moduloid epimorphism and « < . Therefore, there is an address a = (4;);cq
in M such that f(a) = b = (b;);cg where, 0 < a.

If (B, then for all A,0 < A(B, f(a) = f(Aa) = Af(a) = b|, which is contradiction, since f
is function. So 6 = B. Since rise(N) = «,0 < a,. Therefore, § < a. O

Definition 5.7. Let a = (a;);cp be an address of nexus N over «y. We define q, = {b € N|a =
blg,b #a} and Qu ={b € N|b = a}.

Theorem 5.8. Let Nand M be two «y-moduloids and let f : N — M be a y-moduloid homomor-
phism. Suppose that a = (a;);cp is an address in N and f(a) = c = (c;)iep, where a)B; then:

(i) f(b) =c, forallb € q,.

(ii) If ais a limit ordinal, then: f(b) = ¢, forall b € Q,

Proof. (i) : Let b be an address in q,. Thus, b|, = a. Now, we have

fUB+1)b) = (B+1)f(b) = f(bl,, )= f(b)lg1 = flal,,) = f(@)|gs (1)
On the other hand

fla)=c= f(al}) =c,(VA)(B<A<a)= f(a] )=c (2)

(1) and (2) imply, f(al ) =c = (f(b))s =0.

By definition of an address, (f(b)), =0,VA > B therefore f(b) = c.

(ii) : Let « be a limit ordinal and b be an address in Q,. Thus, b|, = a. Now, using the part
one, the proof is complete. O

Remark 5.9. Note that, in the above theorem, if (a)) is not a limit ordinal there may be b € Q, so that
f(b) # c. For example, N = {0,(1),(2),(2,1),(2,2) } and M ={0,(1),(2),(2,1)}. Puta=(2,1),
b=(2,2),c=(2) and v = 3. We defined, f : N — M, where f(0) =0, f(1) = f(2) = f(2,1) =
(2), f(2,2) = (2,1). It is easy to show that f is 3-homomorphism and b € Q,, but f(b) # c.

Theorem 5.10. Let N and M be two y-moduloids and f : N — M be a -y-moduloid homomorphism.
Then f is monotone map, that is, a < b implies that f(a) < f(b).

Proof. Let a and b be two addresses in N and let a < b. suppose that a = (a;);c,, then, we
have:

if « be non-limit ordinal , so, b|,_; = a|,_q, ba—1 < a,—1. Suppose f(a) = (c;)ics, where
0 < w. Consider two cases:

case 1. d(a. So, f(a) = (ci)ics = 6f(a) = f(da) = f(als) = f(bl;) = f(6b) = 6 (b) =
£(0)]5 < ().

case 2.  =w. So, f(b|, ®a) = f(b|,) @ f(a).

Since a(b, f(b,) = f(bl,) ®cand f(b|,)a—1 = f(bl)a—1V ca-1. Thus, co—1 < f(b[y)a1-
This means that, (¢;)ies < f(b|,) = f(ab) =af(b) = f(b)|, < f(b).

]
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6 Fuzzy Moduloid over an Ordinal Nexus

Definition 6.1. A fuzzy subset f on set X is a function f : X — [0,1]. We denote by F(X) the set
of all fuzzy subsets of X.

-For f,g € F(X), wesay f C g, ifand only if f(x) < g(x) for every x € X.

-Let f € F(X),and t € [0,1]. Then the set f; = {x € X: f(x) > t} is called the level subset of X
w.r.t. f.

-Also we put f, ={x € X: f(x) =1}. Forx € Xand t € [0,1].

- xt € F(X) is called a fuzzy point, if and only if x'(y) = 0 for y # x and x'(x) = ¢.
The fuzzy point x' is said to belong to f (F(X)), written x' € f , if and only iff (x) >t .

Remark 6.2. The set of all fuzzy subnexuses of N is denoted by F(N).

Definition 6.3. A functionf : v — [0,1], is called a fuzzy set over on ordinal.

Definition 6.4. Fuzzy subset f : v — [0,1], that for all x € vy, f(x) =1, we denoted by 1.
Definition 6.5. Fuzzy subset f : y — [0,1], that for all x € -y, f(x) = 0, we denoted by 0.

Definition 6.6. Let jj be a fuzzy subset of a set y. For t € [0,1], the set py = {a € v : Pr(a) > t} is
called a level subset of p.

Remark 6.7. The set of all fuzzy subnexus of A(7y) is denoted by FSUB(A(A)).

Definition 6.8. The scalar multiplication (dot product) e is defined on <y as follows:

o:yxN—10,1]

) 1lapey
(a,a) — a|0¢/\/3 o { 0 otherwise

Remark 6.9. Let a € N and o € y then [(x e a) < 1(a).

Remark 6.10. Let x € yand t € [0,1]. Then (x') : v — [0,1], defined by

(') (2) = { o

is a fuzzy ordinal.
Proposition 6.11. Let , € y and r,t € [0,1]. Then a < B, if and only if (a') < ().

Proof. Leta < B. Since a € vy, implies that € -y, we can conclude that (a') (x) = t implies that
(') (x) = . Hence, (a') < (8).

Conversely, let (a') < (B!). Hence, t = (a!)(a) < (B')(a) < t, ie. (B')(a) =t. Therefore,
B €. O

38



Nahidi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 21-42
Definition 6.12. Let IN® = INJ{0, 00}, «y be a ordinal and the scalar multiplication6
o:IN® x v —[0,1]
is defined on <y as follows:
rey JaT=00
1 0r=0
forall, r € N®and o € «y.

Definition 6.13. Let N be a nexus over vy, and f be a fuzzy subset of N then:
{f)(a) = Vieraf (D).
Proposition 6.14. If N is a nexus over vy, and f,g € F(N), then:

AN =N

Proof. For everya € N,

((F)N(g)) (@) = min{ () (), (g) ()}
— min{Vpe1af (5), Voerag(B)} > Voeramin{ £(b),g(b)}
—Vier(fNE) () = (FN) ()

Example 6.15. Let v =3, N ={(),(1),(2)}, and f,g: N — [0,1] be functions such that

and

It is clear that (f)(N(g) # (fNg)-

Definition 6.16. Let N be a non-trivial nexus over 7y, i.e. N # {( )}. A fuzzy subnexus f of N is
called a prime fuzzy nexus if:

flanb) <max{f(a) f(b)},Va,be N
Remark 6.17. The set of all prime fuzzy subnexus of N is denoted by PF(N).
Remark 6.18. It is clear that if f € PF(N), then f(a ANb) = f(a) or f(b),Va,b € N.

Proposition 6.19. Let N be a non-trivial nexus over -y, and f be a fuzzy subnexus of N, N C A(7y).
Then f, is a prime fuzzy subnexus.
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Proof. Let r € [0,1], and f, be a non-empty subset of N. If a,b € Nand a A b € f,, thenr <
f(anb) <max{f(a), f(b)}, and which follows thata € f, or b € f,. So f; is a prime subnexus

Proposition 6.20. Let F : M — N be a homomorphism between nexus; then:
if g is a prime fuzzy subnexus of M, then f = gF is a prime fuzzy subnexus of N.

Proof. For everya,b € N,
f(anb)=gF(anb)=g(F(anb)

= g(F(a) NF(b)) =< max{g(F(a),g(F(b))}

Hence, f is a prime fuzzy subnexus of N. O

Example 6.21. let v =3, N ={(),(1),(2)},and h, f,g : N — [0,1] be functions such that
_ (O )
f= (0.3 0.2 o.125>
_ (O 1) ()
&= (0.4 0.35 0.1)

= (L)

0.30.20.1
It is clear that h € F(N) is prim, and f,g € F(N). Also f A\ g Chbut f ¢ hand g ¢ h.

Remark 6.22. Let A and B be two fuzzy submodules of a fuzzy module X. Then A + B is a fuzzy
submodule of X.

Definition 6.23. Let N be an N®-moduloid, and let f : N — [0,1] be a function. Then f is called
an fuzzy N*-moduloid homomorphism if

1) f(a+b)=f(a)+ f(b),Va,be N
2) f(ra) =rf(a), Vae N, Vr € N®

and

and

Proposition 6.24. Let f : N — [0,1] be an fuzzy N*-moduloid homomorphism. Then:
(i) ifa,b € N,a <b, then f(a) + f(b) = f(b);

(ii) ifa € N,I(a) = n{oo, then I(f(a)) < n. In particular, every principal element is going to 0 or
a principal element by f.

Proof. (i):If a <D, then a+ b= b. Therefore, f(a+b) = f(a) + f(b) = f(b).
(ii) : if f(a) = 0 we have the result let a = (ay,...a,) and let b = f(a) = {b; }ien # 0.
Since f(na) = nf(a) therefore:

nb=nf(a) =nf((ay,..,a,)) = f(n(ay,...an)) = f((a1,...,an)) =b=nb = ((by,....bn)).
it implies that 0 = b, 11 = b,+2 = ..., hence, [(f(a)) < I(b). O
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7 Conclusion

The generation of data can be simplified by using space structures such as formex and
plenix. From a general application viewpoint, mathematical structures realized in nexus
algebra have been developed into mathematical objects. The notion of nexuses has also been
defined over an ordinal to be represented as an address. As an advantage, ordinal numbers
facilitated the comparison between two infinite addresses.

Here, a moduloid structure over an ordinal nexus was for the first time defined. The notions
of y-moduloid nexuses, y-submoduloid, y-moduloid homomorphism, and level of a y-nexus
were defined and the relationships between them were investigated. In particular, it was
shown that:

(i) Every cyclic subnexus < a > of Nwas a y-submoduloid of N. In particular, if Nwas a
cyclic nexus, then every subnexus of Nwas a y-submoduloid.

(ii) Every A-cut and a-stem of any y-moduloid were y-submoduloid.

(iii) Every y-moduloid homomorphism was monotone.
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