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Abstract. This paper introduces some new rank six geometries associated with the Fischer spo-
radic simple group Fi22. These geometries are both residually connected and firm, with Fi22 acts as a
flag-transitive automorphism group on them. The previously known geometries for Fischer sporadic
simple group Fi22 have rank at most four. Therefore, we investigate improvements to the lower bound
of the maximum rank of the residually connected and firm geometries on which the group Fi22 acts
as a flag-transitive automorphism group. Moreover, we demonstrate that the independent generating
set of Fischer sporadic simple group Fi22 has a size of at least seven.
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1 Introduction

For many years, researchers have been intrigued by the construction of geometric dia-
grams of high rank that are acted upon transitively by sporadic simple groups. Noteworthy
geometries related to the sporadic simple groups McL, J2, HS and Suz were documented
in previous studies [6, 10–12]. Among these, the Fischer sporadic simple group Fi22, stands
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out as the 16th smallest in the family of sporadic simple groups, of order 64561751654400.
There exists a limited number of documented geometric frameworks where Fi22 acts as a
flag-transitive automorphism group. For instance, Ronan and Stroth analyzed two rank
three geometries in [16], while Buekenhout introduced a rank four incidence geometry for
Fi22 in [5].

In this paper, we present a construction method of six geometries that are either primitive
or weakly primitive, firm and residually connected all with flag-transitive action by the Fis-
cher group Fi22. Some of these geometries are notable for their good diagrams. Furthermore,
we show that the size of the largest independent generating set for Fi22 is at least 7.

The structure of the paper is as follows: Section 2 outlines the necessary notations and
preliminary concepts relating to coset geometry and independent generating sets. Section
3 reviews the existing geometries associated with the Fischer sporadic simple group Fi22,
documented in past literature. Section 4 introduces the rank six geometries for the Fischer
group, and in Section 5, we present an independent generating set of size 7 for Fi22.

2 Notation and preliminaries

Throughout this paper, our notations are standard. We refer the reader to Atlas nota-
tion for the structure of the finite simple groups [8]. Familiarity with the fundamentals of
incidence geometry, as outlined in [3, 14, 15], is assumed. All computational tasks were per-
formed using Magma [2]. Many of the ideas presented here arise from [9, 17].

Let G be a group. Let I denote a finite set and let {Gi}i∈I be a family of subgroups of
the group G. We define the pre-geometry Γ = Γ(G;{Gi}i∈I) such that the set X of elements of
Γ consists of all cosets gGi for g ∈ G and i ∈ I. An incidence relation ∗ on X is established by,
g1Gi ∗ g2Gj if and only if g1Gi ∩ g2Gj is non-empty in G.

The type function t assigns types in Γ by defining t(gGi) = i. The type of a subset Y of X
is the set t(Y) and its rank corresponds to the cardinal of t(Y). The rank of Γ is given by |I|.
The subgroup B = ∩i∈IGi of the pre-geometry is called Borel subgroup.

A flag is characterized as a collection of mutually incident elements from X and a chamber
of Γ is a flag of type I. Elements of type i are referred to as i-element. The group G acts on Γ
as its automorphism group through left translations, maintaining the type of each element.
The subgroups Gi for i ∈ I are called maximal parabolic subgroups of Γ. We refer to Γ as a (coset)
geometry if every flag within Γ is included in at least one chamber. A geometry Γ is termed
flag-transitive if G acts transitively across all chambers of Γ. Let Γ be a flag-transitive geometry
and F be a flag of it. The residue of a flag-transitive geometry F is defined as:

ΓF = Γ(∩j∈t(F)Gj; (Gi ∩ (∩j∈t(F)Gj))i∈I\t(F)).

A geometry Γ is termed firm if every flag of rank |I| − 1 is contained in at least two cham-
bers. We say Γ is residually connected if the incident graph for each residue of rank at least 2
is connected. Γ is considered primitive when the group G acts primitively on all i-elements Γ
for every i ∈ I. Additionally, Γ is called weakly primitive if there exists at least one i ∈ I such
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that G acts primitively on the i-elements of Γ.
For a subset J ⊂ I, the J-truncation of Γ is referred to as JΓ = Γ(G;{Gi}i∈J). The group of

type-preserving automorphisms of Γ is denoted as Aut(Γ), while the overall automorphism
group is denoted as Cor(Γ). The diagram representation of a residually connected, firm and
flag-transitive geometry Γ consists of a graph with added structural features. For guidance
on diagram construction, see references [4, 5, 15].

In the following, we describe a definition in abstract group theory that can be used in
constructing coset geometry. It is based on the concept of an independent set within a group.
More details can be found in [7]. Let S = (si : i ∈ I) represent a set of elements from group
G. For any J ⊆ I, define GJ = ⟨si : i /∈ J⟩. We denote G{i} simply as Gi. The set S is classified
as independent if si /∈ Gi for all i ∈ I. A family of elements generating G is independent if and
only if it’s a minimal generating set meaning that no subset of it can generates G.

3 Previous geometries of the Fischer sporadic simple group Fi22

In the existing literature, there are a few incidence geometries exist where the Fischer
sporadic simple group Fi22 acts as a flag-transitive automorphism group, with the highest
rank being four. The geometries presented in this paper do not include these previously
studied geometries as truncations.

In [16], Ronan and Stroth explored two rank three geometries related to Fi22 that the dia-
gram illustrated in Figure 1 with the notation of [16].

Figure 1. The diagrams of rank three geometries of Fi22 from [16]

Buekenhout gave in [5] one rank four incidence geometry for Fi22. This is the number 46
geometry in [5]. The diagram of this geometry is depicted in Figure 2.

Figure 2. The diagram of rank four geometry of Fi22 from [5]
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4 The Rank six geometries of the Fischer group Fi22

The Fischer sporadic simple group Fi22 has order 64561751654400. The group Fi22 in con-
jugation has fourteen maximal subgroups [8]. In this section, from [1], we consider the per-
mutation representation of Fi22 on 3510 right cosets of the maximal subgroup isomorphic to
2.U6(2).

In this permutation representation involving 3510 points, each point’s subgroup stabilizer
is the maximal subgroup isomorphic to 2.U6(2). Consider ∆={α1,α2, . . . ,αn} as a set of points.
We define S{∆} and S[∆] as the set-wise and point-wise subgroup stabilizers of ∆, respectively.
We denote by Sα the subgroup stabilizer of point α.

Leemans and Rodrigues presented an algorithm in [13] for classifying all rank two prim-
itive geometries within a finite group G. They used that algorithm to identify all primitive
rank two geometries for the eleven smallest sporadic simple groups. In this section, we
extend their algorithm to construct one rank six geometry, denoted by Γ1, for the Fischer
sporadic simple group Fi22. The sketch of our algorithm is described in the following.

Let G be a finite permutation group that acts transitively on a set Ω. For constructing a
geometry of rank r we use a procedure as follows. We start with a firm and flag-transitive
geometry of rank r − 1 denoted as Γ(G;{K1,K2, . . . , Kr−1}). We define H = ∩r−1

i=1 Ki. Let H
be non-trivial and has orbit lengths l1, l2, . . . , ln on Ω. For each 1 ≤ i ≤ n, let Hi represent
the stabilizer of the representative from the orbit of length li such that li is different from 1.
Next, for each Hi we consider Γ = Γ(G;{K1,K2, . . . ,Kr−1, Hi}). If this geometry is residually
connected, firm and flag-transitive then we retain the set {K1,K2, . . . , Kr−1, Hi}.

For constructing the first geometry from the Fischer sporadic simple group Fi22, we use
the described procedure with starting geometry Γ(Fi22;{K1,K2}) such that Ki for i ∈ {1,2} is
isomorphic to the maximal subgroup 2.U6(2).

The proof of all the following propositions is concluded with the aid of Magma [2].

Proposition 4.1. Let F = {S1,S76,S568,S1439,S1883,S3082}. Set Γ1 = Γ(Fi22; F). Then Γ1 is a prim-
itive, residually connected and firm coset geometry such that Fi22 acts flag-transitively on it. Further-
more, the following properties hold:

(1) all the maximal parabolic subgroups of Γ1 are isomorphic to 2.U6(2);

(2) the Borel subgroup of Γ1 has order 2;

(3) Aut(Γ1) ∼= Fi22 : 2 and Cor(Γ1) ∼=(Fi22:2)×22;

(4) the diagram of Γ1 is depicted in Figure 3. In this diagram b is “4 2 4” and a is “3 2 3”.

The diagram of Γ1 is a complete graph, so that is not interesting. We construct geometry
Γ2 from Γ1 by replacing a maximal parabolic subgroup. The procedure is as follows.

In the permutation representation on 3510 points, the group Fi22 has rank three. There-
fore, the Fischer sporadic simple group Fi22 has two orbits on all sets of distinct points of
length 2. The set-wise stabilizer of the representative of these two orbits is isomorphic to
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Figure 3. The diagram of Γ1 Figure 4. The diagram of Γ2

the maximal subgroup 2 × 21+8 : U4(2) : 2 and the subgroup 2 × U4(3) : 2. The subgroup
2 × U4(3) : 2 is included within the larger maximal subgroups 2.U6(2) and S3 × U4(3) : 2.

We construct Γ2 from Γ1 by replacing the subgroup S568 with S{X1} for X1 = {3082,3234}.
The subgroup S{X1} is isomorphic to 2 × U4(3) : 2 and is contained in S568.

Proposition 4.2. Let F = {S1,S76,S1439,S1883,S3082,S{X1}}. Set Γ2 = Γ(Fi22; F). Γ2 is weakly
primitive, residually connected and firm coset geometry such that Fi22 acts flag-transitively on it.
Furthermore, the following properties hold:

(1) five maximal parabolic subgroups of Γ2 are isomorphic to 2.U6(2);

(2) one of the maximal parabolic subgroups of Γ2 is isomorphic to the group 2 × U4(3) : 2;

(3) the Borel subgroup of Γ2 has order 2;

(4) Cor(Γ2) ∼= Aut(Γ2)× 2;

(5) the diagram of Γ2 is depicted in Figure 4. In this diagram b is “4 2 4” and a is “3 2 3”.

Proof. Since the geometry Γ2 has a large number of elements, we can not compute Aut(Γ2)

directly. But, we can determine Cor(Γ2) respected to Aut(Γ2). From analyzing the diagram
of Γ2, it’s evident that there’s a notable correlation when we exchange the types 1 ↔ 3 and
2 ↔ 4, respectively. The diagram also indicates that we cannot independently swap types 1
and 3 or types 2 and 4. As a result, no additional correlations can be established, leading to
the conclusion that the correlation group Cor(Γ2) is isomorphic to Aut(Γ2)×2.

For constructing geometry Γ3, we continue the method on which was used in construct-
ing geometry Γ2 from Γ1. We replace the parabolic subgroup S1 of Γ2 with S{X2} for X2 =

{187,1439}. Thus, we can state the following proposition:

Proposition 4.3. Let F = {S76,S1439,S1883,S3082,S{X1},S{X2}}. Set Γ3 = Γ(Fi22; F). Γ3 is weakly
primitive, residually connected and firm coset geometry such that Fi22 acts flag-transitively on it.
Furthermore, the following properties hold:
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Figure 5. The diagram of Γ3 Figure 6. The diagram of Γ4

(1) four maximal parabolic subgroups of Γ3 are isomorphic to 2.U6(2);

(2) two maximal parabolic subgroups of Γ3 are isomorphic to 2×U4(3):2;

(3) the Borel subgroup of Γ3 has order 2;

(4) Cor(Γ3) ∼= Aut(Γ3);

(5) the diagram of Γ3 is depicted in Figure 5.

Proof. Since the geometry Γ3 has a large number of elements, we can not compute Aut(Γ3)

directly. But, we can determine Cor(Γ3) respected to Aut(Γ3). The diagram of Γ3 shows us
that, there is not any correlation that swaps the element types. Therefore, the correlation
group of Γ3 is isomorphic to Aut(Γ3).

The maximal parabolic subgroups of Γ2 and Γ3 which are isomorphic to 2×U4(3) : 2 have
orbit lengths 11,21,1261,5671,11341,16801. As noted above, a subgroup 2 × U4(3) : 2 is con-
tained in the maximal subgroup S3 × U4(3) : 2. The maximal subgroup S3 × U4(3) : 2, which
includes the subgroup 2 × U4(3) : 2, acts as the set-wise stabilizer for the union of the orbits
with length 1 and 2. We construct the three following geometries from Γ2 and Γ3 by replac-
ing these maximal parabolic subgroups 2 × U4(3) : 2 with maximal subgroup isomorphic to
S3 × U4(3) : 2 that contain them. In the following proposition X3 = {3082,3234,568}.

Proposition 4.4. Let F = {S1,S76,S1439,S1883,S3082,S{X3}}. Set Γ4 = Γ(Fi22; F). Γ4 is primitive,
firm and residually connected coset geometry such that Fi22 acts flag-transitively on it. Furthermore,
the following properties hold:

(1) five maximal parabolic subgroups of Γ4 are isomorphic to 2.U6(2);

(2) one of the maximal parabolic subgroups of Γ4 is isomorphic to the group S3 × U4(3) : 2;

(3) the Borel subgroup of Γ4 is isomorphic to 22;

(4) Cor(Γ4) ∼= Aut(Γ4)× 2;

(5) the diagram of Γ4 is depicted in Figure 6. In this diagram b is “4 2 4” and a is “3 2 3”.
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Proof. Since the geometry Γ4 has a large number of elements, we can not compute Aut(Γ4)

directly. But, we can determine Cor(Γ4) respected to Aut(Γ4). From analyzing the diagram
of Γ4 it’s evident that there’s a notable correlation when we exchange the types 1 ↔ 3 and
2 ↔ 4, respectively. The diagram also indicates that we cannot independently swap types 1
and 3 or types 2 and 4. As a result, no additional correlations can be established, leading to
the conclusion that the correlation group Cor(Γ4) is isomorphic to Aut(Γ4)× 2.

Figure 7. The diagram of Γ5 Figure 8. The diagram of Γ6

In the following proposition, X4 = {187,1439,2989} and X3 is the same as Proposition 4.4.

Proposition 4.5. Consider the set F = {S76,S1439,S1883,S3082,S{X3},S{X4}}. Let Γ5 = Γ(Fi22; F).
Γ5 is primitive, residually connected and firm coset geometry such that Fi22 acts flag-transitively on
it. Furthermore, the following properties hold:

(1) four maximal parabolic subgroups of Γ5 are isomorphic to 2.U6(2);

(2) two maximal parabolic subgroups of Γ5 are isomorphic to S3 × U4(3):2;

(3) the Borel subgroup of Γ5 is isomorphic to 22;

(4) Cor(Γ5) ∼= Aut(Γ5);

(5) the diagram of Γ5 is depicted in Figure 7.

Proof. Since the geometry Γ5 has a large number of elements, we can not compute Aut(Γ5)

directly. But, we can determine Cor(Γ5) respected to Aut(Γ5). The diagram of Γ5 shows us
that, there is not any correlation that swaps the element types. Therefore, the correlation
group of Γ5 is isomorphic to Aut(Γ5).

In the following proposition, X2 and X3 are the same as Proposition 4.5.

Proposition 4.6. Let F = {S76,S1439,S1883,S3082,S{X2},S{X3}}. Set Γ6=Γ(Fi22; F). Γ6 is weakly
primitive, residually connected and firm coset geometry such that Fi22 acts flag-transitively on it.
Furthermore, the following properties hold:

(1) four maximal parabolic subgroups of Γ6 are isomorphic to 2.U6(2);
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(2) one of the maximal parabolic subgroups of Γ6 is isomorphic to the group S3 × U4(3) : 2;

(3) one of the maximal parabolic subgroups of Γ6 is isomorphic to the group 2 × U4(3) : 2;

(4) the Borel subgroup of Γ6 is isomorphic to 22;

(5) Cor(Γ6) ∼= Aut(Γ6);

(6) the diagram of Γ6 is depicted in Figure 8.

Proof. Since the geometry Γ6 has a large number of elements, we can not compute Aut(Γ6)

directly. But, we can determine Cor(Γ6) respected to Aut(Γ6). The diagram of Γ6 shows us
that, there is not any correlation that swaps the element types. Therefore, the correlation
group of Γ6 is isomorphic to Aut(Γ6).

5 Independent generating set of the Fischer sporadic simple group Fi22

Here, one independent generating set for the sporadic simple group Fi22 is peresnted.
This independent generating set is constructed from geometry Γ3 from Section 4. For con-
structing this independent generating set we do as follows. Let Γ represent a geometry of
rank n, characterized by its maximal parabolic subgroups Pi for i ∈ {1,2, . . . ,n} and non-
trivial Borel subgroup B. Set Fi = (∩j ̸=iPj) \ B. We consider the set E = {g1, g2, . . . , gn+1} such
that gi ∈ Fi for i ∈ {1,2, ...,n} and gn+1 ∈ B. For each set E, we check independency and gen-
erating properties. We used this procedure with Γ3 and found one independent generating
set.

The result of this section is concluded with the aid of Magma [2]. In the following, we
present the properties of the independent generating set denoted by E.

Table 1. The sets of points.
No. Xi

1 X1 = {1,4,5,6,32}
2 X2 = {1,12,14,18,23}
3 X3 = {10,16,21,22,32}
4 X4 = {1,6,10,11,24}
5 X5 = {3,10,14,15,50}
6 X6 = {1,143,187,568,727,994}
7 X7 = {1780,3082}

Let S[Xi]
for i ∈ {1,2, . . . ,6} be the point-wise stabilizer of the set Xi that is given in Table

1. The subgroup S[Xi]
for i ∈ {1,2, . . . ,5} has order 2 and S[X6] has order 3. Let gi for i ∈

{1,2, . . . ,6} be a generator of subgroup S[Xi]
. Also, let S{X7} be the set-wise stabilizer of the

set X7. The center of subgroup S{X7} is of order 2. Let g7 be a generator of this subgroup. The
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set E = {g1, g2, . . . , g7} forms an independent generating set for the sporadic group Fi22. The
element gi for i ∈ {1,2, ...,5} is in conjugacy class 2A, g6 is a member of conjugacy class 3B
and g7 is in conjugacy class 2B.

As a result, we present the next proposition.

Proposition 5.1. The Fischer sporadic simple group Fi22 has independent generating set of size at
least 7.

6 Conclusion

This paper presents significant advancements in the study of geometries associated with
the Fischer sporadic simple group Fi22. It introduces six new geometries that are primitive,
firm, and residually connected, all admitting flag-transitive actions by Fi22. This represents
a notable improvement over previously known geometries, which had a maximum rank of
four.
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