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Abstract. Let G be a finite simple graph. The Sombor index of G is defined as ∑uv∈E(G)

√
d2

u + d2
v

where du and dv represent the degrees of vertices u and v in G, respectively. The sum of the absolute
values of the adjacency eigenvalues defines the energy of a graph. This paper aims to enhance the
current connections between the Sombor index and the energy of graphs. Additionally, we provide
some upper bounds for the Sombor index of triangle-free, square-free, Kr-free and tripartite graphs in
terms of order, size and minimum degree.
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1 Introduction

Let G = (V(G), E(G)) be a simple graph (undirected graph with no loop or multiple
edge), where V(G) and E(G) denote the set of its vertices and edges, respectively. Through-
out this paper, the number of vertices and edges in G are referred to as the order and size
of G, respectively. For a vertex v ∈ V(G), the degree of v, dv, is the number of edges that
are incident to v. The open neighborhood of v is the set N(v) = {u ∈ V(G) : uv ∈ E(G)}.
Also, ∆ and δ denote the maximum and minimum degrees of G, respectively. A path and a
complete graph of order n, is denoted by Pn and Kn, respectively. A complete tripartite graph
is a tripartite graph (i.e., the set of vertices decomposed into three disjoint sets such that no
two vertices within the same set are adjacent) such that every vertex of each set is adjacent
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to every vertex in the other sets. If there are p, q and r vertices in three sets, the complete
tripartite graph is denoted by Kp,q,r.

For an arbitrary graph G, the concept of energy of G was introduced by Gutman [10] in
1978 as the sum of the absolute values of adjacency eigenvalues of G. In this work, the energy
of a graph G, is shown by E(G). Next, in 2021 the Sombor index of G, SO(G), was defined as
∑uv∈E(G)

√
d2

u + d2
v by him [9]. Some results for the Sombor index and the energy of graphs

can be found in [1]- [4], [6]- [8], [11]- [21], [23], [25]- [27] and the references therein.

2 Preliminaries

Theorem 2.1. For an arbitrary graph G with vertices v1, . . . ,vn we have

E(G) ≤ ∑n
i=1

√
dvi ≤

√
2mn.

Moreover, these inequalities become equalities for G ∼= tK2 and ∆ = δ, respectively.

Proof. See Theorem 3.1 and Proposition 3.2 of [5].

Theorem 2.2. [9, Thm. 3] For any tree T of order n, SO(Pn) ≤ SO(T) ≤ SO(Sn).

Theorem 2.3. [25, Thm. 3.1] Let G be a connected graph of order n. If n ≥ 3, then E(G)< SO(G).

Theorem 2.4. [4, Thm. 3] If G is a connected graph of order n which is not Pn(n ≤ 8), then

E(G) ≤ SO(G)

2
.

Theorem 2.5. [22] Let G be a C4-free graph of order n ≥ 4 and size m. Then m ≤ n + n
√

4n − 3
4

.

Theorem 2.6. [24] Let G be a Kr-free graph of order n and size m. Then m ≤ (
r − 2
r − 1

)
n2

2
.

3 Results and Discussion

For a natural number n ≥ 2, it is well-known that E(Pn) = 2/(sin
π

2n + 2
)− 2 for any even

number n and E(Pn) = 2/(tan
π

2n + 2
) − 2, otherwise. Due to the difficulty of calculating

the exact value of E(Pn) with the stated formula, some upper bounds for E(Pn) have been
introduced in various articles. Clearly by Theorem 2.1, E(Pn) ≤ (n − 2)

√
2 + 2. We improve

this upper bound. To prove the desired inequality, we first introduce an upper bound for the
energy of graphs in terms of Sombor index and minimum degree.

Theorem 3.1. Let G be a graph of order n ≥ 3. Then E(G) ≤ SO(G)

δ
.
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Proof. It is sufficient to prove the theorem in the case where G is connected. If G is a tree,
then δ = 1 and so E(G) < SO(G), by Theorem 2.3. Else, G is a graph of size m with m ≥ n
and hence by Theorem 2.1, we have

SO(G)

δ
= ∑uv∈E(G)

√
d2

u + d2
v

δ2 ≥ ∑uv∈E(G)

√
δ2 + δ2

δ2 =
√

2m =
√

2m2 ≥
√

2mn ≥ E(G),

and the proof is complete.

Theorem 3.2. For any Pn with (n ̸= 2,4), we have E(Pn) ≤
√

2(n − 1). Moreover, the equality
holds if and only if n = 1,3.

Proof. Clearly, the result holds for n = 1. Also, E(P3) = 2
√

2 =
√

2(3 − 1). Further, according
to Theorem 2.4, for n ≥ 9 we have:

E(Pn) ≤
SO(Pn)

2
=

2(n − 3)
√

2 + 2
√

5
2

< (n − 3)
√

2 + 2
√

2 =
√

2(n − 1).

Otherwise, by Table 1 in [4, Theorem 3], we have:

If n = 5, then E(Pn) ≈
SO(Pn)

2
+ 0.4 = 2

√
2 +

√
5 + 0.4 <

√
2(n − 1).

If n = 6, then E(Pn) ≈
SO(Pn)

2
+ 0.51 = 3

√
2 +

√
5 + 0.51 <

√
2(n − 1).

If n = 7, then E(Pn) ≈
SO(Pn)

2
+ 0.17 = 4

√
2 +

√
5 + 0.17 <

√
2(n − 1).

If n = 8, then E(Pn) ≈
SO(Pn)

2
+ 0.22 = 5

√
2 +

√
5 + 0.22 <

√
2(n − 1).

Therefore, for any natural number n, n > 4, we have E(Pn) <
√

2(n − 1) and the result fol-
lows.

In [11, Theorem 4] the authors proved that for a bipartite graph G, E(G) ≤
√

2
δ3 SO(G).

Next, in [3, Theorem 11] the authors proved this upper bound for arbitrary graphs. In the
following, we give another proof.

Theorem 3.3. Let G be a graph. Then E(G)≤
√

2
δ3 SO(G). Moreover, the equality holds if and only

if G = tK2, for some positive integer t.

Proof. Let G be a graph of order n and size m. By Theorem 2.1 and the inequality m ≥ nδ

2
, we

have:

SO(G)

δ
= ∑uv∈E(G)

√
d2

u + d2
v

δ2 ≥ ∑uv∈E(G)

√
δ2 + δ2

δ2 =
√

2m

=
√

2
√

m2 ≥
√

2mδn
2

=

√
δ

2

√
2mn ≥

√
δ

2
E(G).

Also, if the equality holds, then every connected component of G is isomorphic to K2 and we
are done.
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In [25], the authors stated the following lower bound for the Sombor index of connected
graphs in terms of their energy and maximum degree.

Theorem 3.4. [25, Theorem 3.2] If G is a connected graph of order n ≥ 3, then

SO(G) ≥


δ√
2
(E(G)2 − n(n − 1)∆) i f δ ≥ 2,

√
5

2
(E(G)2 − n(n − 1)∆) i f δ = 1.

In the following, we improve and simplify the lower bound obtained in Theorem 3.4 as
follows:

Theorem 3.5. Let G be a connected graph of order n ≥ 3 which is not Pn (n ≤ 6). Then

SO(G) ≥


nδ2
√

2
≥

√
8n i f δ ≥ 2,

√
5n i f δ = 1.

Proof. Let |E(G)| = m. First assume that δ = 1. So 2m = ∑n
i=1 d(vi) ≤ (n − 1)∆ + 1 and con-

sequently 2mn ≤ n(n − 1)∆ + n. Therefore, 2mn − n(n − 1)∆ ≤ n and hence according to
Theorems 2.1 and 3.4, we have

√
5

2
(E(G)2 − n(n − 1)∆) ≤

√
5

2
(2mn − n(n − 1)∆) <

√
5n.

Next, we prove that SO(G) ≥
√

5n. To show this, we consider the following three cases:
Case 1. G is not a tree. Thus, m ≥ n. Also, the weight of each edge is at least

√
5. This implies

that SO(G) ≥
√

5n.
Case 2. G is a tree of order n ≥ 7. Since, Pn has the minimum Sombor index among all trees
of order n by Theorem 2.2, we have

SO(G) ≥ SO(Pn) = (n − 3)
√

8 + 2
√

5 ≥
√

5n.

Case 3. G is a tree of order 3 ≤ n ≤ 6. By an easy computation one can see that the inequality
holds except for Pr,r = 3, . . . ,6.
Now, we assume that δ ≥ 2. Obviously, 2m ≤ (n − 1)∆ + δ and so 2mn ≤ n(n − 1)∆ + nδ.
Therefore, 2mn − n(n − 1)∆ ≤ nδ and hence by Theorems 2.1 and 3.4, we have

δ√
2
(E(G)2 − n(n − 1)∆) ≤ δ√

2
(2mn − n(n − 1)∆) ≤ nδ2

√
2

.

But, SO(G) ≥ nδ

2

√
δ2 + δ2 =

√
2nδ2

2
=

nδ2
√

2
and the proof is complete.

Theorem 3.6. Let G be a C4-free graph of order n and size m. Then SO(G)≤ m
√

δ2 + (n − δ + 1)2.
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Proof. First note that if u and v are two adjacent vertices of V(G), then |N(u) ∩ N(v)| ≤ 1. To
see this, let x and y be two common neighbors of both u and v. Then u − x − v − y − u is a
cycle of length 4, a contradiction. So |N(v)| − 1 ≤ (n − 2)− (|N(u)| − 1) + 1 and this implies
that du + dv ≤ (n − 1) + 2 = n + 1. Therefore, we have:

SO(G) = ∑uv∈E(G)

√
d2

u + d2
v ≤ ∑uv∈E(G)

√
d2

u + (n + 1 − du)2.

Now, we consider the function f (x) = x2 +(n+ 1− x)2 on δ ≤ x ≤ ∆. By a simple calculation,

it can be seen that f (x) has a unique minimum at x =
n + 1

2
. Also δ ≤ n + 1

2
, since for any

two adjacent vertices u and v we have 2δ ≤ du + dv ≤ n + 1. Now, we consider two following
cases:
Case 1. If δ ≤ ∆ ≤ n + 1

2
, then f (x) is a decreasing function on [δ,∆] and hence f (δ) = δ2 +

(n + 1 − δ)2 is the maximum value of f (x) on [δ,∆].

Case 2. If δ ≤ n + 1
2

≤ ∆, then f (x) is a decreasing function on δ ≤ x ≤ n + 1
2

and an increasing

function on
n + 1

2
≤ x ≤ ∆. Hence the maximum value of f (x) on [δ,∆] occurs in δ or ∆. We

claim that f (δ) ≥ f (∆). For proving the claim, let uv be an edge in E(G) with du = ∆. Since
dv ≥ δ, we have ∆ + δ ≤ du + dv ≤ n + 1. Therefore, δ2 − ∆2 ≥ (n + 1)(δ − ∆) and hence 2δ2 −
2(n + 1)δ ≥ 2∆2 − 2(n + 1)∆. Thus 2δ2 − 2(n + 1)δ + (n + 1)2 ≥ 2∆2 − 2(n + 1)∆ + (n + 1)2

and consequently δ2 + (n + 1 − δ)2 ≥ ∆2 + (n + 1 − ∆)2. So f (δ) ≥ f (∆) and the claim is
proven.
Now, we have

SO(G) ≤ ∑uv∈E(G)

√
d2

u + (n + 1 − du)2 ≤ m
√

δ2 + (n + 1 − δ)2

and the proof is complete.

Corollary 3.7. Let G be a C4-free graph of order n. Then

SO(G) ≤ n + n
√

4n − 3
4

√
δ2 + (n − δ + 1)2.

Proof. The proof is clear by Theorems 2.5 and 3.6.

Theorem 3.8. Let G be a triangle-free graph of order n and size m. Then SO(G)≤m
√

δ2 + (n − δ)2.

Proof. The proof is similar to the method used in the proof of Theorem 3.6.

Corollary 3.9. Let G be a triangle-free graph of order n. Then SO(G) ≤ n2

4

√
δ2 + (n − δ)2.

Proof. The proof is clear by Theorems 2.6 and 3.8.

Remark 3.10. As we showed in the proof of Theorem 3.6, for C4-free graphs of order n, we have
∆+ δ ≤ n+ 1. It can be proved similarly that ∆+ δ ≤ n for triangle-free graphs of order n. Therefore,
all the upper bounds stated for Sombor index, Reduced Sombor index, and Sombor coindex in [7,
Theorem 2], [18, Theorem 2.14] and [21, Theorem 1] should be modified.
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In [7] the authors proved the following upper bound for the Sombor index of bipartite
graphs.

Theorem 3.11. [7, Theorem 3] Let G be a bipartite graph of order n. Then

SO(G) ≤


n3

4
√

2
i f n ≡ 0 (mod 2),

(n2 − 1)
√

n2 + 1
4
√

2
i f n ≡ 1 (mod 2).

Now, we introduce an upper bound for the Sombor index of tripartite graphs. Clearly,
K2,1,1 is the only tripartite graph of order 4 and by an easy computation we have SO(K2,1,1) =

4
√

13 + 3
√

2. For the other tripartite graphs we state the following.

Theorem 3.12. Let G ̸= K2,1,1 be a tripartite graph of order n. Then

SO(G) ≤



6
√

2k3 n = 3k,

4(k + 1)2[
1√
2

k + (k − 1)
√

1 + (
k

k + 1
)2 ] n = 3k + 1,

4(k + 1)2[
1√
2
(k +

1
2
) + k

√
1 + (

2k + 1
2k + 2

)2 ] n = 3k + 2.

Proof. Suppose that G = G(X,Y, Z) is a tripartite graph with |X| = p, |Y| = q, |Z| = r, n =

p + q + r ̸= 4 and p ≥ q ≥ r. Clearly, SO(G) ≤ SO(Kp,q,r) and equality holds if and only if
G ∼= Kp,q,r. Therefore,

SO(G) ≤ SO(Kp,q,r) = pq
√
(n − p)2 + (n − q)2 + p(n − p − q)

√
(n − p)2 + (p + q)2

+ q(n − p − q)
√
(n − q)2 + (p + q)2.

Let us consider the function

f (x,y) = xy
√
(n − x)2 + (n − y)2 + x(n − x − y)

√
(n − x)2 + (x + y)2

+ y(n − x − y)
√
(n − y)2 + (x + y)2,

where ⌈n
3
⌉ ≤ x ≤ n − 2 and 1 ≤ y ≤ x. In order to have a better vision of this function, its

graph is displayed for different values of parameter n in Fig. 1.
The maximum value of f (x,y) is determined from the common solutions of equations

fx = 0 and fy = 0. On the other hand, f (x,y) is symmetric (i.e. f (x,y) = f (y, x)). Therefore,
we should obtain the maximum points of the function f (x, x). Consider

g(x) = f (x, x) =
√

2x2(n − x) + 2x(n − 2x)
√
(n − x)2 + 4x2
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Figure 1. graph of function f for n = 9,13,17.
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for ⌈n
3
⌉ ≤ x ≤ n − 1

2
. By performing calculations, it is shown that g′(x) ≤ 0 on [⌈n

3
⌉,

n − 1
2

].

Therefore, g(x) is a decreasing function and consequently, f (x,y) obtains its maximum value
at x = y = ⌈n

3
⌉. Hence

SO(G) ≤
√

2⌈n
3
⌉2(n − ⌈n

3
⌉) + 2⌈n

3
⌉(n − 2⌈n

3
⌉)
√
(n − ⌈n

3
⌉)2 + 4⌈n

3
⌉2

and the result follows.

Theorem 3.13. Let G be a Kr-free graph of order n. Then SO(G) ≤ (
r − 2
r − 1

)
n2(n − 1)√

2
.

Proof. The degree of each vertex of G is at most n − 1. Therefore, for any uv ∈ E(G), we have√
d2

u + d2
v ≤

√
2(n − 1) and so by Theorem 2.6

SO(G) = ∑uv∈E(G)

√
d2

u + d2
v ≤ (

r − 2
r − 1

)
n2

2
(
√

2(n − 1))

and we are done.

4 Conclusion

The concept of graph energy was introduced by Gutman in 1978, originating from the-
oretical chemistry. It is defined as the sum of the absolute values of all eigenvalues of the
graph’s adjacency matrix. This concept is related to the total π-electron energy in a molecule,
represented by a molecular graph.

Degree-based and distance-based indices are two essential types of indices in chemical
graph theory. These indices are graph invariants used in quantitative structure-activity re-
lationship (QSAR) and quantitative structure-property relationship (QSPR) studies. Numer-
ous indices defined to date have been proven to be valuable for modeling various physical,
chemical, pharmaceutical, and other molecular properties.

In this paper, we investigated the Somber index as a degree-based index in mathematical
chemistry. We also enhanced the current connections between the Sombor index and the
energy of graphs. Additionally, we provided upper bounds for the Sombor indices of C3, C4

and Kr-free tripartite graphs in terms of order, size, and minimum degree.
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