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1 Introduction

Perfect state transfer (PST) is a quantum phenomenon in which a quantum state can be
transferred from one place to another without losing information. In other words, start from
the primary state, let the walk take place for a certain amount of time, and find the same
state in another place. The study of PST on graphs has attracted much attention due to its
applications in quantum information processing and computing. The history of the concept
of PST can be traced back to the early 2000s When it was first introduced as a theoretical con-
cept. Chris Godsil is a mathematician who has made significant contributions to the study of
PST. According to him, the probability of PST occurrence in the network depends on several
factors, including the network topology, the coupling strength between different network
nodes, and the presence of any external noise or decoherence effects that may disrupt the
transmission process. In general, PST happens more in networks with symmetrical topology.
Since the exact set of conditions required for this phenomenon is relatively rare, we lower our
expectations and aim for pretty good state transfer (PGST), i.e. the ability to find a state as
close as possible to the initial state elsewhere in the network. In recent years, PST and PGST
have been studied in the context of physical systems such as spin systems, molecular sys-
tems, etc. The term random walk was first introduced in 1905 by Pearson as a mathematical
formalism to study the path of a particle that includes random walks. Quantum walks, as a
generalization of classical walks in the quantum field, were first introduced by Aharonov [5].
The ability to use different aspects of quantum mechanics, such as interference, probability
distributions, and their entanglement, lead to different behaviours in quantum walks. Proper
utilization of the non-classical characteristics of this type of walk provides numerous advan-
tages in fields such as encryption, algorithms, and quantum simulation. Several different
models of quantum walks have been introduced and studied so far, with two main types
being discrete quantum walks and continuous quantum walks. It is interesting to note that
a similar idea can be found in Feynman’s work as well [71]. Connections between these two
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types have been discovered, and it has recently been shown that both discrete and continuous
quantum walks can serve as a basis for universal computations. Continuous quantum walks
were introduced by Farhi and Gutman [68], while discrete quantum walks were introduced
by Watrous [153]. A specific type of discrete quantum walk known as the Hadamard walk
was introduced by Ambainis et al. [9]. A review article by Kempe elaborates on these two
types, along with some algorithmic applications [99]. A continuous-time quantum walk on a
graph Γ is defined using the Schr’́odinger equation with the real symmetric adjacency matrix
AΓ as the Hamiltonian. If |ψ(t)⟩ ∈ C|V| is a time-dependent amplitude vector on the vertices
of Γ, then the evolution of the quantum walk is given by |ψ(t)⟩ = e−itAΓ |ψ(0)⟩. Where ψ(0)⟩
is the initial amplitude vector. We usually assume that ψ(0)⟩ is a unit vector. The amplitude
of the quantum walk on vertex a at time t is given by the amplitude of the quantum walk
on vertex a at time t is given by ψa(t) = ⟨a | ψ(t)⟩, while the probability of vertex a at time t
is pa(t) = |⟨a | ψ(t)⟩|2. where |a⟩, |b⟩ denote the unit vectors corresponding to the vertices a
and b, respectively. The graph Γ has perfect state transfer if there exist vertices a and b in Γ
and a time t ∈ R+. We say that Γ has universal perfect state transfer if PST occurs between
all distinct pairs of vertices a and b of Γ. We call a graph Γ periodic if for any state |ψ⟩, there
is a time t so that

∣∣〈ψ ∣∣e−itAΓ
∣∣ψ〉∣∣= 1. In correspondence with discrete-time classical random

walks, a discrete-time quantum walk has a quantum coin that is tossed each time step to
determine which direction to move in. The coin is a quantum system of size dmax, the largest
degree of any vertex in the graph. The full quantum system is thus a combination of the
position and the coin, we write the basis states as |x, c⟩ where the first label is the vertex and
the second the coin. A general state of a discrete-time quantum walk at time t can thus be
written |ψ(t)⟩ = ∑x,c αx,c(t)|x, c⟩, where αx,c(t) ∈ C.

The coin is ”tossed” by applying a unitary operator, usually designed to ensure that
only available paths can be chosen, i.e., based on the degree d ≤ dmax at each vertex. A
common choice is the unitary based on the Grover diffusion operator, which has elements
C(Γ)

ij = 2/d − δij. Any implementation of quantum information processing that is not based
on optical qubits will require a mechanism for transporting qubits between gates and proces-
sors. There have been several theoretical proposals for qubit transport which are based on a
chain of spin-half particles that are coupled by Heisenberg or XY interactions. The first pro-
posal [33] was a homogenous chain of particles coupled by homogeneous, nearest-neighbor
interactions. Bose proposed using an unmodulated and unmeasured spin chain as a channel
for short-distance quantum communications. The qubit to be transmitted is placed on one
spin and received later on a distant spin with some fidelity. He showed that the highest fi-
delity is obtained for short spin chains (number of spins ∼ 100).

Matthias Christendel et al. [49] found that chains of any length were able to transport qubits
perfectly but only if the coupling between neighbouring particles was inhomogeneous and
carefully engineered in such a way as to be strong at the middle of the chain and weaker to-
wards the ends of the chain. they showed that not only does perfect state transfer exist under
certain conditions, but instead of examining transition in a linear network, one can choose
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Figure 1. [84] Schematic illustration of the perfect n-qubit PST process Λt, which consists of several
iterations of quantum operations. For the l-th iteration, the state is transferred from Ql to Ql+1 by
turning on the qubit-qubit interaction for a period of time ∆t = π/(2J), where J is 1/2. Therefore, to
transfer prepared states from Q1 to Qn, the iteration has to be performed n − 1 times.

Figure 2. A schematic of an engineered chain with a mirror symmetric profile of the couplings
(different colors correspond to different coupling strengths). Initially, the excitation is localized at the
first site of the chain. At the retrieval time t∗ we find that the excitation has been perfectly transferred
to the other end of the chain.

a nonlinear network such as a hypercube network. A year later, they found in [50] that hy-
percubic networks of any dimension can transport qubits between pairs of antipodal nodes.
They stated that if PST occurs in graphs with mirror symmetry, then a certain proportion of
eigenvalue differences will be significant and used this fact to show that PST does not occur
in the path Pn where n ≥ 4 (where all coupling constants are identical).

To achieve PST on longer distances, they showed that if a graph admits PST then every
Cartesian power of the graph also has PST. Therefore, they check PST for powers of P2 and P3

and use it to show that weighted paths of arbitrary weight may accept PST. In 2006, Alistair
Kay et al. [96] studied the state transfer problem using other coupling models. It is obtained
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Figure 3. [67] Illustration of the binary labeling of the nodes of a d-dimensional hypercube (here
d = 4). Exhibits perfect quantum transport between nodes (0,0, · · · ,0) and (1,1, · · · ,1).

through an iterative algorithm based on the concept of inverse eigenvalue problems (IEP).In
2007 Nitin Saxena et al. [130] took a step towards the classification of network topologies,
which exhibit periodic quantum dynamics. They proposed circulant graphs as potential can-
didates for modelling quantum spin networks enabling the perfect state transfer between
antipodal sites in a network and showed that PST does not occur if the circulant graph is
of odd order. Furthermore, they proved that a quantum system, whose Hamiltonian is the
same as the adjacency matrix of a circulant graph, is periodic if and only if all eigenvalues
of the graph are integers (that is, the graph is integral). Therefore, circulant graphs having
PST must be integral circulant graphs. A year later Christopher Fecer et al. [67] developed
the results obtained [49]. They showed that by introducing additional links into a hyper-
cubic network in a specific way, the destination node of a qubit can be changed. Thus if a
user were able to choose which extra links in the network were ”switchedon”, they would be
able to route a qubit to any desired destination within the network and in a duration that is
independent of the network size.

Jafarizadeh and Soufiani [88] investigated the perfect transfer of quantum states in reg-
ular distance graphs. For these graphs, the vertices can be classified in such a way that the
graph is layered into separate layers. That is, using the algebraic properties of these graphs,
any regular distance network can be mapped onto a Linear chain to generate PST for long
distances. In these graphs, the adjacency matrix is defined based on the shortest path be-
tween two vertices. Ann Bernasconi et al. [30] investigate the perfect state transfer between
two particles in quantum networks modelled by a large class of cubic graphs, and generalize
the results of the articles [49,67]. In 2009, Milan Bašić et al. [24] completed the results of [130].
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They also proved that in the class of unitary Cayley graphs, PST can occur in only two of
them ( K2 and C4 ). Then they present [25] simple conditions to describe integral distance
graphs that allow the occurrence of PST in terms of eigenvalues. They stated that integral
distance graphs with minimum possible vertices that provide PST (except unitary Cayley
graphs) ICG8({1,2}) and ICG8({1,4}) are Moreover, it is conjectured that the bi-class of in-
tegral distance graphs ICGn({1, n

2}) and ICGn({1, n
4}) when n ∈ 8N, have PST. They proved

this conjecture in the same article. In addition, it is shown that no circulant graph allows the
occurrence of PST in a class of graphs whose number of vertices is not square-free. In the
same year Andra Casaccina and other researchers showed in [42] by showing that it is possi-
ble to achieve perfect transfer by shifting (adding) energy to specific vertices. This technique
appears to be a potentially powerful tool to change and in some cases improve, the trans-
fer capabilities of quantum networks. Analytical results are presented for all-to-all networks
and all-to-all networks with a missing link. Moreover, they evaluate the effect of random
fluctuations on the transmission fidelity. Angeles-Canul et al. [10] investigate the complete
transition of the quantum state on weighted graphs. They proved the join of a weighted
two-vertex graph with any regular graph has PST. This generalizes a result of Casaccino et
al. [42]. Where the regular graph is a complete graph or a complete graph with a missing
link. In contrast, the half-join of a weighted two-vertex graph with any weighted regular
graph has no PST. This implies that adding weights in a complete bipartite graph does not
help in achieving PST. A Hamming graph has PST between each pair of its vertices. This is
obtained using a closure property on weighted Cartesian products of perfect state transfer
graphs. Moreover, on the hypercube, we show that PST occurs between uniform superposi-
tions on pairs of arbitrary subcubes. This generalizes the results of Bernasconi et al. [30]. In
2010, Bašić and Petković [26] present more results on PST in integral circulant graphs. The
non-existence of PST is proved for several classes of well-distance graphs that have a single
divisor d0 (a divisor that is prime to other divisors). The same result for classes of ICG with
features NSFa (that is, for every d ∈ D, n

d is not a perfect square) is obtained. A direct conse-
quence of these results is the description of the ICG graph with two divisors that have PST.
Finally, it is proved that ICG with the number of vertices n = 2p2 do not have PST. In [11]
Canul et al. proposed a new family of graphs in which PST occurs. Their structure is based
on the adjoint operator on graphs, their circulant generalizations, and their Cartesian prod-
uct. The results obtained in this article are based on the results of the articles [25, 26] and
integral circulant graphs and regular graphs that have PST. Specifically, they showed that
ICGn({2, n

2b } ∪ Q) where b ∈ {1,2} and n ∈ 16N and Q is a subset of odd divisors of n, has
PST. In addition, they proved that there exists a family of non-periodic graphs formed by
joining a bi-vertex graph without edges to a class of regular graphs, which have PST. Y. Ge
et al. [74] described new constructions of graphs that show PST in time-continuous quantum
excursions. Their structures are based on double cone types and the product of Cartesian
graphs (such as n-cube Qn). Some of their results are:

1. If Γ is a graph that has PST at time tΓ and tΓSpec(Γ) ⊆ Zπ, and H is also a distance
a Not Square-free
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graph with are odd eigenvalues, then Γ × H has PST. Also, if H is a regular graph that
has PST at time tH and tH|VH|Spec(Γ)⊆ 2Zπ, then the graph Γ[H] has PST. For example
Q2n × H, and Γ[Qn] have PST, whenever H is any circulant with odd eigenvalues and
Γ is any integral graph, for integer n ≥ 2. These complement constructions of perfect
state transfer graphs based on Cartesian products.

2. Double cone K2 + Γ (Γ connected graph), if the weight of the edges of the cone is pro-
portional to the Peron eigenvector Γ, it has PST.

3. for an infinite family G from regular graphs, there is a distance connection. Therefore,
the graph K1 + G + Kn + G + K1 has PST.

In contrast, no perfect state transfer exists if a complete bipartite connection is used (even
in the presence of weights). They also describe a generalization of the path-collapsing ar-
gument, which reduces questions about perfect state transfer to simpler (weighted) multi-
graphs, for graphs with equitable distance partitions. They show that cylindrical K1 + G +

Kn + G + K1 for every G family of regular graphs does not have PST. In [101], Kay reviewed
what had been studied and studied from PST. He showed how one designs the (fixed) inter-
actions of a chain of spins so that a quantum state, initially inserted on one end of the chain,
is perfectly transferred to the opposite end in a fixed time. The perfect state transfer systems
are then used as a constructive tool to design Hamiltonian implementations of other prim-
itive protocols such as entanglement generation and signal amplification in measurements,
before showing that universal quantum computation can be implemented in this way. In
2011, Bašić proved in [27] using the circulant graph that there exists between two distinct
vertices a and b in the spin network PST, whenever τ ∈ R+ exist that |F(τ)a,b| = 1 where
F(t) = exp(iAt) and A is the circulant graph adjacency matrix. Saxena et al. [130] proved
for the vertex a of the graph and the time τ ∈ R+, |F(τ)a,a| = 1 if and only if all eigenval-
ues of the graph are integers. In the integral circulant graph n vertices ICGn(D) with set of
vertices Zn = {0,1, . . . ,n − 1}, vertices a and b are adjacent when gcd(a − b,n) ∈ D which
D =

{
d
∣∣ d | n,1 ≤ d ≤ n

}
. These graphs are symmetric and have many applications in the

theory of chemical graphs. In this paper, they show that ICGn(D) has PST if and only if
D = D̃3 ∪ D2 ∪ 2D2 ∪ 4D2 ∪

{ n
2α

}
, that n ∈ 4N, α ∈ {1,2}, D2 =

{
d ∈ D

∣∣n
d ∈ 8N + 4

}
\
{n

4

}
,

D̃3 =
{

d ∈ D
∣∣n

d ∈ 8N
}

. In this article, the distance between vertices that occurs between them
PST is calculated and also the ICGn(D) graphs that have PST are determined. In the same
year Cheong and Godsil in the article [48] examined PST in cubelike graph X(C) They re-
searched. Let C be an infinite vector set in the vector space Zd

2. The cubelike graph X(C) has
Zd

2 as its vertex set, and two elements of Zd
2 are adjacent if their difference is in C. they con-

sider M is the d × |C| matrix where the elements of C are its columns and its row space of M
the code of X. They used these codes to study PST in X(C). Bernasconi et al. [30] proved that
in the graph X(C) in time π

2 , PST occurs if and only if the elements of the sum be C is not zero.
Cheung and Godsil, it is investigated what results if this sum is zero?. They proved that if
PST occurs in a cubelike graph, it must hold in time τ = π

2D , where D is the greatest common
divisor of the weights of the code words. Furthermore, they show that PST occurs in time π

4
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if and only if D = 2 and the code is self-orthogonal. Kay extended [97] in the article [98]. He
showed that if PST occurs between two vertices in a simple graph, none of these two vertices
can be involved in PST with a third vertex. Viven Kendon and Christino Tamon [103], inves-
tigated the results related to PST in adjoint structures, weighted paths and circulant graphs.
They also discussed discrete-time quantum walks. In the article [130], Petković and Bašić ex-
tended and investigated the results of [26] about the necessary and sufficient conditions for
the existence of PST in circulant graphs. Jiang Zhu et al. [159] investigated the necessary and
sufficient conditions for the existence of period in a graph and the existence of PST between
antipodal vertices in graphs with extreme diameter. In 2012 Bachmann et al. [21] investigated
asymmetric graphs that have PST. In the same year, in the articles [76,77], Godsil investigated
the necessary conditions for the occurrence of PST and its applications in cryptographic sys-
tems. In [76], he studied the results of PST according to algebraic graph theory with the help
of the properties of the function exp(itA) where A is the adjacency matrix of the graph. It
was also shown in [77] that if PST occurs in a graph, then the square of its spectral radius is
either an integer or lies in a quadratic extension of the rationals. As a result, for any integer
k, there are only finitely many graphs with maximum valency k on which PST occurs. He
also showed that if there is a PST from vertex u to vertex v, then the graphs Γ \ u and Γ \ v
are cospectral and any automorphism Γ that fixes u, must fix v (and conversely). Godsil et
al. [79] by solving the problem posed by Bose, they determine the exact number of qubits in
modulated XY-Hamiltonian chains, that permit the transfer with fidelity arbitrarily close to
1, a phenomenon called pretty good state transfer. They proved that in a spin chain, PGST oc-
curs if and only if the number of vertices is 2p − 1 or p − 1 (p is prime) or 2m − 1 be (m ∈ N).
In the article [89], Jafarizadeh et al. studied the engineering problems of Hamiltonians for
the occurrence of PST. In the same year, Vinet and Zhedanov construct XX quantum sys-
tems with nearest-neighbor interactions that enable the occurrence of PST. Sets of orthogonal
polynomials (OPS) are in correspondence with such systems. The key observation is that
for any admissible excitation energy spectrum, the weight function of the associated OPS is
uniquely prescribed. This entails the complete characterization of these PST models with the
mirror symmetry property arising as a corollary. In 2013 fan and Godzil stated in [69] during
research that PST is a rare phenomenon, therefore they investigated PGST and the conditions
of its occurrence. In this article, the condition of existence of PGST in the double stars graph
Sk,l is investigated and it is proved that PST does not occur in this double stars graph. In
2014, Cameron et al. [36] investigated the concept of universal perfect state transfer, where
there is PST between each pair of graph vertices. They proved the following results about
graphs with these properties:

1. Graphs with universal state transfer have distinct eigenvalues and flat eigenbasis (each
eigenvector has entries which are equal in magnitude ).

2. The switching automorphism group of a graph with universal state transfer is abelian
and its order divides the size of the graph. Moreover, if the state transfer is perfect, the
switching automorphism group is cyclic.
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3. There is a family of complex oriented prime-length cycles which has universal PGST.
This provides a concrete example of a family of graphs with this universal property.

4. matrices which has universal PGST.

On the other hand, Kay showed in [98] that no graph with a real-valued adjacency matrix can
have universal perfect state transfer. Finally, they proved a spectral characterization of uni-
versal perfect state transfer for graphs switching equivalent to circulants. In [160], Zhou et al.
investigated the existence of PST in the induced subgraph of a graph. They assumed that Γ is
a graph with adjacency matrix A, for an eigenvalue µ of A with multiplicity k, a set of stars in
Γ is considered a vertex set X in Γ with |X|= k as so that the induced subgraph Γ−X does not
have µ as its eigenvalue. They proved that PST does not occur between any two vertices in X.
In 2015, Coutinho et al. [54] sufficient conditions for the existence of PST on distance regular
graphs. Using this condition, a new example of complete state transitions in simple graphs
is presented. In the same year, Coutinho and Henry Liu in [55], investigated the complete
transition of the Laplacian mode in trees. They stated that they are interested in investigating
graphs that allow quantum state transfer with 1 accuracy. For this reason, enough to consider
the action of the Laplacian matrix of the graph in a vector space of suitable dimension their
main result is that if the underlying graph is a tree with more than two vertices, then perfect
state transfer does not happen. They also explore related questions, such as what happens
in bipartite graphs and graphs with an odd number of spanning trees. Finally, they consider
the model based on the XY-Hamiltonian, whose action is equivalent to the action of the ad-
jacency matrix of the graph. In this case, they conjecture that perfect state transfer does not
happen in trees with more than three vertices. In the same year, Kirkland in [104] presented
an interesting method to check the existence of PST. He stated that suppose Γ is a weighted
graph with adjacency matrix A and state transition matrix U(t) = eitA which (s,r)-entry of
U(t) with symbol |u(t)s,r|2 is shown. Between these two vertices in the graph, PST exists at
a specific time such as t0, if |U(t0)s,r| = 1. A parallel set of results using the Laplacian ma-
trix Γ is also developed, and examples illustrating the results are included. These techniques
rely on the spectral decomposition of adjacency matrix (respectively, Laplacian) and pertur-
bation theory for eigenvalues and eigenvectors of symmetric matrices. In 2016, Eckelsberg
et al. [3], examined the Corona digraph product. They proved that the corona product of
two graphs has no Laplacian perfect state transfer, whenever the first graph has at least two
vertices. This complements a result of Coutinho and Liu in [55] who showed that no tree of
size greater than two has Laplacian perfect state transfer. In contrast, they proved that the
corona product of two graphs exhibits Laplacian pretty good state transfer, under some con-
ditions. This provides the first known examples of families of graphs with Laplacian pretty
good state transfer. Their result extends the work of Fan and Godsil in [69] on double stars to
the Laplacian setting. Moreover, they also show that the corona product of any cocktail party
graph with a single vertex graph has Laplacian pretty good state transfer, even though odd
cocktail party graphs have no perfect state transfer. In the same year, Coutinho and God-
sil [56] studied graphs whose adjacency matrix is a sum of tensor products of 01-matrices,
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focusing on the case where a graph is the tensor product of two other graphs. As a result,
they constructed many new which have PST. In the same year in [116, 117] Pal et al., inves-
tigated PGST and PST differently. They stated in [116] that since there are very few graphs
in which PST occurs, it is useful to find new graphs with the PST property. A good way
to construct new graphs is by forming NEPS (Non-Complete Extended p-sum). A path on
three vertices exhibits perfect state transfer and so they investigated some NEPS of the path
on three vertices. A sufficient condition is found for an NEPS of the path on three vertices to
have perfect state transfer. Using these NEPS, some other graphs are also constructed having
perfect state transfer. In [117], they found that NEPS of the path on three vertices with basis
containing tuples with hamming weights of both parties did not exhibit perfect state transfer.
But these NEPS admit PGST with an additional condition. Further, we investigate PGST on
the Cartesian product of graphs and they found that a graph can have PGST from a vertex u
to two different vertices v and w. In 2017 Connelly et al. [52] proved properties of graphs with
universal perfect state transfer that generalizes the results of Cameron et al. [36]. In this pa-
per, they construct non-circulant families of graphs with universal perfect state transfer. All
prior known constructions were circulants. Moreover, they proved that if a circulant, whose
order is prime, prime squared, or a power of two, has universal perfect state transfer then its
underlying graph must be complete. This is nearly tight since there are universal perfect state
transfer circulants with non-prime-power order where some edges are missing. Coutinho et
al. [57] investigated the study of a continuous-time quantum walk on a path graph. In this
paper, they showed that for any odd prime p and every positive integer t, with 2t p − 1 num-
ber of vertices, PGST between vertices a and n + 1 − a for each a that is a multiple of 2t−1

occurs. This gives the first examples of pretty good state transfer occurring between internal
vertices on a path when it does not occur between the extremal vertices. Johnston et al. [91]
focus on the Laplacian matrix and those graphs for which the Laplacian can be diagonalized
by a Hadamard matrix. They gave a simple eigenvalue characterization for when such a
graph has PST at time π

2 ; this characterization allows one to choose the integer eigenvalues
to build graphs having perfect state transfer. They characterize the graphs that are diagonal-
izable by the standard Hadamard matrix, showing a direct relationship to cubelike graphs.
Also, they give an optimality result, showing that among regular graphs of degree at most 4,
the hypercube is the sparsest Hadamard diagonalizable connected unweighted graph with
PST. In the same year, Pal et al. [115, 118] introduced a sufficient condition for the gcd-graph
so that in time π

2 , the graph has periodicity and PST and using it shows that deduce that
there exists gcd-graph having PST over an abelian group of order divisible by 4. Also, they
found a necessary and sufficient condition for a class of gcd-graphs to be periodic at π. Using
this, they characterize a class of gcd-graphs not exhibiting PST at gcd-graphs that gives PST
in time π

2k for every positive integer k. In addition, in the same year, they investigated the
existence of PGST in Cn and C̄n in [118]. They found that PGST occurs in a cycle on n vertices
if and only if n is a power of two and it occurs between every pair of antipodal vertices. In
addition, they look for PGST in more general circulant graphs. they proved that the union
(edge-disjoint) of an integral circulant graph with a cycle, each has 2k ( k ≥ 3 ) vertices, admits
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PGST. The complement of such a union also admits PGST. This enables them to find some
non-circulant graphs admitting PGST. Among the complement of cycles, they also found a
class of graphs not exhibiting PGST. In 2018 Pal [120] presented a class of circulant graphs
admitting pretty good state transfer. Also, he found some circulant graphs not exhibiting
PGST. This generalizes several pre-existing results on circulant graphs admitting pretty good
state transfer. In 2019 Tan et al. [140] present a characterization of connected simple Cayley
graphs Γ = Cay(G,S), where G is an abelian group and S is a non-empty subset of G. They
showed that many previous results on periodicity and existence of PST of circulant graphs
(where the underlying group G is cyclic) and cubelike graphs G = (F2n,+) can be derived or
generalized to arbitrary abelian case in unified and more simple ways from our characteri-
zation. Also, they gave a positive answer to the question: Are there cubelike graphs having
PST at time t where t is arbitrarily small?. In the same year, Eisenberg et al. [63] constructed
infinite families of graphs in which PGST can be induced by adding a potential to the nodes
of the graph (i.e. adding a number to a diagonal entry of the adjacency matrix). Indeed, they
showed that given any graph with a pair of cospectral nodes, a simple modification of the
graph, along with a suitable potential, yields PGST between the nodes. This generalizes pre-
vious work, concerning graphs with an involution, to asymmetric graphs. In 2020 Bommel
in [34], examined conditions for a pair of strongly cospectral vertices to have PGST in terms
of minimal polynomials and provided cases PGST can be ruled out. He also provided new
examples of simple, unweighted graphs exhibiting pretty good state transfer. Finally, they
consider modifying paths by adding symmetric weighted edges and apply these results to
this case. Cao et al. [37] investigated the existence of PST in the Cayley graph Cay(Dn,S) with
non-normal S and they showed that Cay(Dn,S) cannot PST if n is odd. For even integersn, it
is proved that if Cay(Dn,S) has PST, then S is normal. Gamol Moraby et al. [109] studied the
spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property
of PST: the transmission of quantum states without dissipation. The essential goal is to de-
velop the theoretical framework for understanding the interplay between perfect quantum
state transfer, spectral properties and the geometry of the underlying graph, to design novel
protocols for applications in quantum information science. They presented a new lifting and
glueing construction and used this to prove results concerning an inductive spectral struc-
ture, applicable to a wide variety of fractal-like graphs. They illustrated this construction
with explicit examples for several classes of diamond graphs. In the same year, Godsil et
al. [80], studied PST, using techniques in algebraic graph theory. They are motivated by the
study of state transfer in continuous-time quantum walks, which is understood to be a rare
and interesting phenomenon they consider a perturbation on an edge uv of a graph where
they add a weight γ to the edge and a loop of weight γ to each of u and v. They character-
ize when this perturbation results in strongly cospectral vertices u and v. Applying this to
strongly regular graphs, they gave infinite families of strongly regular graphs where some
perturbation results in perfect state transfer. Further, they showed that for every strongly
regular graph, there is some perturbation which results in PGST. In the same year, Godsil et
al. [81] investigated the existence of PST on directed graphs. They studied the phenomena,
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unique to oriented graphs, of multiple state transfer, where there is a set of vertices such that
perfect state transfer occurs between every pair in that set. They gave a characterization of
multiple state transfer and a new example of a graph where it occurs. Cao et al. [38,39], inves-
tigated the existence of PGST and PST on Cayley graphs over dihedral groups. Ada Chan et
al. [46] initiated the study of pretty good quantum fractional revival in graphs, a generaliza-
tion of pretty good quantum state transfer in graphs. They gave a complete characterization
of pretty good fractional revival in a graph in terms of the eigenvalues and eigenvectors of the
adjacency matrix of a graph. This characterization follows from a lemma due to Kronecker on
Diophantine approximation and is similar to the spectral characterization of PST in graphs.
Using this, they gave complete characterizations of when pretty good fractional revival can
occur in paths and cycles. Li et al. [105], gave a few sufficient conditions for NEPS of com-
plete graphs to be periodic or exhibit PST. Luo et al. [106] consider the existence of PST on
Cayley graphs over semi-dihedral groups which are non-abelian. Using the representations
of semi-dihedral groups, they proved some necessary and sufficient conditions for Cayley
graphs over semi-dihedral groups admitting PST. By those conditions, they presented exam-
ples of PST on Cayley graphs over semi-dihedral groups. In addition, they proposed results
about whether some new Cayley graphs over non-abelian groups admit PST. In 2022, Are-
zoomand et al. [16] established a characterization of Cayley graphs over dicyclic groups T4n,
having PST. In the same year, he [17], gave a characterization of Cayley graphs over groups
with an abelian subgroup of index 2 having PST, which improves the earlier results on Cay-
ley graphs over abelian groups, dihedral groups and dicyclic group and determines Cayley
graphs over generalized dihedral groups and generalized dicyclic groups having PST. Cao
et al. [41], showed that graphs Cay(SD8n,S) have PGST for some suitable subsets S if n is a
power of 2. Moreover, they presented a sufficient and necessary condition for a non-integral
graph Cay(SD8n,S) to admit PGST. Some concrete constructions of Cayley graphs over semi-
dihedral groups having PGST are also presented. Kubota et al. [104] study PST in Grover
walks, which are typical discrete-time quantum walk models. In particular, they focused on
states associated with the vertices of a graph. They call such states vertex-type states. PST
between vertex-type states can be studied via Chebyshev polynomials. They derived a nec-
essary condition on the eigenvalues of a graph for PST between vertex-type states to occur.
In addition, they perfectly determined the complete multipartite graphs whose partite sets
are the same size on which PST occurs between vertex-type states, together with the time.
Zhang et al. [158] investigated the unsigned LPST and LPGST in Q-graph of the graphs. They
showed that if all the signless Laplacian eigenvalues of a regular graph Γ are integers, then
the Q-graph of Γ has no signless Laplacian perfect state transfer. They also gave a sufficient
condition that the Q-graph of a regular graph has signless LPST when Γ has signless LPST
between two specific vertices. In the same year, Pal in [125] investigated the existence of
quantum state transfer between a pair of twin vertices in a graph when the edge between the
vertices is perturbed. He found that the removal of any set of pairwise non-adjacent edges
from a complete graph with several vertices divisible by 4 results LPST at π

2 time between the
end vertices of every edge removed. Further, He showed that all Laplacian integral graphs
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with a pair of twin vertices exhibit LPST when the edge between the vertices is perturbed.
Wang et al. [152] first gave a necessary and sufficient condition for a graph to have LPGST.
As an application of such results, they gave a complete characterization of LPGST in paths.
Miki et al. in [109] studied the existence of PST on a new solvable two-dimensional spin lat-
tice model defined on a regular triangular lattice. In 2023 Aquaviva et al. in [4] proved the
following results:

(1) that oriented graphs, the oriented 3-cycle and the oriented edge are the only graphs
where PST occurs between every pair of vertices.

(2) This settles a conjecture of Cameron et al. [36]. On the other hand, they constructed an
infinite family of oriented graphs with PST between any pair of vertices on a subset of
size four. There are infinite families of Hermitian graphs with one-way PST, where PST
occurs without periodicity. In contrast, PST implies periodicity whenever the adjacency
matrix has algebraic entries (as Godsil shows [78]).

(3) There are infinite families with non-monogamous PGST in rooted graph products. In
particular, they generalized known results on double stars (due to Fan and Godsil [69])
and on paths with loops (due to Kempton, Lippner and Yau [100]). The latter extends
the experimental observation of quantum transport (made by Zimboras et al. [161]) and
showed non-monogamous PGST can occur amongst distant vertices.

Anuradha et al. in [14] demonstrated that PST can be achieved in an optical waveguide
lattice governed by a Hamiltonian with modulated nearest-neighbor couplings. Eda Chan
et al. [47] established the theory for PGST in discrete-time quantum walks. For a class of
walks, they showed that PGST is characterized by the spectrum of certain Hermitian adja-
cency matrix of the graph. More specifically, the vertices involved in PGST must be strongly
cospectral relative to this matrix, and the Arccos of its eigenvalues must satisfy some number
theoretic conditions. Using normalized adjacency matrices, cyclic covers and the theory on
linear relations between geodetic angles, they construct several infinite families of walks that
exhibit this phenomenon. Coutinho et al. [58] proved that the only trees that admit perfect
state transfer according to the adjacency matrix model are P2 and P3. This answers a ques-
tion first asked by Godsil in [47] and proved conjecture by Coutinho and Liu in [55]. Wang
et al. [152], established the necessary and sufficient condition for a bi-Cayley graph having
perfect state transfer over any given finite abelian group. As corollaries, many known and
new results are obtained on Cayley graphs having perfect state transfer over abelian groups,
(generalized) dihedral groups, semi-dihedral groups and generalized quaternion groups. In
particular, they gave an example of a connected non-normal Cayley graph over a dihedral
group having perfect state transfer between two distinct vertices, which was thought impos-
sible.

This paper is organized as follows. In Sections 2 and 3 we review the fundamentals of PST
and PGST. In Section 4, we review the proven results in context of PST and PGST. In Section
5, we peruse the application of quantum computing in different fields. Finally, in Section 6,
the article concludes.

99



Khalilipour et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 87–142

2 Definitions and Preliminaries

In this section, we review standard facts and notation used. Our notation for representa-
tions of finite groups is based on the notations introduced in [87].

2.1 Representation and Character of finite groups

Let G be a finite group, C the field of complex numbers, and V a C-vector space with
dimC V = n < ∞. A C-representation of G on V is a group homomorphism T : G → GL(V)

of G into the group of all Linear mapping of V onto itself. Then we call V a G-module over
C for T and n = dimC V is the degree of T. Now we can consider V as a CG-module. Thus
by choosing a C-basis for V, clearly the C-representation given a matrix C-representation
D : G → GLn(C) of G into the multiplicative group of non-singular n × n matrices over C

(D(g) = (Dij(g))1≤i,j≤n). We call two matrix representations D1 and D2 are equivalent, if the
corresponding CG-module Vi(i = 1,2) are isomorphic. This yields the existence of a non-
singular matrix P such that

P−1D1(g)P = D2(g) for all g ∈ G.

Every representation D : G → GLn(C) given the character χ : G → C, which this function
gives to each g ∈ G, χ(g) = tr(D(g)), where tr(D(g)) is the trace of matrix D(g). Let Mmn(C)

be the set of all m × n matrices over the field C and Mnn(C) = Mn(C). The representation D
is reducible if it is equivalent to a block upper triangular representation, namely to a repre-
sentation of the form

g 7→
(

A(g) B(g)
0 C(g)

)
,

where A(g) ∈ Mn1(C), B(g) ∈ Mn1×n2(C),C(g) ∈ Mn2(C), and where n1,n2 ∈ N are indepen-
dent of g ∈ G. Otherwise, it is called irreducible.

Let V be a finite-dimensional C-vector space. A map

⟨., .⟩ : V × V → C

is called an inner product on V if the following holds for all v,w,v1,v2 ∈ V and c1, c2 ∈ C:

(1) ⟨c1v1 + c2v2,w⟩ = c1⟨v1,w⟩+ c2⟨v2,w⟩;

(2) ⟨w,v⟩ = ⟨v,w⟩;

(3) ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if and only if v = 0

Notice that the norm ||v|| of a vector v in an inner product space is defined by |v| =√
⟨v,v⟩. Furthermore, the standard inner product on Cn is given by

⟨(a1, ..., an), (b1, ...,bn)⟩ =
n

∑
i=1

aibi.
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Recall that if A = (aij) ∈ Mmn(C) is a matrix, then its transpose is the matrix AT = (aji) ∈
Mnm(C). The conjugate of A is A = (aij). The conjugate-transpose or adjoint of A is the ma-
trix A∗ = AT.

A Linear operator U ∈ GL(V) is said to be unitary if ⟨Uv,Uw⟩= ⟨v,w⟩ for every v,w ∈ V.
Moreover, concerning the standard inner product on Cn, the Linear transformation associ-
ated with a matrix A ∈ GLn(C) is unitary if and only if A−1 = A∗, such a matrix is thus called
unitary. The unitary n × n matrices form a subgroup Un(C) of GLn(C). A representation
D : G → GLn(C) is said to be unitary if D(g) ∈ U(n) for all g ∈ G. Every complex representa-
tion D : G → GLn(C) is equivalent to a unitary representation.

2.2 Cayley graph

The Cayley graph was introduced by Arthur Cayley in 1878 to explain the concept of pure
groups described by a set of generators. Let G is group. A symmetric subset of group G is a
subset S ⊆ G, where 1 ̸∈ S and S = S−1. The Cayley graph Γ = Cay(G,S) with respect to S is
a graph whose vertex set is G = V(Γ) and edge set is E(Γ) = {(x,y)

∣∣x,y ∈ G,yx−1 ∈ S}. If S
is a union of conjugacy classes in G, i.e. S is a normal Cayley subset, then we call Γ a quasi-
abelian Cayley graph of G with respect to S. Note that, since S is symmetric, Γ = Cay(G,S) is
a simple graph. The adjacency matrix of Γ is defined by A = A(Γ) = (ax,y)x,y∈G

ax,y =

{
1 if yx−1 ∈ S

0 else.

The circulant matrix is a square matrix in which every row of the matrix is a right cyclic shift
of the row above it. If the first row is (c0, c1, . . . , cn), then we denote it by C(c0, c1, . . . , cn).
Furthermore, the anti-circulant matrix is a square matrix in which every row of the matrix is
a left cyclic shift of the row above it.

2.3 Spectra of Cayley graph

Proposition 2.1. [16] Let Γ = Cay(G,S) be an undirected Cayley graph over a finite group G
with irreducible unitary matrix representations ρ(1), . . . ,ρ(m). Let dl be the degree of ρ(l). For each
l ∈ {1, . . . ,m}, define a dl × dl block matrix Al := ρ(l)(S). Let χAl(λ) and χA(λ) be the characteristic
polynomial of Al and A, the adjacency matrix of Γ, respectively. Then

(1) there exists a basis B such that [A]B = Diag(A1 ⊗ Id1 , . . . , Am ⊗ Idm).

(2) χA(λ) = Πm
l=1χAl(λ)

dl .

(3) Let v(k) be an eigenvector of Ak, 1 ≤ k ≤ m, associated with λ. Then the following vectors are
distinct linearly independent dk eigenvectors of Γ associated with λ:

vj
(k) := ∑

g∈G

[
v(k) · ρ

(k)
j (g)

]
eg, 1 ≤ j ≤ dk
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where · is the usual inner product and ρ
(k)
j (g) is a vector whose coordinates are the coordinates

of jth column of ρ(k)(g).

Corollary 2.2. [16] Keeping the notations of Proposition 2.1 and considering fixed ordering g1 =

1, g2, · · · , gn of all elements of G, we have

(1) Let U = (vj
(k))

T and U.U∗ = [urs]. Then

urs = [v(k).ρ
(k)
j (gr)][v̄(k).ρ̄

(k)
j (gs)];

(2) If ρ(k) is 1-dimensional representation of G, then λ = ρ(k)(S) is an eigenvalue of Ak, v(k) = 1
and v1

(k) = ∑g∈G ρ(k)(g)eg is an eigenvector of Γ associated to the eigenvalue ρ(k)(S). Further-

more, by the above notation urs = ρ(k)(gr)ρ̄(k)(gs) = ρ(k)(grgs
−1).

(3) If for every g ∈ G, we have that ∑s∈S ρ(k)(gsg−1) = ∑s∈S ρ(k)(s), then λk =
χk(S)

dk
= ∑s∈S χ(s)

dk

is an eigenvalues of Γ with multiplicity dk
2 and standard basis e1, e2, · · · edk

are eigenvectors

of Ak associated to λk =
χk(S)

dk
. Furthermore, the eigenvectors v(k)ij =

√
dk
|G| ∑g∈G ρ

(k)
ij (g)eg =√

dk
|G|(ρ

(k)
ij (g1), · · · ,ρ(k)ij (gn)), 1 ≤ i, j ≤ dk, which are associated to λk form an orthonormal

basis for the eigenspa Vλk , where ρ
(k)
ij (g) is the ij-entry of the matrix ρ(k)(g). Also, by the

notation of (1), we have urs = ρij
(k)(gr)ρ̄ij

(k)(gs) = ρ
(k)
ij (grg−1

s ).

The following result enables us to compute explicitly the eigenvalues of any normal Cay-
ley graph using character values of the underlying group. This result was proved by Diaconis
and Shahshahani [61] and Zieschang [157].

Lemma 2.3. [157] Let G = {g1, · · · , gn} be a finite group of order n and ρ(1), · · · ,ρ(t) be a complete
set of unitary representatives of the equivalence classes of irreducible representations of G. Let χi be the
character of ρ(i) and di be the degree of ρ(i). Let S ⊆ G be a conjugation-closed. Then the eigenvalues
of the Cayley graph of Cay(G,S) with respect to S are λ1, · · · ,λt, where

λk =
1
dk

∑
s∈S

χk(s), 1 ≤ k ≤ t,

and that λk has multiplicity d2
k.

2.4 PST on Cayley graphs

For a simple graph Γ with n vertices, Spec(Γ) denotes the set of all eigenvalues of Γ. For any
symmetric matrix A, assume that its eigenvalues are λi’s for 1 ≤ i ≤ n. There is a unitary
matrix P = (v1, · · · ,vn), where each vi is an eigenvector of λi, (1 ≤ i ≤ n). Thus we have the
following spectral decomposition of A

A = λ1E1 + · · ·+ λnEn,
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where Ei = vivi
∗, (1 ≤ i ≤ n) satisfies

EiEj =

{
Ei if i = j,

0 else.

Definition 2.4. Let Γ be a graph. For two distinct vertices u,v ∈ V(Γ), we say that Γ has a perfect
state transfer (PST) from u to v at the time t(> 0) if the (u,v)-entry of H(t), denoted by H(t)u,v, has
absolute value 1. We say that Γ is periodic at u with period t if H(t)u,v has absolute value 1. If Γ is
periodic with period t at every point, then Γ is said to be periodic.

Let Γ be an undirected simple graph whose vertex set is denoted by V(Γ) and A = A(Γ)
be the adjacency matrix of Γ. For a real number t, the transfer matrix of Γ is defined as the
following n × n matrix:

H(t) = HΓ(t) = exp(−itA) =
+∞

∑
s=0

(−itA)s

s!
= (H(t))u,v∈V(Γ),

where i =
√
−1 and n = |V(Γ)| is the number of vertices in Γ. Therefore, we have the decom-

position of the transfer matrix

H(t) = exp(−iλ1t)E1 + · · ·+ exp(−iλnt)En.

We also need notation of the 2-adic exponential valuation of rational numbers which is a
mapping defined by η2 : Q → Z ∪ {∞},
which η2(0) = ∞, and η2(2l a

b ) = l (a,b, l ∈ Z and 2 ̸ |ab).

We assume that ∞ + ∞ = ∞ + l = ∞ and ∞ > l for any l ∈ Z. Then for β, β′ ∈ Q, the
following properties yield for η2:

(1) η2(ββ′) = η2(β) + η2(β′), (2.4)

(2) η2(β + β′) ≥ min(η2(β),η2(β′)) and the equality holds if η2(β) ̸= η2(β′).

2.5 PGST on Cayley graphs

If a graph Γ has n vertices, we also denote its vertices as u, 1 ≤ u ≤ n. For integer u,
1 ≤ u ≤ n, we use eu to denote the unit norm vector whose u-th entry is 1. PGST was first
introduced by Godsil in the article [76]. Suppose that Γ has PGST from u to v, then there is
a sequence {tk} of real numbers such that limk→∞ H(tk)eu = γev, where ||γ|| = 1. In other
words, for every ε > 0 there exists t ∈ R and γ ∈ C with ||γ|| = 1 such that∣∣∣eT

u H(t)ev − γ
∣∣∣ < ε.

Now we introduce the Kronecker approximation theorem on simultaneous approxima-
tion of numbers. This will be used later to find graphs allowing PGST.
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Lemma 2.5 (Kronecker Approximation Theorem). [8] If α1, . . . ,αs are arbitrary real numbers
and if 1, β1, . . . , βs are real, algebraic numbers Linearly independent over Q, then for any ε > 0, there
exist q, p1, . . . , ps ∈ Z such that ∣∣qβ j − pj − αj

∣∣ < ε, 1 ≤ j ≤ s.

Note that there is a strong version of the Kronecker Approximation Theorem as follows:

Lemma 2.6 (Strong version of Kronecker Approximation Theorem). [23] Let x0, . . . , xN and
a0, . . . , aN be fixed real numbers. For every δ > 0 there exists a real t such that

|xst − as| < δ (mod 2π), s = 0,1,2, . . . , N

hold if and only if, for integers l0, . . . , lN, if

l0x0 + l1x1 + · · ·+ lNxN = 0

, then
l0a0 + l1a1 + · · ·+ lNaN ≡ 0 (mod 2π).

Lemma 2.7. [23] Let Γ be a simple connected graph. Then Γ admits PGST between two points u and
v if and only if u and v are cospectral. In this case, let λ1, . . . ,λd be the eigenvalues in their support,
and for j = 1, . . . ,d, σj is defined

σj =

{
1 if Ejeu = Ejev

0 else
.

If there is a sequence of integers ∑d
j=1 ljσj such that ∑d

j=1 ljλj = 0 is odd then ∑d
j=1 lj ̸= 0.

Theorem 2.8. [38] Let the notations be defined as above. Suppose that for j, λ
(2)
j = λ

(1)
j + tj where

tj ∈ Z. Then we have

(1) Γ1 has PGST (PST) from u to v at the time in 2πz if and only if so does Γ2.

(2) Assume that Γ1 has PGST from u to v, then Γ2 has PGST from u to v if, for every sequence of
integers l1, . . . , ln, if ∑n

j=1 ljλ
(2)
j = 0 and ∑n

j=1 ljσja odd, then ∑n
j=1 ljtj = 0.

3 Results

3.1 The results of PST

3.1.1 PST in Cayley graphs on abelian groups

These graphs are highly symmetric and have important applications in chemical graph
theory. We restate some results proved. These results establish necessary and sufficient con-
ditions for PST. In paper [24], the present authors proved that an integral circulant graph with
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a square-free number of vertices does not have PST. Two classes of integral circulant graphs
having PST were also found. They showed that there exists an integral circulant graph with
n vertices having a perfect state transfer if and only if 4|n. Several integral circulant graphs
have been found to have a perfect state transfer for the values of n divisible by 4. Moreover,
they proved the non-existence of PST for several other classes of integral circulant graphs
whose order is divisible by 4. These classes cover the class of graphs where the divisor set
contains exactly two elements. The obtained results partially answer the main question of
which integral circulant graphs have a perfect state transfer. A Cayley graph over a finite
abelian group (G,+) with the connection set S, where 0 /∈ S ⊆ G and {−s : s ∈ S} = S, is
denoted by Cay(G,S). The elements of G are the vertices of the graph, where two vertices
a,b ∈ G are adjacent if and only if a − b ∈ S. If G = Zn then the Cayley graph is called a
circulant graph. In particular, a Cayley graph over Zn with S = {1,n − 1} is called a cycle
which is denoted by Cn. The eigenvalues of Cn are given by

λl = 2cos
(

2lπ
n

)
, 0 ≤ l ≤ n − 1 (3.1.1)

and the associated eigenvectors are vl =
[
1,ωl

n, . . . ,ωl(n−1)
n

]T
, where ωn = exp

(
2πi
n

)
is the

primitive n-th root of unity.

Theorem 3.1. [24] There exists a PST in graph ICGn(D) between vertices 0 and a, if and only if
there are integers p and q such that gcd(p,q) = 1 and j = 0,1, . . . ,n − 2,

p
q
(
λj+1 − λj

)
+

a
n
∈ Z

.

Theorem 3.2. [24] There is no PST in ICGn(D) if n
d is odd for every d ∈ D. For n even, if there

exists a PST in ICGn(D) between vertices 0 and a then a = n
2 .

According to Theorem 3.2, PST may exists in ICGn(D) only between vertices n
d and 0 (i.e.,

between b and n
d + b). Hence we will avoid referring to the input and output vertex and will

just say that there exists a PST in ICGn(D).
For a given prime number p and integer n ∈ N0, denote by Sp(n) the maximal number α

such that pα | n if n ∈ N, and Sp(0) = +∞ for an arbitrary prime number p. The following
result is proven in [24] and is further used as the criterion for the existence of PST.

Lemma 3.3. [24] There exists PST in ICGn(D) if and only if there exists a number m ∈ N0 such
that the following holds for all j = 0,1, . . . ,n − 2,

S2
(
λj+1 − λj

)
= m.

Corollary 3.4. [125] Let ICGn(D) have PST. One of the following two statements must hold:
(1). λj ≡ λj+1 (mod 2) for every 0 ≤ j ≤ n − 1 (i.e., all eigenvalues λj have the same parity).
(2). λj ≡ λj+1 + 1 (mod 2) for every 0 ≤ j ≤ n − 1 (i.e., λj are alternatively odd and even).

105



Khalilipour et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 87–142

We end this section with the following result concerning unitary Cayley graphs.
The unitary Cayley graphs are the special case of integral circulant graphs with D = {1}.

Proposition 3.5. [24] If both n and n
2 are not square-free integers, there is no PST in ICGn({1}).

Theorem 3.6. [25] There is no PST in graph ICGn(D) if n is an even square-free integer.

Theorem 3.7. [125] Let S2(n) = 2 and D contains exactly one even divisor. Then ICGn(D) has no
PST.

Proposition 15. [25] The minimal number of vertices of a non-unitary integral circulant
graph allowing PST is n = 8.

Theorem 3.8. [25] Integral circulant graph ICGn
({

1, n
2

})
where S2(n) ≥ 3 has PST.

Theorem 3.9. [25] The integral circulant graph ICG
({

1, n
4

})
where S2(n) ≥ 3 has PST.

The return of theorems 3.8 and 3.9 proved in the article [125] by Petković and Bašić;

Theorem 3.10. [125] The integral circulant graph ICGn
({

1, n
2

})
has a PST if and only if S2(n)≥ 3.

Theorem 3.11. [125] The integral circulant graph ICGn
({

1, n
4

})
has a PST if and only if S2(n)≥ 3.

ICG8

({
1, 1

2

})
ICG8

({
1, 1

4

})
Corollary 3.12. [125] The integral circulant graph ICGn(D) where D contains an even divisor
which is relatively prime to all other divisors in D, has a PST if and only if S2(n) ≥ 3 and D =

{1, n
2}, D = {1, n

4}.

Theorem 3.13. [125] The integral circulant graph ICGn
({

1,2, n
2

})
has a PST if and only if S2(n)≥

4.

Theorem 3.14. [125] Let n be a positive integer such that S2(n) = 2. Then graph ICGn
({

1,2,4, n
4

})
has a PST.

Theorem 3.15. [125] Let n be a positive integer such that S2(n) = 2. Then graph ICGn
({

1,2,4, n
2

})
has a PST.

For a given integral circulant graph ICGn(D), we define that d0 ∈ D is an isolated divisor
if gcd(d0,d) = 1 for every d ∈ D \ {d0}. We will investigate the existence of PST in the integral
circulant graphs ICGn(D) having an isolated divisor d0.
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Corollary 3.16. [26] All connected graphs ICGn(D), where n
2 is an even square-free integer and

every two divisors from D are relatively prime, have no PST.

Corollary 3.17. [26] Let ICGn(D) be an integral circulant graph such that D ̸= {1, n
2} and D ̸=

{1, n
4} and gcd(d1,d2) = 1 for every d1,d2 ∈ D, d1 ̸= d2. Then ICGn(D) has no PST.

Recall that in [25] it was proved that ICG-graphs whose order n is a square-free integer
do not have PST. In the general case, when n is not square-free, the situation is much more
complicated and complete consideration requires a lot of cases. They will illustrate this fact
in a simple case when n = 2p2, where p is prime. In the following theorem, they show that
these graphs do not have PST either, but the complete proof requires a total of 10 different
cases.

Theorem 3.18. [26] Let p be an arbitrary prime number and n = 2p2. There is no integral circulant
graph ICGn(D) allowing PST for any set of divisors D.

Bašić in [27] provided a complete characterization for ICG that admit PST.

Lemma 3.19. [27] ICGn(D) has PST if and only if one of the following conditions holds:

(1) λ2j ∈ 4N + 2 and λ2j+1 = 0, if n/2 /∈ D,

(2) λ2j ∈ 4N + 1 and λ2j+1 = −1, if n/2 ∈ D,
for 0 ≤ j ≤ n

2 .

Theorem 3.20. [27] Let D be a set of divisors of n such that n
2 , n

4 /∈ D. ThenICGn
(

D ∪
{n

4

})
has

PST if and only if ICGn
(

D ∪
{n

2

})
has PST.

Let ICGn(D) denote an arbitrary integral circulant graph from order n. We define sets
Di ⊆ D for 0 ≤ i ≤ l, where l = S2

(n
d
)
, as follows: Di =

{
d ∈ D

∣∣S2
(n

d
)
= i
}

.

Theorem 3.21. [27] ICGn(D) has PST if and only if n ∈ 4N and D∗
1 = 2D∗

2 and D0 = 4D∗
2 and

either n
4 ∈ D or n

2 ∈ D, where D∗
1 = D1 \

{n
2

}
, D∗

2 = D2 \
{n

4

}
.

By below theorem, the minimum time to find PST in a cubelike graph Γ = Cay(G,S) is
πM where M = gcd(d − αz : z ∈ G), d = |S|, and αz = χz(S).

Theorem 3.22. [140] Let Γ = Cay(G,S) be a connected simple abelian Cayley graph with n = |G| ≥
3. Then for g, h ∈ G and a = g − h ̸= 0, Γ has PST between g and h if and only if the following three
conditions hold:

(1) Γ is an integral graph. Namely, the eigenvalues αx = ∑g∈G χx(g) ∈ Z, for all x ∈ G;

(2) the order of α is two;

(3) η2(d − αx) for all x ∈ G1 are the same number, say, ρ, and η2(M0) ≥ ρ + 1, where M0 =

gcd(d − αx : x ∈ G0) and G1 = {x ∈ G : χa(x) = −1}.
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Corollary 3.23. [140] Let G = Zn, n = 2m, S ⊆ G, let Γ = Cay(G,S) be an integral connected
(circulant) Cayley graph. Then Γ has PST between g and g + m (for each g ∈ G) if and only if there
exists ρ ∈ Z such that

η2(αj − αj+1) = ρ, (0 ≤ j ≤ n − 2)

where αj = χj(S) = ∑g∈S wjg
n .

Tan et al. [140] present a non-existence result on PST in abelian Cayley graphs Γ=Cay(G,S),
they have shown that if Γ has PST between two distinct vertices g and h in G, then the or-
der of a = g − h should be two so that n = |G| is even. For the circulant case, the stronger
necessary condition 4|n has been proved in [125] by heavy computations.

Theorem 3.24. [140] Let Γ = Cay(G,S) be an integral abelian Cayley graph, n = |G| ≡ 2 (mod4)
and n ≥ 6, Then Γ has no PST between any distinct vertices.

Let G be the additive group of Fn
2 . For any subset S of Fn

2 ,0 /∈ S,Γ =Cay(G,S) is an integral
simple graph and the order of any non-zero element in G is two. The character group of G is

Ĝ = F̂n
2 = {χz : z ∈ Fn

2}, where for g = (g1, · · · , gn) ,z = (z1, · · · ,zn) ∈ Fn
2 ,

χz(g) = (−1)z·g, z · g = ∑n
j=1 zjgj ∈ F2

If we view Fn
2 as the additive group of the finite field Fq with q = 2n, then

Ĝ =
(

F̂q,+
)
=
{

λz : z ∈ Fq
}

where for g,z ∈ Fq,λz(g) = (−1)T(zg), and T : Fq → F2 is the trace mapping.

Lemma 3.25. [140] Let Γ =Cay(Fq,S) be a connected graph, where S ⊆F∗
q =Fq \ {0}, q ≡ 2n ≥ 2,

and let a ∈ F∗
q . Then for each c ∈ F∗

q , Γ, has PST between vertices g and g + a at time t if and only if
Γ′ = Cay(Fq,S′) has PST between g′ and g′ + a′ at time t where

S′ = cS = {cz | z ∈ S} g′ = c−1g, a′ = c−1a.

Tan et al. When answering the question: Are there cubelike graphs having PST at time t
where t is arbitrarily small?, firstly, they showed that M should be a power of 2 (Lemma 3.26),
then they provided a lower bound on t (Theorem 3.27) and showed that this lower bound is
tight (Theorems 3.28 and 3.29).

Lemma 3.26. [140] Let G = F2
n, 0 /∈ S ⊆ F2

n and d = |S| ≥ 1. Then, M = gcd(d − αz : z ∈ G) is a
power of 2 where αz = χz(S).

Then in the following theorem they provided a lower bound on t.

Theorem 3.27. [140] Let G = Fn
2 , where n ≥ 2, 0 /∈ S ⊂ G and let Γ = Cay(G,S′) be a connected

graph. If Γ has PST between two distinct elements g and g + a at time t, then the minimum time t is
π
M , where M = 2l, 1 ≤ l ≤

⌊n
2

⌋
where s =

⌊n
2

⌋
if n = 2s + 1 or n = 2s.

And in the end, they proved that this lower bound is tight. For n = 2m (m ≥ 2), f ∈ Bn is
called a bent function if

∣∣W f (y)
∣∣ = 2m for all y ∈ Fn

2 .
Bent functions exist for all m ≥ 1 and many series of bent functions have been constructed

in the past forty years.
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Theorem 3.28. [140] Let n = 2m + 1(m ≥ 2), and f be a bent function in Bn−1 = B2m. Denote
S′ = Supp( f ) =

{
z′ ∈ Fn−1

2 : f (z′) = 1
}

, and assume that 0 /∈ S′. Denote Sε = (ε,S′) (ε = 0,1)
and S = S0 ∪ S1. Then

(1) The cubelike graph Γ = Cay (Fn
2 ,S) is connected.

(2) For a = (1,0),0 ∈ Fn−1
2 , Γ has PST between g and g + a for any g ∈ Fn

2 at time π
2m .

(3) The minimum period of any vertex in Γ is π
2m .

Theorem 3.29. [140] Let n = 2m with m ≥ 2, f (x) be a bent function with n variables, f (0) = 0,
and let S = Supp( f ) = {x ∈ Fn

2 : f (x) = 1}. Then the cubelike graph Γ = Cay (Fn
2 ,S) is connected

and the minimum period of each vertex g ∈ Fn
2 in Γ is π

2m .

As a generalization of Cayley graphs, see [15], semi-Cayley graphs are introduced. Let G
be a finite group, R, L and S be subsets of G such that R and L are inverse-closed subsets not
containing the identity element of G. The semi-Cayley graph over G with respect to R, L and
S, denoted by SC(G,R,L,S) is an undirected graph with vertex set {(g,0), (g,1) | g ∈ G} and
edge set consists of three sets:{

{(x,0), (y,0)} | yx−1 ∈ R
}

(right edges),{
{(x,1), (y,1)} | yx−1 ∈ L

}
(left edges),{

{(x,0), (y,1)} | yx−1 ∈ S
}

(spoke edges).

Clearly SC(G,R,L,S) is a regular graph if and only if |R| = |L|. By the following result,
every Cayley graph over a group having a subgroup of index 2 is a semi-Cayley graph. Note
that the converse is not true, since as an example the Petersen graph is a semi Cayley graph
over the cyclic group Z5 and it is not a Cayley graph. We will use this fact frequently without
referring to it. As a result below, give some relation between PST on Cayley graphs and semi-
Cayley graphs.

Corollary 3.30. [17] Let Γ = SC(G,R,L,S) be a semi-Cayley graph over an abelian group G and Γ
has a PST between two vertices (g,r) and (h, s), with r ̸= s. Then R = L and Γ is a Cayley graph over
a group isomorphic to G ⋊ Z2.

The following results, characterize Cayley graphs over finite groups with abelian groups
of index 2 having PST.

Corollary 3.31. [17] Let Γ = Cay(G,T) be an undirected Cayley graph, where G has an abelian
subgroup H of index 2, G = H ∪ xH, T = T1 ∪ xT2, where T1, T2 ⊂ H (if T2 = ∅ then we put
xT2 = ∅) , Irr(H) = {χ1, . . . ,χn} and X = {i | χi (T2) = 0}. Then eigenvalues of Γ are

λ+
i =

χi (T1) + χi
(
xT1x−1)+√(χi (T1)− χi (xT1x−1))

2
+ 4 |χi (x2T2)|

2
, i = 1, . . . ,n,

and
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λ−
i =

χi (T1) + χi
(
xT1x−1)−√(χi (T1)− χi (xT1x−1))

2
+ 4 |χi (x2T2)|

2
, i = 1, . . . ,n,

furthermore, Γ has a PST between two vertices g1 and g2 at time t if and only if one of the following
holds:

• (1) g1, g2 ∈ H, and

{
χi(a) = exp

(
−i
(
λ+

1 − λ+
i
)

t
)

, ∀i = 1, . . . ,n,

χj(a) = exp
(
−i
(

λ+
1 − λ−

j

)
t
)

, ∀j /∈ X,

where a = g−1
1 g2.

• (2) x−1g1, x−1g2 ∈ H, and

{
χi(a) = exp

(
−i
(
λ−

1 − λ−
i
)

t
)

∀i = 1, . . . ,n
χj(a) = exp

(
−i
(

λ−
1 − λ+

j

)
t
)

∀j /∈ X

where a = g−1
1 g2.

• (3) g1 ∈ H, x−1g2 ∈ H, and for all j = 1, . . . ,n,χj
(
x2T2

)
̸= 0 and

χj(a) =

∣∣χj
(
x2T2

)∣∣
χj (x2T2)

exp
(
−i
(

λ+
1 − λ+

j

)
t
)

, exp
(
−i
(

λ+
j

)
t
)
= −exp

(
−iλ−

j t
)

,

and T1x = xT1, where a = (xg1)
−1 g2.

(4) x−1g1 ∈ H, g2 ∈ H and for all j = 1, . . . ,n,χj
(
x2T2

)
̸= 0 and

χj(a) =

∣∣χj
(
x2T2

)∣∣
χj (x2T2)

exp
(
−i
(

λ+
1 − λ+

j

)
t
)

exp
(
−i
(

λ+
j

)
t
)
= −exp

(
−iλ−

j t
)

and T1x = xT1, where a = (x−1g1)
−1g2.

Arezoomand in the Theorem 3.32 gave a characterization of SC(G,R,L,S) having PST,
where G is abelian and R = L.

Theorem 3.32. [17] Let G be a finite abelian group of order n, Irr(G) = {χ1, . . . ,χn}, where χ1

is the trivial character of G, and Γ = SC(G,R,R,S). Let u = (g,r) and v = (h,r) are vertices of Γ
and a = g−1h. Then Γ has a PST between two distinct vertices u and v if and only if the following
conditions hold:

(1) a has order 2,

(2) Γ is integral, and for each i, χi(R) and |χi(S)| are integers.
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(3) η2(|R|+ |S| −λ+
i ) = η2(|R|+ |S| −λ−

i ) = k is the same integer, say k, for all i that χi(g−1
x gy) =

1 and for all i with χi(g−1
x · gy) = −1, η2(|R|+ |S| − λ−

i ) > k, η2(|R|+ |S| − λ+
i ) > k. Also, Γ

is periodic if and only if Γ is integral. Furthermore, the minimum period of the vertices is 2π
M , where

M = gcd(λ − λ+
i : λ ∈ Spec(Γ) \ {λ+

i }).

Theorem 3.33. [17] Let Γ = SC(G,R,L,S), and u = (g,r), v = (h, s), where r ̸= s, be two distinct
vertices of Γ. Then Γ has a PST between u and v at time t if and only if the following conditions hold:

1. R = L,

2. χj(S) ̸= 0 for eachj,

3. if r = 0, s= 1 then χj(g−1h) =
χj(S)
χj(S)

exp
(
− i(λ+

1 −λ+
j )t
)
, and if r = 1, s= 0 then χj(g−1h) =

|χj(S)|
χj(S)

exp
(
− i(λ+

1 − λ+
j )t
)
, where in both cases exp

(
− i(λ+

1 − λ+
j )t
)
= ±1.

4. |χj(S)|,χj(R) ∈ Z for each j, in particular Γ is integral,

5. η2(|S|) = η2(|χj(S)|) for all j.

Since SC(G,R,L,G) is the join graph of Cay(G,R) and Cay(G,L), the following result
gives a characterization of the join of two Cayley graphs over the same abelian group.

Corollary 3.34. [17] Let Γ = SC(G,R,L,G), where G is an abelian group of order n, and Irr(G) =

{χ1, . . . ,χn}. Then Γ has a PST between vertices u = (g,r) and v = (h, s) at time t if and only if one
of the following holds:

1. g = h,r = s = 0,
(
λ+

1 − χi(R)
)

t ∈ 2πZ for all i and
t
√
(|R| − |L|)2 + 4n2 ∈ πZ.
2. g = h,r = s = 1,

(
λ−

1 − χi(L)
)

t ∈ 2πZ for all i and
t
√
(|R| − |L|)2 + 4n2 ∈ πZ.

3. g ̸= h,r = s = 0,∑n
i=1 exp

(
iλ+

i t
)
= 0 and

t
√
(|R| − |L|)2 + 4n2 ∈ πZ.

4. g ̸= h,r = s = 1,∑n
i=1 exp

(
iλ−

i t
)
= 0 and

t
√
(|R| − |L|)2 + 4n2 ∈ πZ,

where λ+
1 =

|R|+|L|+|
√

(|R|−|L|)2+4n2

2 ,λ−
1 =

|R|+|L|−|
√

(|R|−|L|)2+4n2

2 ,
λ+

i = χi(R) and λ−
i = χi(L), i = 2, . . . ,n are eigenavlues of Γ.

A graph is said to be a bi-Cayley graph (or semi-Cayley graph) over a group G if it ad-
mits G as a semiregular automorphism group with two orbits of equal size. Let R, L and
T be subsets of a group G such that R = R−1, L = L−1 and R ∪ L does not contain the
identity element of G. Define the graph BiCay(G;R,L,T) to have vertex set the union of
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the right part G0 = {g0 | g ∈ G} and the left part G1 = {g1 | g ∈ G}, and edge set the union
of the right edges

{
{h0, g0} | gh−1 ∈ R

}
, the left edges

{
{h1, g1} | gh−1 ∈ L

}
and the spokes{

{h0, g1} | gh−1 ∈ T
}

. For convenience, for g ∈ G, when we say g ∈ Gi with i = 0,1, it means
gi ∈ Gi. Let Γ be a bi-Cayley graph over an abelian group of order n with the adjacency matrix
D. Then D has eigenvalues

λ2k−j =
χk(R) + χk(L) + (−1)j

√
(χk(R)− χk(L))2 + 4 |χk(T)|2

2
,

where k = 1,2, ...,n and j = 0,1.

Theorem 3.35. [149] Let Γ = BiCay(G;R,L,T) be a bi-Cayley graph over an abelian group G of
order n. Then Γ has PST between vertices gp and gq with

(
gp, gq

)
∈ (G0 × G1) ∪ (G1 × G0) at

the time t if and only if the following conditions hold, M = gcd (λ2 − λ2k | 1 ⩽ k ⩽ n) and MT =

gcd (|χk(T)| | 1 ⩽ k ⩽ n)

1. Γ is an integral graph and R = L.

2. For each 1 ⩽ k ⩽ n,

2.1)χk

(
gpg−1

q

)
=


|χk(T)|
χk(T)

, if exp (it (λ2 − λ2k)) = 1

− |χk(T)|
χk(T)

, if exp (it (λ2 − λ2k)) = −1

2.2) χk(T) ̸= 0;
2.3) η2 (|χk(T)|) = η2(|T|).

3. If M > 0, then v2(M) > v2(|T|).

4. t ∈
{

(1+2z)π
gcd(2MT,M)

∣∣∣ z ∈ Z
}

.

Theorem 3.36. [149] Let Γ = BiCay(G;R,L,T) be an integral bi-Cayley graph over an abelian group
G of order n. Write

H = {k | χk(T) = 0,1 ⩽ k ⩽ n} .

Let λ1,λ2, . . . ,λ2n be as in Lemma 3.1. Let

M0 = gcd (λ2k − λ2k−1 | 1 ⩽ k ⩽ n,k /∈ H) ,

and

M1 = gcd (λ2 − λ2k−1 | 1 ⩽ k ⩽ n,k /∈ H) .

Then Γ has PST between vertices gp and gq with
(

gp, gq
)
∈ (G0 × G0) ∪ (G1 × G1) at the time t

if and only if the following conditions hold, where for j ∈ {−1,1},
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Ωj =
{

k | χk

(
gpg−1

q

)
= j,1 ⩽ k ⩽ n

}
X = R, if

(
gp, gq

)
∈ G0 × G0 and X = L if

(
gp, gq

)
∈ G1 × G1;

M∅,X = gcd (|X| − χk(X) | 1 ⩽ k ⩽ n)

and

MX =

{
gcd (λ2 − χk(X) | k ∈ H) , if H ̸= ∅

0, if H = ∅

1. For each 1 ⩽ k ⩽ n, χk
(

gpgq
−1) = ±1.

2. There exists an integer µ such that

2.1)


η2 (λ2 − λ2k−1) = µ, for all k ∈ Ω−1\H;

η2 (λ2 − χk(X)) = µ, for T ̸= ∅ and all k ∈ Ω−1 ∩ H;

η2 (|X| − χk(X)) = µ, for T = ∅ and all k ∈ Ω−1;

2.2)


η2 (λ2k − λ2k−1)⩾ µ + 1, for all k /∈ H;

η2 (λ2 − λ2k−1)⩾ µ + 1, for all k ∈ Ω1\H;

η2 (λ2 − χk(X))⩾ µ + 1, for T ̸= ∅ and all k ∈ Ω1 ∩ H;

η2 (|X| − χk(X))⩾ µ + 1, for T = ∅ and all k ∈ Ω1.

3. If T ̸= ∅, then t ∈


{

(1+2z)π
gcd(M0,M1,MX)

∣∣∣ z ∈ Z
}

, when Ω−1 ̸= ∅{
2πz

gcd(M0,M1,MX)

∣∣∣ z ∈ Z
}

, when Ω−1 = ∅

4. If T = ∅, then

t ∈


{

2πz
M∅,X

∣∣∣ z ∈ Z
}

, when Ω−1 = ∅ or for each k ∈ Ω−1,χk(X) = |X|{
(1+2z)π

M∅,X

∣∣∣ z ∈ Z
}

, otherwise.

An extension of a group N by a group F is a group G̃ that has a normal subgroup G ∼= N
such that G̃/G ∼= F. Let N be a finite abelian group and let G̃ be an extension of N by the
cyclic group Z2. Then G̃ has a normal subgroup G ∼= N such that G̃/G ∼= Z2. We can assume
that G̃ = ⟨bG⟩= {g,bg | g ∈ G} with b2 ∈ G. When b2 = 1, by establishing a relation between
a Cayley graph over G̃ and a bi-Cayley graph over G, the following theorem gives a non-
existence result on PST over G̃. Roughly speaking, a Cayley graph over G̃ can be viewed as
a bi-Cayley graph over G whose right part of the vertex set is G and the left part is bG.
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Theorem 3.37. [149] Let N be an abelian group of order n. Let G̃ be an extension of N by Z2 such
that G̃ has a subgroup G ∼= N and G̃ = G : ⟨b⟩ with b2 = 1. Let Γ = Cay(G̃, S̃) be a Cayley graph
satisfying that

1. 1 /∈ S̃ = S̃−1;

2. for g ∈ G,bg ∈ S̃ if and only if gb ∈ S̃.

If n ≡ 1(mod2), then Γ has no PST between any pair of distinct vertices.

3.1.2 PST in Cayley graphs on non-abelian groups

In the literature, there are relatively few results on perfect state transfer in Cayley graphs
on non-abelian groups. In this section, we restate some results proved .
In [37, 39], necessary and sufficient conditions for a Cayley graph on a dihedral group (that
is, a dihedrant) to admit perfect state transfer was obtained and explicit constructions were
given. As one may expect, these results rely on the irreducible representations of dihedral
groups. As before, in this section, let D2n = ⟨a,b | an = b2 = 1,b−1ab = a−1⟩ be the dihedral
group of order 2n ≥ 4 and S be a subset of D2n \ {1D2n} with S−1 = S. The following result
examines the case when n is odd.

Theorem 3.38. [37] Let n = 2m+ 1 and let S be a non-empty subset of Dn. Let Γ = Cay(Dn,S) be a
connected Cayley graph with connection set S. Then Γ has no PST between two distinct vertices, and
Γ is periodic if and only if it is integral and S2 = ∅ or S2 = ⟨a⟩. The minimum period of the vertices
is 2π

M , where
M = gcd(λ − λ1 : λ ∈ Spec(Γ) \ {λ1})

In the case when n = 2m is even, following [37] let ψ1 denote the trivial representation of
D2n and ψ4 the one-dimensional irreducible representation of D2n defined by

ψ4

(
ai
)
= (−1)i,ψ4

(
bai
)
= (−1)i+1,0 ≤ i ≤ n − 1.

If S is closed under conjugation, then Cay (D2n,S) has four (not necessarily distinct) eigen-
values λ1 = |S|,λ2,λ3,λ4 which correspond to ψ1 and ψ4, respectively, and some eigenvalues
µj corresponding to the two-dimensional representations ρj,1≤ j ≤ m− 1, where ρj is defined
by

ρj

(
ai
)
=

(
ω

ij
n 0

0 ω
−ij
n

)
, ρj

(
bai
)
=

(
0 ω

−ij
n

ω
ij
n 0

)
, 0 ≤ i ≤ n − 1.

Identify the elements of D2n with integers 0,1, . . . ,2n − 1 in the follow way: for 0 ≤ u ≤
n − 1, au corresponds to u, and for n ≤ u ≤ 2n − 1, bau corresponds to u. Recall from (2.4) the
2-adic valuation η2 : Q → Z∪ {∞} of rational numbers. With these notations we now present
the result from [37] for even n which covers [39], in the special case when S is closed under
conjugation.
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Theorem 3.39. [37] Let n = 2m and let S be a non-empty subset of Dn. Let Γ = Cay(Dn,S) be a
connected Cayley graph with the connection set S. Then Γ cannot have PST between two distinct ver-
tices if S is not conjugation-closed. Conversely, if S is conjugation-closed, then Γ has four eigenvalues
(not necessarily distinct) which correspond to the one-dimensional representations ψ1 to ψ4, respec-
tively. One eigenvalue is λ1 = |S| and the other three eigenvalues are denoted by λ2,λ3,λ4, and some
multiple eigenvalues corresponding to the two-dimensional representations ρh, which are denoted by
(≤ h ≤ m − 1). Γ is periodic if and only if it is integral. The minimum period of the vertices is 2π

M ,
where M = gcd(λ − λ1,λ ∈ Spec(Γ) \ {λ1}) Meanwhile,

1. when m is even, Γ has PST between two distinct vertices u and v if and only if

(a) all eigenvalues of Γ are integers, namely, Γ is integral,

(b) v = u + m,

(c) there is a constant α such that η2 (µ2h′ − λ1) = α, for every 1 ≤ h′ ≤ m
2 and for each

eigenvalueλ ̸= µ2h′−1, we have that η2(λ − λ1) > α.

2. when m is odd, Γ has PST between two distinct vertices u and v if and only if the following
conditions hold:

(a) all the eigenvalues of Γ are integers,

(b) v = u + m,

(c) η2(λ3 − λ1), η2(λ4 − λ1) and η2(µ2h−1 − λ1) are the same for all 1 ≤ h′ ≤ m−1
2 , say, β,

and η2(µ2h′ − λ1) and η2(λ2 − λ1) are bigger than β for all 1 ≤ h′ ≤ m−1
2 .

Furthermore, when the conditions hold, the minimum time at which Γ has PST between u and
v is π

M , where M = gcd(λ − λ1,λ ∈ Spec(Γ) \ {λ1}).

Wang et al. [149] gave an example of a connected non-normal Cayley graph over a dihe-
dral group having PST between two distinct vertices by applying the relationship between
Cayley graphs and bi-Cayley graphs, which produces a counterexample of [37].

Example 3.40. Let m be a positive integer and G̃ = D8m = ⟨a,b | a8m = b2 = 1, ab = ba−1⟩ be a
dihedral group of order 16m. Let S̃ = {a2j−1 | 1 ⩽ j ⩽ 4m} ∪

{
ba2m,ba6m} and Γ = Cay(D8m, S̃).

Then for any 1 ⩽ i ⩽ 8m and j ∈ {0,1}, Γ has PST between vertices bjai and bjai+4m at any time
t ∈
{

(1+2z)π
2

∣∣∣ z ∈ Z
}

. Moreover, Γ is periodic at any time t ∈ {zπ | z ∈ Z}.

Several families of dihedrants which admit perfect state transfer or are periodic were
constructed in [39].

Theorem 3.41. [39] Let n = 2m and S be a non-empty subset of Dn satisfying gSg−1 = S for all
g ∈ Dn. Let Γ = Cay(Dn,S) be a connected Cayley graph with connection set S. Then Γ has four
(not necessarily distinct) eigenvalues which correspond to the one-dimensional representations ψ1 to
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ψ4, respectively, with one is λ1 = |S| and the three other eigenvalues which are denoted by λ2,λ3,λ4,
and some multiple eigenvalues corresponding to the two-dimensional representations ρh, which are
denoted by µh (1 ≤ h ≤ m − 1). Moreover, Γ is periodic if and only if it is integral. The minimum
period of the vertices is 2π

M , where M = gcd (λ − λ1,λ ∈ Spec(Γ) \ {λ1}). Meanwhile,

1. (i) when m is even, Γ has PST between two distinct vertices u and v if and only if

(a) all eigenvalues of Γ are integers, namely, Γ is integral,

(b) v = u + m,

(c) there is a constant α such that η2 (µ2h′−1 − λ1) = α, for every 1 ≤ h′ ≤ m
2 and for each

eigenvalueλ ̸= µ2h′−1 (1 ≤ h′ ≤ m
2 ), it holds that η2(λ − λ1) > α;

2. (ii) when m is odd, Γ has PST between two distinct vertices u and v if and only if the following
conditions hold:

(a) all the eigenvalues of Γ are integers,

(b) v = u + m,

(c) η2(λ3 − λ1), η2(λ4 − λ1) and η2(µ2h′−1 − λ1) are the same for all 1 ≤ h′ ≤ m−1
2 , say, β,

and η2(λ2 − λ1), η2(µ2h′ − λ1) are bigger than β for all 1 ≤ h′ ≤ m−1
2 .

Furthermore, when the conditions hold, the minimum time at which Γ has PST between u and v is π
M ,

here M = gcd(λ − λ1,λ ∈ Spec(Γ) \ {λ1}).

Theorem 3.42. [39] Let n = 2m + 1 and S be a non-empty subset of Dn satisfying gSg−1 = S for
all g ∈ Dn. Let Γ = Cay(Dn,S) be a connected Cayley graph with connection set S. Then Γ cannot
have PST between two distinct vertices, and Γ is periodic if and only if it is integral. The minimum
period of the vertices is 2π

M , where M = gcd (λ − λ1,λ ∈ Spec(T) \ {λ1}).

In the following theorem Luo et al. gave a necessary and sufficient condition for a con-
nected normal Cayley graph on SD8n to admit perfect state transfer.

Theorem 3.43. [108] Suppose that n > 1 is an odd number and S is a subset of SD8n such that the
cardinality of S is d > 0 and gSg−1 = S for all g ∈ D8n. Let Cay(SD8n,S) be a simple connected
Cayley graph with the connection set S. Let Q1 = {2,4, . . . ,2n − 2} and

Q3 = {1,3, . . . ,n − 2} ∪ {2n + 1,2n + 3, . . . ,3n − 2}

be the sets. Then Cay(SD8n,S) has eight (not necessarily distinct) eigenvalues λ1 = d,λ2, . . . ,λ8

which correspond to the representations σ1, . . . ,σ8 of degree one, respectively, and 2n− 2 eigenvalues δj
(j ∈ Q1 ∪ Q3) with multiplicity 4 corresponding to the representations ρj of degree two, respectively.
Furthermore, if k = gcd

(
λ − d,λ ∈ Spec

(
Cay(SD8n,S) \ {λ1}

)
, then

1. the graph Cay(SD8n,S) is periodic with minimum period 2π
k if and only if it is an integral

graph.
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2. the graph Cay(SD8n,S) has PST from a to b at time t if and only if

(a) the graph Cay(SD8n,S) is integral;

(b) a − b = 2n or a − b = −2n with 0 ≤ a,b ≤ 4n − 1 or 4n ≤ a,b ≤ 8n − 1;

(c) For each j ∈ Q3 and z = 5,6,7,8, η2(δj − d) = η2(λz − d) = r and η2(λ − d) > r for
any other eigenvalues λ = δj with j ∈ Q3 and λ ̸= λz with z = 5,6,7,8. In addition, the
minimum time t = π

k .

Theorem 3.44. [108] Assume that n > 0 is an even number and S is a subset of SD8n such that the
cardinality of S is d > 0 and gSg−1 = S for all g ∈ D8n. Let Cay(SD8n,S) be a simple connected
Cayley graph with the connection set S. Let Q1 = {2,4, . . . ,2n − 2} and

Q2 = {1,3, . . . ,n − 1} ∪ {2n + 1,2n + 3, . . . ,3n − 1}

be the sets. Then Cay(SD8n,S) has four (not necessarily distinct) eigenvalues λ1 = d,λ2,λ3,λ4

corresponding to the representations σ1, . . . ,σ4 of degree one, respectively, and 2n − 1 eigenvalues δj
(j ∈ Q1 ∪ Q2) with multiplicity 4 which correspond the representations ρj of degree two, respectively.
Furthermore, if k = gcd

(
λ − d,λ ∈ Spec

(
Cay(SD8n,S)

)
\ {λ1}

)
, then

1. the graphCay(SD8n,S) is periodic with minimum period 2π
k if and only if it is an integral graph.

2. the graph Cay(SD8n,S) has PST from a to b at time t if and only if

(a) the graph Cay(SD8n,S) is integral;

(b) a − b = 2n or a − b = −2n with 0 ≤ a,b ≤ 4n − 1 or 4n ≤ a,b ≤ 8n − 1;

(c) For each j ∈ Q2, η2(δj − d) = r and j ∈ Q2, η2(λ − d) > r for any other eigenvalues
λ ̸= δj with j ∈ Q2.
Additionally, the minimum time t = π

k .

Arezoomand et al. [16] gave a complete characterization of existence of PST for quasia-
belian Cayley graphs over T4n groups. As one may expect, these results rely on the irre-
ducible representations of T4n. T4n = ⟨a,b | a2n = 1, an = b2,b−1ab = a−1⟩, where n ≥ 2 and
ω = e2πi/2n = cos(π/n) + i sin(π/n) be a 2n-th root of unity which is neither 1 nor −1. The
irreducible representations and characters of the dicyclic group T4n are listed in the Tables 1,
2.

Theorem 3.45. [16] Let Γ = Cay(T4n,S) be a quasiabelian Cayley graph with respect to S. Then Γ
is periodic if and only if it is integral. The minimum period of the vertices is 2π

M , where

M = gcd (λ − λ1,λ ∈ Spec(Γ) \ {λ1}) .

Furthermore,

1. when n is even, Γ has PST between two distinct vertices u and v if and only if
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Table 1. Irreducible representation of T4n for n even.

a b

ψ1 (1) (1)
ψ2 (1) (−1)
ψ3 (−1) (1)
ψ4 (−1) (−1)

γr, (1 ≤ r ≤ n − 1)

(
ωr 0
0 ω−r

) (
0 1

ωrn 0

)

Table 2. Irreducible representation of T4n for n odd.

a b

ψ1 (1) (1)
ψ2 (1) (−1)
ψ3 (−1) (i)
ψ4 (−1) (−i)

γr, (1 ≤ r ≤ n − 1)

(
ωr 0
0 ω−r

) (
0 1

ωrn 0

)

(a) all eigenvalues of Γ are integers, namely, Γ is integral,

(b) u = v + n when 0 ≤ u,v ≤ 2n − 1 or −2n ≤ u,v ≤ 4n − 1,

(c) there is a constant λ such that 1 ≤ r′ ≤ n
2 for every η2(µ2r′−1 − λ1) = λ and for each

eigenvalue λ ̸= µ2r′−1, (1 ≤ r′ ≤ n
2 ), it holds that η2(λ − λ1) > λ;

2. when n is odd, Γ has PST between two distinct vertices u and v if and only if

(a) all eigenvalues of Γ are integers, namely, Γ is integral,

(b) u = v + n when 0 ≤ u,v ≤ 2n − 1 or −2n ≤ u,v ≤ 4n − 1,

(c) η2(λ3 − λ1), η2(λ4 − λ1) and η2(µ2r′−1 − λ1) are the same for the 1 ≤ r′ ≤ (n−1)
2 , say

β, and η2(λ2 − λ1), η2(µ2r′ − λ1) are bigger than β for all 1 ≤ r′ ≤ (n−1)
2 .

Recently Wang et al. [17, 149] investigated perfect state transfer on semi-Cayley graphs
over abelian groups. Semi-Cayley graphs, also known as bi-Cayley graphs, are a generaliza-
tion of Cayley graphs. A graph is said to be a semi-Cayley graph over a group G if it admits
G as a semiregular subgroup of the full automorphism group with two orbits of equal size.
In the following theorems, they proved some necessary and sufficient conditions for a quasi-
abelian semi-Cayley graph having perfect state transfer. They also gave an example for the
application of theorem 3.47.

Theorem 3.46. [150] Let Γ = SC(G, R, L,S) be a quasi-abelian semi-Cayley graph over a group G of
order n. Suppose that G has m(m ≤ n) non-equivalent irreducible representations. For Y ∈ {R, L,S},
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let λk,Y be an eigenvalue of Cay(G,Y) with multiplicity d2
k where 1 ≤ k ≤ m satisfying ∑m

k=1 d2
k = n.

Write
∆ = {k | λk,S = 0,1 ≤ k ≤ m}

Let λ1,λ2, . . . ,λ2m are

λ2k−j =
λk,R + λk,L + (−1)j

√
(λk,R − λk,L)

2 + 4 |λk,S|2

2

whose multiplicity is d2
k, where k = 1,2, . . . ,m and j = 0,1. Then Γ has PST between vertices gp and

gq at time t if and only if the following hold for every 1 ≤ k ≤ m, where X = R, if
(

gp, gq
)
∈ G0 × G0

and X = L if
(

gp, gq
)
∈ G1 × G1.

1.

χk

(
gpg−1

q

)
=



±dk, if
(

gp, gq
)
∈ (G0 × G0) ∪ (G1 × G1)

dk
|λk,S|
λk,S

, if
(

gp, gq
)
∈ G0 × G1,exp (it (λ2 − λ2k)) = 1

−dk
|λk,S|
λk,S

, if
(

gp, gq
)
∈ G0 × G1,exp (it (λ2 − λ2k)) = −1

dk
|λk,S|
λk,S

, if
(

gp, gq
)
∈ G1 × G0,exp (it (λ2 − λ2k)) = 1

−dk
|λk,S|
λk,S

, if
(

gp, gq
)
∈ G1 × G0,exp (it (λ2 − λ2k)) = −1

2. If
(

gp, gq
)
∈ (G0 × G0) ∪ (G1 × G1), then

t (λ2k − λ2k−1) ∈ {2zπ | z ∈ Z} and

t (λ2 − λ2k−1) ∈
{(

2z − χk(gpg−1
q )−dk

2dk

)
π

∣∣∣∣ z ∈ Z

}
, if S ̸= ∅ and k /∈ ∆;

t (|X| − λk,X) ∈
{(

2z − χk(gpgq
−1)−dk

2dk

)
π

∣∣∣∣ z ∈ Z

}
, if S = ∅;

t (λ2 − λk,X) ∈
{(

2z − χk(gpgq
−1)−dk

2dk

)
π

∣∣∣∣ z ∈ Z

}
, if S ̸= ∅ and k ∈ ∆.

3. If
(

gp, gq
)
∈ (G0 × G1)∪ (G1 × G0), then R = L,λk,S ̸= 0, t (λ2k − λ2k−1) ∈ {(2z + 1)π | z ∈ Z} and

t (λ2 − λ2k) ∈ {zπ | z ∈ Z}.

Theorem 3.47. [150] Let Γ = SC(G, R, L,S) be a quasi-abelian semi-Cayley graph over a group G of
order n. Suppose that G has m non-equivalent irreducible representations. For Y ∈ {R, L,S}, let λk,Y
be an eigenvalue of Cay(G,Y) with multiplicity d2

k where 1 ≤ k ≤ m satisfying ∑m
k=1 d2

k = n. Let

MS = gcd (|λk,S| | 1 ≤ k ≤ m)

and
M = gcd (λ2 − λ2k | 1 ≤ k ≤ m)

where λ1,λ2, . . . ,λ2m are

λ2k−j =
λk,R + λk,L + (−1)j

√
(λk,R − λk,L)

2 + 4 |λk,S|2

2

whose multiplicity is d2
k, where k = 1,2, . . . ,m and j = 0,1.. Then Γ has PST between vertices gp and

gq with
(

gp, gq
)
∈ (G0 × G1) ∪ (G1 × G0) at time t if and only if the following hold.
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1. Γ is an integral graph and R = L.

2. For each 1 ≤ k ≤ m,

(a) χk

(
gpg−1

q

)
=



dk
|λk,S|
λk,S , if

(
gp, gq

)
∈ G0 × G1,exp (it (λ2 − λ2k)) = 1;

−dk
|λk,S|
λk,S , if

(
gp, gq

)
∈ G0 × G1,exp (tt (λ2 − λ2k)) = −1;

dk
|λk,S|
λk,S , if

(
gp, gq

)
∈ G1 × G0,exp (it (λ2 − λ2k)) = 1;

−dk
|λk,S|
λk,S

, if
(

gp, gq
)
∈ G1 × G0,exp (tt (λ2 − λ2k)) = −1.

(b) λk,S ̸= 0

(c) v2 (|λk,S|) = v2(|S|)

(d) If M > 0, then v2(M) > v2(|S|).

3. t ∈
{

(1+2z)π
gcd(2MS,M)

∣∣∣ z ∈ Z
}

.

Theorem 3.48. [150] Let Γ = SC(G, R, L,S) be an integral quasi-abelian semi-Cayley graph over a
group G of order n. Suppose that G has m non-equivalent irreducible representations. Let

M0 = gcd (λ2k − λ2k−1 | 1 ≤ k ≤ m,k /∈ ∆) ,

M1 = gcd (λ2 − λ2k−1 | 1 ≤ k ≤ m,k /∈ ∆) ,

M∅,X = gcd (|X| − λk,X | 1 ≤ k ≤ m) ,

and

MX =

{
gcd (λ2 − λk,X | k ∈ ∆) , if ∆ ̸= ∅;

0, if ∆ = ∅.

Then Γ has PST between vertices gp and gq with
(

gp, gq
)
∈ (G0 × G0) ∪ (G1 × G1) at time t if

and only if the following hold.

1. For each 1 ≤ k ≤ m,χk

(
gpg−1

q

)
= ±dk.

2. There exists an integer µ such that

(a)


v2 (λ2 − λ2k−1) = µ for S ̸= ∅ and every k ∈ Ω−\∆;
v2 (λ2 − λk,X) = µ for S ̸= ∅ and every k ∈ Ω− ∩ ∆;
v2 (|X| − λk,X) = µ for S = ∅ and every k ∈ Ω−;

(b)


v2 (λ2k − λ2k−1) ≥ µ + 1 for S ̸= ∅ and every k /∈ ∆;

v2 (λ2 − λ2k−1) ≥ µ + 1 for S ̸= ∅ and every k ∈ Ω+\∆;

v2 (λ2 − λk,X) ≥ µ + 1 for S ̸= ∅ and every k ∈ Ω+ ∩ ∆;

v2 (|X| − λk,X) ≥ µ + 1 for S = ∅ and every k ∈ Ω+.
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3. If S ̸= ∅, then

t ∈


{

(1+2z)π
gcd(M0,M1,MX)

∣∣∣ z ∈ Z
}

, when Ω− ̸= ∅;{
2πz

gcd(M0,M1,MX)

∣∣∣ z ∈ Z
}

, when Ω− = ∅.

4. If S = ∅, then

t ∈


{

2πz
M∅,X

∣∣∣ z ∈ Z
}

, when Ω− = ∅ or for each k ∈ Ω−,λk,X = |X|;{
(1+2z)π

M∅,X

∣∣∣ z ∈ Z
}

, otherwise.

Example 3.49. [150] Let G = D12 =
〈

a,b | a6 = b2 = 1,bab = a−1〉 , R = ⟨a⟩b, L =
{

b, a2b, a4b
}

and S =
{

a, a5}. Let Γ = SC(G, R, L,S). Then Γ is an integral quasiabelian semi-Cayley graph and
has no PST between two distinct vertices. However, Γ is periodic at time t ∈ {2zπ | z ∈ Z\{0}}.

Since R ̸= L, by Theorem 3.47, Γ cannot have PST between any pair of vertices in (G0 × G1) ∪
(G1 × G0).

In the following theorem they focused on the existence of perfect state transfer on quasi-
abelian Cayley graphs. Examples are provided in to illustrate our results. For instance, Ex-
ample 3.51 gives a necessary and sufficient condition for a quasi-abelian Cayley graph over
a dihedral group having perfect state transfer.

Theorem 3.50. [150] Let Cay(G, R) be a quasi-abelian Cayley graph over a group G of order n.
Suppose that G has m non-equivalent irreducible representations. For 1 ≤ k ≤ m, let λk be an eigen-
value of Cay(G, R) with multiplicity d2

k satisfying ∑m
k=1 d2

k = n. For g, h ∈ G, Cay(G, R) has PST
between g and h at time t if and only if the following hold, where M = gcd (|R| − λk | 1 ≤ k ≤ m)

and Ω− =
{

k | χk
(

gh−1) = −dk,1 ≤ k ≤ m}

1. Cay(G, R) is an integral graph.

2. For every 1 ≤ k ≤ m, χk
(

gh−1) = ±dk.

3. There exists an integer µ such that v2 (|R| − λk) = µ for k ∈ {1 ≤ j ≤ m | χj
(

gh−1) = −dj
}

and v2 (|R| − λk) ≥ µ + 1 for k ∈
{

1 ≤ j ≤ m | χj
(

gh−1) = dj
}

4. t ∈


{ 2zπ

M

∣∣ z ∈ Z
}

, g = hor for each k ∈ Ω−,λk = |R|{
(1+2z)π

M

∣∣∣ z ∈ Z
}

, otherwise.

Moreover, the order of gh−1 is two and Cay(G, R) is periodic if and only if it is an integral
graph and the period is t ∈

{ 2zπ
M

∣∣ z ∈ Z\{0}
}

.

Example 3.51. [150] Let n ≥ 3 and G = D2n =
〈

a,b | an = b2 = 1,b−1ab = a−1〉. Let S be a subset
of G satisfying gSg−1 = S for all g ∈ G. Suppose that G has m non-equivalent irreducible represen-
tations. Let Γ = Cay(G,S) be a connected Cayley graph. Let {λk | 1 ≤ k ≤ m} be the spectrum of Γ
where λk =

χk(S)
dk

is λk =
1
dk

∑g∈S χk(g) := χk(S)
dk

, and has multiplicity d2
k. Then for distinct vertices

g and h of G,Cay(G,S) has PST between g and h at time t if and only if the following hold;
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1. Cay(G,S) is an integral graph.

2. n is even and gh−1 = a
n
2 .

3. There exists an integer µ such that

(a) if n≡ 2(mod 4), then for 1≤ i ≤ 1
2

(n
2 − 1

)
,v2 (|S| − λ3) = v2 (|S| − λ4) = v2 (|S| − λ2i+3) =

µ and v2 (|S| − λ2) and v2 (|S| − λ2i+4) are greater than µ;

(b) if n ≡ 0(mod4), then v2 (|S| − λ2i+3) = µ and v2 (|S| − λ2i+4) ≥ µ + 1 for 1 ≤ i ≤ n
4 ,

and v2
(
|S| − λj

)
≥ µ + 1 for 2 ≤ j ≤ 4.

4. t ∈
{

(1+2z)π
M

∣∣∣ z ∈ Z
}

, where M = gcd (|S| − λk | 1 ≤ k ≤ m).

Furthermore, if Cay(G,S) is an integral graph, then it is periodic at time t ∈
{ 2zπ

M

∣∣ z ∈ Z\{0}}

Khalilipour et al. [102] gave a complete characterization of existence of PST for quasiabelian
Cayley graphs over U6n groups. Let U6n = ⟨a,b | a2n = b3 = 1, | a2n = b3 = 1, a−1ba = b−1⟩. be
the group of order 6n and S be a subset of U6n \ {1U6n} with S−1 = S.

Table 3. Irreducible representation of U6n, ω = e2πi/3, ε = e2πi/2n

a2j a2j+1 a2jb
φk(0 ≤ k ≤ 2n − 1) ε2kj εk(2j+1) ε2kj

γl(0 ≤ l ≤ n − 1)
(

ε2l j 0
0 ε2l j

) (
0 εl(2j+1)

εl(2j+1) 0

) (
ε2l jω 0

0 ε2l jω2

)

Theorem 3.52. [102] Let Γ = Cay(U6n,S) be a quasiabelian Cayley graph with respect to S. Then Γ
has 2n (not necessarily distinct) eigenvalues which correspond to the one-dimensional representations
φk (0 ≤ k ≤ 2n − 1), respectively, with one is λ0 = |S| and the 2n − 1 other eigenvalues which are
denoted by λk, and some multiple eigenvalues corresponding to the two-dimensional representations
γl (0 ≤ l ≤ n − 1), which are denoted by µl. Moreover, Γ is periodic if and only if it is integral. The
minimum period of the vertices is 2π/M, where M = gcd(λ − λ0,λ ∈ Spec(Γ) \ {λ0}). Further-
more, For each n, Γ has PST between two vertices u and v if and only if

1. all eigenvalues of Γ are integers, namely, Γ is integral,

2. v = u + n when 0 ≤ u,v ≤ 3n − 1 or 3n ≤ u,v ≤ 6n − 1,

3. η2(λ1 − λ0), η2(λ2k′+1 − λ0) and η2(µ2l′−1 − λ0) are the same for all 1 ≤ k′ ≤ n − 1 and
1 ≤ l′ ≤ n/2, say, α, and η2(µ2l′ − λ0) and η2(λ2k′ − λ0) are bigger than α for all 1 ≤ l′ ≤ n/2
and 1 ≤ k′ ≤ n − 1.

In [6], necessary and sufficient conditions for a Cayley graph on V8n to admit perfect state
transfer was obtained and explicit constructions were given. Let V8n = ⟨a,b | a2n = b4 = 1,ba =
a−1b−1,b−1a = a−1b⟩ be the group of order 8n and S be a subset of V8n \ {1V8n} with S−1 = S.
The following results handle two cases when n is odd or even.
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Table 4. Irreducible representations of V8n, for n odd, ω = e2πi/2n

a b

χ1 1 1
χ2 1 -1
χ3 -1 1
χ4 -1 -1

ψj(0 ≤ j ≤ n − 1)

(
ω2j 0
0 −ω−2j

) (
0 1
−1 0

)
ϕk(1 ≤ k ≤ n − 1)

(
ωk 0
0 ω−k

) (
0 1
1 0

)

Theorem 3.53. [6] Let S be a non-empty subset of V8n such that 1 /∈ S and Sg = gS for all g ∈ V8n.
Let Γ = Cay (V8n,S) be a connected Cayley graph with connection set S, where n is odd. Then Γ has
four distinct eigenvalues which corresponds to the one-dimensional representations χ1,χ2,χ3 and χ4,
respectively, with one is α1 = |S| and the other three eigenvalues are denoted by α2, α3 and α4, and
some multiple eigenvalues corresponding to the two-dimensional representations ψj and ϕk, denoted
by β j and γk, respectively, for 0 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − 1.

1. If u ∈ V1,v ∈ V2 or u ∈ V1,v ∈ V4 or u ∈ V2,v ∈ V1 or u ∈ V2,v ∈ V3 or u ∈ V3,v ∈ V2 or
u ∈ V3,v ∈ V4 or u ∈ V4,v ∈ V1 or u ∈ V4,v ∈ V3, then Γ cannot have PST between two distinct
vertices u and v.

2. If u,v ∈ V1 or u,v ∈ V2 or u,v ∈ V3 or u,v ∈ V4, then Γ cannot have PST between two distinct
vertices u and v.

3. If u ∈ V1,v ∈ V3 or u ∈ V2,v ∈ V4 or u ∈ V3,v ∈ V1 or u ∈ V4,v ∈ V2, then Γ has PST between
the vertices u and v if and only if the following three conditions hold.

(a) All the eigenvalues of Γ are integers, namely, Γ is integral,

(b) u = v + 4n and

(c) η2
(
α1 − β j

)
is a constant, say µ, and η2 (α1 − α2) ,η2 (α1 − α3) ,

η2 (α1 − α4) and η2 (α1 − γk) are all bigger than µ, for 0 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − 1.

Furthermore, when the conditions (a), (b) and (c) hold, the minimum time at which Γ has PST
between u and v is π

M , where M = gcd (α − α1,α ∈ Spec(Γ)\{α1}).

Theorem 3.54. [6] Let S be a non-empty subset of V8n such that 1 /∈ S and Sg = gS for all g ∈ V8n.
Let Γ = Cay (V8n,S) be a connected Cayley graph with connection set S, where n is even. Then Γ
has eight distinct eigenvalues which corresponds to the one-dimensional representations χ1, . . . ,χ8,
respectively, with one is α1 = |S| and the other three eigenvalues are denoted by α2,α3,α4,α5,α6,α7

and α8, and some multiple eigenvalues corresponding to the two-dimensional representations ψj and
ϕk, denoted by β j and γk, respectively, for 1 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − 1.
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Table 5. Irreducible representations of V8n, for n even, ω = e2πi/2n

a b

χ1 1 1
χ2 i −i
χ3 -1 -1
χ4 −i i
χ5 1 -1
χ6 i i
χ7 -1 1
χ8 −i −i

ψj(1 ≤ j ≤ n − 1)

(
ω j 0
0 ω−j

) (
0 i
−i 0

)
ϕk(1 ≤ k ≤ n − 1)

(
iωk 0

0 iω−k

) (
0 1
−1 0

)

1. If u ∈ V1,v ∈ V2 or u ∈ V1,v ∈ V4 or u ∈ V2,v ∈ V1 or u ∈ V2,v ∈ V3 or u ∈
V3,v ∈ V2 or u ∈ V3,v ∈ V4 or u ∈ V4,v ∈ V1 or u ∈ V4,v ∈ V3, then Γ cannot have PST
between distinct vertices u and v.

2. If u,v ∈ V1 or u,v ∈ V2 or u,v ∈ V3 or u,v ∈ V4, then Γ has PST between distinct vertices u
and v if and only if the following three conditions hold.

(a) All the eigenvalues of Γ are integers.

(b) u = v + n.

(c) If n ≡ 0(mod4), then η2

(
α1 − β2j′−1

)
and η2 (α1 − γ2k′−1) are the same, say µ1, and

η2 (α1 − α2) ,η2 (α1 − α3) ,η2 (α1 − α4) ,
η2 (α1 − α5) ,η2 (α1 − α6) ,η2 (α1 − α7) ,η2 (α1 − α8) ,η2

(
α1 − β2j′

)
and η2 (α1 − γ2k′)

are all strictly greater than µ1, for 1 ≤ j′ ≤ n−1
2 and 1 ≤ k′ ≤ n−1

2 .

(d) If n ≡ 2(mod4), then η2 (α1 − α2) ,η2 (α1 − α4) ,η2 (α1 − α6) ,
η2 (α1 − α8) ,η2

(
α1 − β2j′−1

)
and η2 (α1 − γ2k′) are the same, say µ2, and η2 (α1 − α3),

η2 (α1 − α5) ,η2 (α1 − α7) ,η2

(
α1 − β2j′

)
and η2 (α1 − γ2k′−1) are all strictly greater than

µ2, for 1 ≤ j′ ≤ n−1
2 and 1 ≤ k′ ≤ n−1

2 .

3. If u ∈ V1,v ∈ V3 or u ∈ V2,v ∈ V4 or u ∈ V3,v ∈ V1 or u ∈ V4,v ∈ V2, then Γ has PST between
distinct vertices u and v if and only if the following three conditions hold.

(a) All the eigenvalues of Γ are integers.

(b) u = v + 4n.
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(c) η2 (α1 − α2) ,η2 (α1 − α4) ,η2 (α1 − α6) ,η2 (α1 − α8) and η2 (α1 − γk) are the same, say
µ3, and η2 (α1 − α3) ,η2 (α1 − α5) ,η2 (α1 − α7) and η2

(
α1 − β j

)
are all strictly greater

than µ3, for 1 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − 1

Furthermore, the minimum time at which Γ has PST between u and v is π
M , where

M = gcd(α − α1,α ∈ Spec(Γ)\{α1})

3.2 The results of PGST

The notion of PGST was introduced by Godsil [76] and Vinet and Zhedanov [146] independently
in 2012 as a relaxation of perfect state transfer, where in the latter paper the term almost state trans f er
was used for PGST. In this section, we restrict our attention to PGST in Cayley graphs. Recall that
a regular graph is periodic if and only if it is integral. As observed in [118], a periodic graph exhibits
PGST if and only if it admits perfect state transfer. Since all integral circulant graphs admitting
perfect state transfer have been characterized, it follows that integral circulant graphs exhibiting PGST
are all known and are given in Theorem 3.21. So the existence of PGST in circulant graphs is reduced
to that in non-integral circulant graphs. Unfortunately, as far as we are aware, there is no known
necessary and sufficient condition for a non-integral circulant graph to admit PGST.

3.2.1 PGST in Cayley graphs on abelian groups

Pal et al. [118] that in a circulant graph Cay(Zn,S), PGST occurs exclusively from u to u + n
2

for u ∈ Zn. This condition necessitates n
2 ∈ S and n being even. Additionally, they demonstrated

that the cycle Cn of length n possesses PGST if and only if its complement does, which happens if
and only if n = 2k for some k ≥ 2. Among the complement of cycles, we also find a class of graphs
not exhibiting pretty good state transfer. A circulant graph G being vertex-transitive, for any pair of
vertices u,v in G there exists an automorphism mapping u to v. Let A be the adjacency matrix of G.
Note that the transition matrix H(t) of G can be realized as a polynomial in A. If P is the matrix of
an automorphism of G then P commutes with A as well as H(t). If G exhibits PGST between two
vertices u and v then

lim
k→∞

H (tk) (Peu) = γ (Pev)

by Lemma 3.55, it is enough to find PGST in a circulant graph between the pair of vertices 0 and
n
2 . Let the spectral decomposition of the adjacency matrix of Cn be A = ∑n−1

l=0 λlEl, where El =
1
n vlv∗l

and λl,vl is as mentioned in 3.1.1. Therefore, the transition matrix of Cn is evaluated as

H(t) = exp(−itA) =
n−1

∑
l=0

exp (−iλlt)El

Note that
(
0, n

2

)
-th entry of El is 1

n ω
− nl

2
n . Hence

(
0, n

2

)
-th entry of H(t) is given by

H(t)0, n
2
=

1
n

n−1

∑
l=0

exp (−iλlt) · ω
− nl

2
n =

1
n

n−1

∑
l=0

exp [−i (λlt + lπ)]
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Lemma 3.55. [118] If PGST in a Cn or the complement of Cn then n is even and it occurs only
between the pair of vertices u and u + n

2 where u,u + n
2 ∈ Zn.

If d is a proper divisor of n, we define Sn(d) = {x ∈Zn : gcd(x,n) = d}. For any set D containing
proper divisors of n, we define Sn(D) =

⋃
d∈D

Sn(d). The set Sn(D) is called a greatest common divisor

(gcd) set of Zn. A gcd graph over Zn is a circulant graph whose connection set is a gcd set.
We denote a gcd graph with the connection set Sn(D) by G(n, D).

Theorem 3.56. [118] Let n = 2k with k ≥ 3. If D is a set of proper divisors of n not containing 1,
then the circulant graph Cn ∪ G(n, D) along with its complement admits a pretty good state transfer
concerning the same sequence in 2πZ.

Corollary 3.57. [118] Let a graph Γ1 be periodic at a vertex at time 2π. If Γ2 ∈ Γ, then the Cartesian
product Γ12Γ2 admits pretty good state transfer. If Γ1 is regular, then the complement of Γ12Γ2,
denoted as Γ12Γ2, also exhibits pretty good state transfer.

Theorem 3.58. [118] A cycle Cn admits PGST if and only if n = 2k where k ≥ 2.

A graph Γ is said to be almost periodic if there exists a sequence tk of real numbers and a
complex number γ of unit modulus such that lim

k→∞
H(tk) = γI, where I is the identity matrix

of appropriate order. Since circulant graphs are vertex-transitive, we observe that a circulant
graph is almost periodic if and only if lim

k→∞
H(tk)e0 = γe0. This implies that if a cycle admits

Perron-Frobenius theory, then it is necessarily almost periodic. Hence, by Theorem , all cycles
of size n = 2k, k ≥ 2, are almost periodic.

In the next result, we observe that the complement of all cycles does not possess PGST.
This provides another class of circulant graphs that do not allow PGST.

Corollary 3.59. [118] Let m ∈ N with m ̸= 2 such that n = mp for some odd prime p. Then, the
complement of the cycle Cn does not exhibit Pretty Good State Transfer (PGST).

Pal et al. in the following theorem extend Theorem 3.2.1 to obtain more circulant graphs
(apart from the cycles) on 2k vertices exhibiting PGST.

Theorem 3.60. [119] Let k ∈ N and n = 2k. Also let Cay(Zn,S) be a non-integral circulant graph.
Let d be the least among all the divisors of n so that S∩ Sn(d) is a non-empty proper subset of Sn(d). If
|S∩ Sn(d)| ≡ 2 (mod 4) then Cay(Zn,S) admits PGST with respect to a sequence in 2πZ. Moreover,
if |S ∩ Sn(d)| ≡ 0 (mod 4) then Cay(Zn,S) is almost periodic with respect to a sequence in 2πZ.

Pal et al. illustrate Theorem 3.60 by the following example:

Example 3.61. [119] Let n = 16 and consider Cay(Z16,S) where S = {1,2,3,5,11,13,14,15}.
Here S ∩ S16(1) = {1,3,5,11,13,15} ⊊ S16(1) and S ∩ S16(2) = {2,14} ⊆ S16(2). In this case,
we have d = 1. Notice that |S ∩ S16(1)| ≡ 2 (mod 4). Hence, by the above Theorem, we conclude
that Cay(Z16,S) admits PGST concerning a sequence in 2πZ. Observe that if we consider the
Cay(Z16,S′) with S′ = {1,2,3,13,14,15}, then proceeding as above, we obtain |S′ ∩ S16(1)| ≡ 0
(mod 4). Hence, by the above Theorem, we find that Cay(Z16,S′) is almost periodic concerning a
sequence in 2πZ.
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In Corollary 3.59, Pal et al. observe that if m ∈ N and n = mp, where p is an odd prime,
then the Cayley graph Cay(Zn,{1,n − 1}) does not exhibit PGST. Now, Pal et al. [119] show
that Cay(Zn,S) does not admit PGST if p ∤ s for all s ∈ S. Hence, Corollary 3.59 becomes a
special case of the following Theorem.

Theorem 3.62. [119] Let m ∈ N and n = mp, where p is an odd prime. Then the circulant
graphCay(Zn,S) does not exhibit PGST if p ∤ s for all s ∈ S.

3.2.2 PGST in Cayley graphs on non-abelian graphs

Cao et al. [38] investigated the possibility of Cay(Dn,S) having PGST, where Dn is a di-
hedral group and S is a conjugation-closed subset in Dn. They showed that when n is odd,
there is no PGST in Cay(Dn,S), while it has PGST for some connection set S if n is a power
of 2. Some concrete constructions are provided. They proved that this is the only case (n is a
power of 2) for Cay(Dn,S) to have PGST except for the so-called Power two case.

Theorem 3.63. [38] Let n be an odd number and S be a conjugation-closed subset of Dn. Let
Γ = Cay(Dn,S) be a connected Cayley graph with connection set S. Then Γ cannot have PGST
between two distinct vertices.

Theorem 3.64. [38] Suppose that n = 2m = 2k, k ≥ 3, Dn is a dihedral group of order 2n and S is a
conjugation-closed subset in Dn. Let S = S1 ∪ S2, S1 = S ∩ ⟨a⟩ and S2 = S ∩ b⟨a⟩. Then Cay(Dn,S)
admits PGST with respect to a time sequence in 2πZ under the following two cases:

1. S1 = {a±k1} with the k1 is an odd integer and 1 ≤ k1 ≤ m − 1 and S2 = b⟨a⟩;

2. S2 = b⟨a⟩ and S1 = {a±k1} ∪ (∪r
j=1{a2mj l : gcd(l,2) = 1,1 ≤ l ≤ 2k−mj − 1}), k1 (1 ≤ k1 ≤

m − 1 ) is an odd integer and 1 ≤ m1 < · · · < m2 ≤ k − 1.

Suppose that Dn = ⟨a,b | an = b2 = 1,bab = a−1⟩ is a dihedral group of order 2n and S is
a conjugation-closed subset in Dn. Let S1 = {a±k1 , . . . , a±kr} ⊂ ⟨a⟩. If for every ki, 1 ≤ i ≤ r, it
holds that n = 2v2(n)−v2(ki)ki, then we say that S1 is of the Power-two case.

Wang and Cao in [41] studied PGST on Cayley graphs Γ = Cay(SD8n,S), where SD8n is
a semi-dihedral group of order 8n and S is a conjugation-closed and symmetric subset of
SD8n. When n is a power of 2, a non-integral Γ may have PGST for some connection sets
S. When n is odd, they found that the non-integral Cayley graph Γ cannot exhibit PGST.
Moreover, a sufficient and necessary condition of the graph Γ admitting PGST is proposed.
Some concrete constructions of Cayley graphs over semi-dihedral groups having PGST are
provided as well.

Theorem 3.65. [41] Let SD8n = ⟨a,b|a4n = b2 = 1,bab = a2n−1⟩ be a semi-dihedral group and S =

S1 ∪ S2 a conjugation-closed subset of SD8n. Assume that n = 2k, k ≥ 2. Then graph Cay(SD8n,S)
exhibits PGST with respect to a sequence in 2πz under the following two cases:

1. S2 = b⟨a⟩, S1 = {a±k1 , a±k1(2n−1)} with k1 an odd integer and 1 ≤ j1 ≤ 2n − 1;
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2. S2 = b⟨a⟩ and S1 = {a±k1 , a±k1(2n−1)} ∪ {a2mj la2mj l(2n−1) : 1 ≤ l ≤ 2k+2−mj − 1,gcd(l,2) =
1}, with k1 (1 ≤ k1 ≤ 2n − 1 ) an odd integer and 1 ≤ m1 < · · · < m2 ≤ k + 1.

Theorem 3.66. [41] Assume that n = mp, where m is even and p is an odd prime number. Let
SD8n = ⟨a,b|a4n = b2 = 1,bab = a2n−1⟩ and S = S1 ∪ S2 a conjugation-closed subset of SD8n. Sup-
pose that S1 =

{
a±k1 , a±a1(2n−1), . . . , a±kr , a±kr(2n−1)

}
, S2 = b⟨a⟩. Then the non-integral graph

Cay(SD8n,S) cannot exhibit PGST if S1 is not of the Power-two case.

Theorem 3.67. [41] Assume that n = mp, where m is odd and p is an odd prime number. Let SD8n =

⟨a,b|a4n = b2 = 1,bab = a2n−1⟩ and S = S1 ∪ S2 a conjugation-closed subset of SD8n. Suppose that
S1 = {a±k1 , a±a1(2n−1), . . . , a±kr , a±kr(2n−1)}, S2 = b⟨a⟩. Then the non-integral graph Cay(SD8n,S)
cannot have PGST between two distinct vertices.

Example 3.68. Let n= 12 and SD8n = ⟨a,b | a4n = b2 = 1,bab= a2n−1⟩. Choose S1 = a±3, a±3(2n−1).

The spectrum of Γ=Cay(SD8n,S) is given as follows: {52(1),−44(1),−4(6),4(4),2
√

2
(12)

,−2
√

2
(12)

,0(60)}.
Then Γ has PGST at time t ∈ 2πZ.

4 Application

Potential, Challenges, and the Path Forward in recent years, there has been tremendous
progress in the development of quantum computing hardware, algorithms and services lead-
ing to the expectation that in the near future, quantum computers will be capable of perform-
ing simulations for natural science applications, operations research, and machine learning
at scales mostly inaccessible to classical computers. Whereas the impact of quantum com-
puting has already started to be recognized in fields such as cryptanalysis, natural science
simulations, and optimization among others, very little is known about the full potential of
quantum computing simulations and machine learning in the realm of healthcare and life
science (HCLS).

Applications of quantum field theory to finance, pure mathematics and so on show that
quantum field theory is a discipline that spans many domains of knowledge that go beyond
quantum physics. The utility and facility offered by quantum field theory in the study of
diverse disciplines from the natural to social sciences points to the fact that quantum field
theory should rightly be considered to be a subject of quantum mathematics. Quantum
mathematics is based on state space, operators, Lagrangians, Hamiltonians and Feynman
path integrals and encompasses systems with both finite and infinitely many coupled de-
grees of freedom. The term quantum is retained in referring to quantum mathematics, and
in particular, the term quantum f ield is retained in applications outside quantum physics so
that there is continuity in the terminology being used which in turn facilitates the transfer of
results and structures from quantum physics to other disciplines, and vice-versa.

Quantum State Transfer (QST) is a crucial protocol in quantum communication and com-
putation, enabling the transmission of quantum information between computational compo-
nents. This process has contributed to various engineering fields, including physics, mathe-
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matics, chemistry, computer science, materials science, and more, while also advancing clas-
sical computing. Quantum computing can enhance algorithms and discover structures and
patterns efficiently, benefiting computer science, cryptography, and other domains.

Technology Research in quantum algorithms has addressed numerous questions in com-
puter science, and it plays a significant role in information technology security. Encryption
and mathematical algorithms, such as factoring large numbers using the RSA technique, rely
on quantum computing. These algorithms are currently challenging to break with conven-
tional computers, taking a considerable amount of time. Moreover, quantum computing can
create new cryptographic protocols resistant to quantum attacks, like secure key distribution
over quantum channels, offering advantages over classical channels in detecting eavesdrop-
ping.

Another potential application of the engineered state transfer protocol is the generation
of entanglement. The generation of bipartite and multipartite entanglement is of crucial im-
portance for many quantum information tasks, ranging from quantum teleportation [29] to
quantum error correction codes. Entanglement is generated by realizing the phenomenon of
fractional revival in the spin chain, where the wavefunction, initially localized on one site of
the chain, is found after some time perfectly splitted between the initial and the target site.
Fractional revivals have been intensively studied in molecular [147] and atomic [19, 122, 156]
systems and can be related to the Talbot effect [31] as well as to pattern formations of the
spatial wavefunction. Quantum computing offers promising solutions for cryptanalysis and
enhancing the security and efficiency of cryptographic systems. It can solve optimization
problems exponentially faster than classical computers, benefiting areas such as quantum
semi-definite programming, quantum data fitting, and quantum combinatorial optimization.
In aerospace engineering, quantum computing can tackle computational challenges and im-
prove performance over classical algorithms.

The quantum internet is a vision for a global-scale quantum network that would allow for
quantum communication and quantum computing on a large scale. It would be based on the
development of quantum communication technologies, such as quantum key distribution,
as well as the development of quantum computers and quantum sensors. The quantum in-
ternet would have applications in areas such as secure communication, distributed quantum
computing, and quantum sensing. With the advent of quantum computers, there has been
an enormous interest in merging quantum computing with ML, leading to the thriving field
of Quantum Machine Learning (QML) [32, 44, 45, 95, 131]. Rapid progress has been made in
this field, largely fueled by the hope that QML may provide a quantum advantage in the
near-term for some practically-relevant problems. While the prospects for such a practical
quantum advantage remain unclear [132], a num ber of promising analytical results have al-
ready been put forward [1, 13, 85, 93]. Still, much remains to be known about QML models.
Quantum computing has shown a potential to improve machine learning model accuracy,
with quantum neural networks demonstrating reduced training time and improved accu-
racy in various datasets. However, further development of quantum hardware is necessary
for quantum machine learning to reach its full potential. Cryptography is defined as art of
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writing and solving codes. Conventional cryptography is based on algorithms and mathe-
matical problems. If someone finds an efficient way to crack the algorithm, the information
is no longer secure. Here is where the beauty of entanglement lies. Utilizing the method
of quantum key distribution, a random secret key is established for cryptography [2]. Any
attempt of manipulating will alter the state and can be detected making the communication
secure without complex procedures and algorithms [70]. Although, it is very difficult to have
realization of this process but cleverly designed systems are used to generate entangled pho-
tos such that one can be stored in the memory and other can travel through the fiber [126] en-
suring the way for miracle process. Teleportation involves the transferring of quantum state
of a particle to another particle over a distance i.e transmission of quantum information [121].
It is possible only due to the entanglement property of quantum particles. Quantum telepor-
tation can serve as an elementary operation in quantum computers and basic ingredient in
distributed quantum networks. First it was demonstrated as a transfer of quantum state of
light onto another light beam [137] later developments used optical rays [128] and material
particles [127].

Biological Challenges in healthcare and life sciences present opportunities to leverage the
unique features of quantum computing to derive novel biological insights to improve patient
care. New technologies have made it possible to create detailed maps of human cells, tissues,
and organs, leading to advances in understanding diseases such as cancer [123,141,148], car-
diovascular disease [113], and diabetes [134]. For example, artificial intelligence (AI) (herein
defined as intelligent software automating routine labor, understanding and/or recognizing
images, text patterns, etc.) and machine learning machine learning (ML) (herein defined as
the set of algorithms and the mathematical and statistical methods allowing the computer
to learn from data) have accelerated discovery in healthcare and life sciences by provid-
ing data-driven solutions. One prominent example of the data-driven solutions provided
by AI is in the field of structural biology, where the longstanding problem of predicting
the three-dimensional (3D) structure of a protein given a sequence [62] has seen signifi-
cant improvement via transformer-based architectures [92].This work has had a profound
effect on the field of structural biology by showcasing the potential for using data-driven
approaches based on ML methods to solve scientific problems. AI/ML has improved pro-
tein structure prediction, generated large protein complexes, and designed de novo proteins
and enzymes [12, 35, 60, 86, 107, 136, 151, 154, 155]. ML has been used to predict the effects of
noncoding variants, diagnose diseases, and predict disease outcomes. However, AI has limi-
tations that hinder its application to the clinic, including the complexity of biological systems,
shortcomings of AI algorithms, and limitations of data availability. Despite these challenges,
researchers continue to explore the potential of AI and ML in healthcare and life sciences.
Quantum computing enables researchers to overcome existing limitations by tackling com-
plex problems in areas such as biomarker discovery, clinical trial optimization, imaging anal-
ysis, and drug protein design and discovery [7, 59, 139]. Quantum computing through pro-
tein structure prediction, molecular docking and quantum simulation and quantum-classical
combined techniques has significant potential in pharmaceutics and drug discovery, it also
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speeds up the drug development process and reduces costs [22, 43, 64, 66, 73, 94]. Scientists
a vision for Quantum Enabled Cell − Centric Therapeutics, which aims to leverage advance-
ments in single cell and spatial single-cell technologies to create a holistic view of cellular and
metabolic activities in disease tissue. Cell therapies are a new approach to medicine, where
human cells are reprogrammed to perform specific functions, such as killing cancer cells.
This technology has the potential to treat various diseases, including autoimmune disorders,
inflammation, and neurodegeneration. The scientis suggest that Quantum Neural Networks
(QNNs) could provide advancements in this problem domain. Adding to the power of classi-
cal neural network models, QNNs utilize quantum mechanical effects such as superposition,
entanglement, and interference to represent complex relations among data. As such, certain
QNN architectures have been shown to have greater expressivity than some of their classical
counterparts, allowing them to capture more complex probability distributions than classical
models.

In particular, Quantum Convolutional Neural Networks (QCNNs) can be used to im-
prove the accuracy of predicting CAR T cell phenotype [51]. QCNNs have several useful
properties, including the number of variational parameters that scale logarithmically with
the number of qubits and the absence of barren plateaus during training that can affect other
types of QNNs [124]. scientis also emphasize the importance of collaboration between quan-
tum and HCLS ( healthcare and life science ) researchers to develop new biology-inspired
quantum algorithms and proof-of-concepts.

In general quantum computing enables medical practitioners to model atomic-level molec-
ular interactions, which is necessary for medical research [110]. This will be particularly es-
sential for diagnosis, treatment, drug discovery, and analytics. Due to the advancements in
quantum computing, it is now possible to encode tens of thousands of proteins and simulate
their interactions with drugs, which has not been possible before [83]. Quantum comput-
ing helps process this information more effectively by orders of magnitude as compared
with conventional computing capabilities [111]. Quantum computing allows doctors to si-
multaneously compare large collections of data and their permutations to identify the best
patterns. Detection of biomarkers specific to a disease in the blood is now possible through
gold nanoparticles by using known methods, such as bio-barcode assay. In this situation, the
goal could be to exploit the comparisons used to help the identification of a diagnosis [72].

Chemistry A central task of quantum theory, in the fields of quantum condensed matter
physics and quantum chemistry, consists of describing the properties of interacting atomic,
molecular, amorphous, and crystalline systems. Apart from advancing our fundamental un-
derstanding of quantum mechanics, a generic solution to the quantum problem would allow
progress in application fields ranging from materials discovery (better magnets, solar cells,
catalysts, or qubit hardware) to drug design. The required operation count and the number
of quantum degrees of freedom required for the accurate ab initio description of such systems
puts them far outside of the accessible regime on current or near-term quantum hardware,
except for very small systems. These requirements were elucidated by many authors includ-
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Figure 4. [28] Spatiotemporal single-cell, cell-line, imaging, drug profile, and clinical data are
analyzed with four quantum computing technologies to capture varying aspects of cellular behavior.
These technologies include: (top left) QCNNs to learn optimal CAR T-cell intracellular signalling
domain design from limited experiment data; (center) hybrid classical-quantum GNNs to model
tumor microenvironments from single cell spatial data; (top right) single cell perturbation response
using Quantum Conditional OT; and (bottom) QTDA to identify topological signatures of single cell
perturbation response.
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ing Reiher et al. [129], Tubman et al. [143], Elfving et al. [65], and Goings et al. [82], who
considered the application of quantum phase estimation to challenging instances. In QC/QI,
quantum simulation of electronic structure problems of atoms and molecules is one of the
most intensively studied realms.

Applications of quantum computing in quantum chemistry and material science involve
solving problems related to the ground state energies of electrons and their wave functions.
These simulations can lead to drug discovery, improving battery power and life in elec-
tric vehicles, and solving travel-related problems like the traveling salesman problem. To
overcome this challenge, researchers are developing quantum algorithms that can simulate
the electronic structure of atoms and molecules. One promising approach is the Variational
Quantum Eigensolver (VQE) algorithm, which has been used to simulate the properties of
various molecules.

VQE has been used to simulate the properties of various molecules, including water,
methane, and large organic molecules. To perform quantum simulations of atoms and molecules
on quantum computers, information on electronic wave functions should be mapped onto
quantum registers. Several approaches for wave function mapping were proposed [18, 133,
135,142], and the most fundamental one is direct mapping (DM) [18]. Obtaining accurate vi-
brational spectra of molecules is a costly task on conventional computers. While uncovering
the electronic structure of molecules stands as a fundamental challenge in quantum chem-
istry and material design, to truly make an impact in both scientific research and practical
applications, it is vital to go beyond the electronic structure. This requires creating a kinetic
model that relies on a deep understanding of a molecule’s vibrational structure. Knowing
a molecule’s vibrational structure enables the prediction of thermodynamic properties that
are key in many fields, such as atmospheric science, catalysis, and fuel combustion mod-
eling. Although classical computers often handle simulation of the electronic structure of
small molecules reasonably well, they struggle with calculating vibrational structures be-
yond the harmonic approximation, even for small molecules. Accurately predicting the vi-
brational spectra of molecules is a challenging task that requires advanced computational
methods, particularly when dealing with higher-order terms and complex interactions be-
tween bosonic modes.

The development of quantum algorithms for simulating excited states of quantum sys-
tems is crucial for understanding the behavior of many physical and chemical systems, in-
cluding the electronic and magnetic properties of materials. Several algorithms have been de-
veloped for excited state simulations, including quantum subspace expansion (QSE), quan-
tum equation-of-motion (qEOM), and quantum Lanczos algorithms.

Finance Quantum computing offers valuable tools and solutions in finance, improving
tasks such as risk assessment, portfolio optimization, and derivative pricing. It has been
applied to develop financial models like churn prediction and credit risk assessment, out-
performing traditional methods in some cases. In article of Baaquie [20], there are two main
points about this: first, defining and analyzing the subject of quantitative finance in the con-
ceptual and mathematical framework of quantum theory, with special emphasis on its path-
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integral formulation, and, second, the introduction of the techniques and methodology of
quantum field theory in the study of interest rates. No attempt is made to apply quantum
theory in reworking the fundamental principles of finance. Instead, the term quantum refers
to the abstract mathematical constructs of quantum theory that include probability theory,
state space, operators, Hamiltonians, commutation equations, lagrangians, path integrals,
quantized fields, bosons, fermions and so on. All these theoretical structures find natural
and useful applications in finance. The path integral and Hamiltonian formulations of (ran-
dom) quantum processes have been given special emphasis since they are equivalent to, as
well as independent of, the formalism of stochastic calculus which currently is one of the
cornerstones of mathematical finance. The starting point for the application of path integrals
and Hamiltonians in finance is in stock option pricing. Path integrals are subsequently ap-
plied to the modelling of linear and nonlinear theories of interest rates as a two-dimensional
quantum field, something that is beyond the scope of stochastic calculus.

In a review article [112] Orus et al., explore the potential applications of quantum com-
putation in the field of finance. They review insights into current approaches and future
prospects for utilizing quantum optimization algorithms, including quantum annealers, for
tasks such as portfolio optimization, identifying arbitrage opportunities, and credit scoring.
Additionally, they delve into the intersection of deep learning and finance, highlighting the
potential for enhanced performance through quantum machine learning techniques. Fur-
thermore, they examine the benefits of quantum amplitude estimation in speeding up Monte
Carlo sampling, which can have significant implications for financial tasks such as derivative
pricing and risk analysis. Overall, they shed light on the exciting possibilities that quantum
computation offers for revolutionizing financial methods and decision-making processes.

5 Conclusion

In this article, we have reviewed the concepts of perfect state transfer and pretty good
state transfer, examining the necessary and sufficient conditions for Cayley graphs. We have
also demonstrated how a solid understanding of state transfer forms the foundation of a
constructive technique with broad applicability, highlighting the significance of this protocol.
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[24] M. Bašić, M. Petković, D. Stefanović, Perfect State transfer in integral circulant graphs, Applied
Mathematics Letters 22 (2009), 1117–1121. https://doi.org/10.1016/j.aml.2008.11.005
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Picelli, A. Sabirsh, M. Clausen, M. K. Bjursell, et al., Single-cell transcriptome profiling of
human pancreatic islets in health and type 2 diabetes, Cell metabolism 24 (2016) 593-607.
https://doi.org/10.1016/j.cmet.2016.08.020

[135] K. Setia, J. D. Whitfield, Bravyi-Kitaev superfast simulation of electronic structure on a quantum
computer, Journal of Chemical Physics 148 (2018). https://doi.org/10.48550/arXiv.1712.0044

[136] J. E. Shin, A. J. Riesselman, A. W. Kollasch, C. McMahon, E. Simon, C. Sander, A. Manglik, A. C.
Kruse, D. S. Marks, Protein design and variant prediction using autoregressive generative models,
Nature communications 12 (2021). https://doi.org/10.1038/s41467-021-22732-w

[137] J. F. Sherson, H. Krauter, E. S. Polzik, Quantum teleportation between light and matter, Nature 443
(2006) 557-560. https://doi.org/10.1038/nature05136

[138] B. Steinberg, Representation theory of finite Groups, University, Springer, New York, 2012.
[139] F. Tacchino, A. Chiesa, S. Carretta, D. Gerace, Quantum computers as universal quantum

simulators: state-of-the-art and perspectives, Advanced Quantum Technologies, 3 (2020).
https://doi.org/10.48550/arXiv.1907.03505

[140] Y-Y. Tan, K. Feng, X-Cao, perfect state transfer on abelian Cayley graphs, Linear Algebra and its
Applications, 563 (2019) 331-352. https://doi.org/10.1016/j.laa.2018.11.011

[141] I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A. Rotem, C. Rod-
man, C. Lian, G. Murphy, et al., Dissecting the multicellular ecosystem of metastatic melanoma by
single-cell rna-seq, Science 352 (2016) 189-96. https://doi.org/10.1126/science.aad0501

[142] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P.V. Coveney, F. Mintert, F.
Wilhelm, P.J. Love, The Bravyi-Kitaev transformation: Properties and applications, International
Journal of Quantum Chemistry 115 (2015) 1431-1441. https://doi.org/10.1002/qua.24969

[143] N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins, Z. Jiang, J. R.
Mc-Clean, R. Babbush, M. Head-Gordon, K. B. Whaley, Postponing the orthogonality catastrophe:
efficient state preparation for electronic structure simulations on quantum devices, arXiv e-prints,
arXiv:1809.05523 (2018). https://doi.org/10.48550/arXiv.1809.05523

[144] L. Vinet, A. Zhedanov, Dual - 1 Hahn Polynomials and perfect state transfer, Journal of Physics
343 (2011). https://doi.org/10.48550/arXiv.1110.6477

[145] L. Vinet, A. Zhedanov, How to construct spin chain with perfect state transfer, Physical Review A
85 (2012). https://doi.org/10.48550/arXiv.1110.6474

[146] L. Vinet, A. Zhedanov, Almost perfect state transfer in quantum spin chains, Physical Review A
86 (2012). https://doi.org/10.48550/arXiv.1205.4680

[147] M. J. Vrakking, D. Villeneuve, A. Stolow, Observation of fractional revivals of a molecular wave
packet, Physical Review A 54 (1996). https://doi.org/10.1103/PhysRevA.54.R37

[148] J. Wagner, M. A. Rapsomaniki, S. Chevrier, T. Anzeneder, C. Langwieder, A. Dykgers, M. Rees, A.
Ramaswamy, S. Muenst, S. D. Soysal, et al., A single cell atlas of the tumor and immune ecosystem

141

 https://doi.org/10.1038/nature02570
 https://doi.org/10.1103/PhysRevLett.92.047904
 https://doi.org/10.48550/arXiv.1605.03590 
 https://doi.org/10.48550/arXiv.quant-ph/0703236
 https://doi.org/10.48550/arXiv.2203.01340 
 https://doi.org/10.48550/arXiv.1208.5986
 https://doi.org/10.1016/j.cmet.2016.08.020
 https://doi.org/10.48550/arXiv.1712.0044
 https://doi.org/10.1038/s41467-021-22732-w
 https://doi.org/10.1038/nature05136
 https://doi.org/10.48550/arXiv.1907.03505
 https://doi.org/10.1016/j.laa.2018.11.011
 https://doi.org/10.1126/science.aad0501
 https://doi.org/10.1002/qua.24969
 https://doi.org/10.48550/arXiv.1809.05523 
 https://doi.org/10.48550/arXiv.1110.6477 
 https://doi.org/10.48550/arXiv.1110.6474 
 https://doi.org/10.48550/arXiv.1205.4680
 https://doi.org/10.1103/PhysRevA.54.R37


Khalilipour et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 87–142

of human breast cancer. Cell, 177 (2019) 1330-1345. https://doi.org/10.1016/j.cell.2019.03.005
[149] Sh. Wang, T. Feng, perfect state transfer on bi-Cayley graphs over abelian groups, Discrete Math-

ematics 346 (2023). https://doi.org/10.1016/j.disc.2023.113362
[150] Sh. Wang, M. Arezoomand, T. Feng, Perfect state transfer on quasi-abelian semi-Cayley graphs,

Journal of Algebraic Combinatorics 59 (2024) 179-211. https://doi.org/10.1007/s10801-023-01288-
6

[151] J. Wang, S. Lisanza, D. Juergens, D. Tischer, J. L. Watson, K. M. Castro, R. Ragotte, A. Saragovi,
L. F. Milles, M. Baek, et al., Scaffolding protein functional sites using deep learning, Science3 77
(2022) 387-394. https://doi.org/ 10.1126/science.abn2100

[152] W. Wang, X. Liu, J. Wang, Laplacian pretty good edge state transfer in path, arxiv: 2209 - 04630,
(2022). https://doi.org/10.48550/arXiv.2209.04630

[153] J.Watrous, Quantum simulation of classical random walks and undirected graph
connectivity, Journal of Computer and System Sciences 62 (2001) 376-391.
https://doi.org/10.48550/arXiv.cs/9812012

[154] B. I. M. Wicky, L. F. Milles, A. Courbet, R. J. Ragotte, J. Dauparas, E. Kinfu, S. Tipps, R.D. Kibler,
M. Baek, F. DiMaio, et al., Hallucinating symmetric protein assemblies, Science 378 (2022) 56-61.
https://doi.org/ 10.1126/science.add1964

[155] K. K. Yang, Z. Wu, F. H. Arnold, Machine-learning-guided directed evolution for protein engineer-
ing, Nature methods 16 (2019) 687-694. https://doi.org/10.1038/s41592-019-0496-6

[156] J. A. Yeazell, C. Stroud. Jr, Observation of spatially localized atomic electron wave packets, Physical
Review Letters 60 (1988). https://doi.org/10.1103/PhysRevLett.60.1494

[157] P. H. Zieschang, Cayley graphs of finite groups, Journal of Algebra and Its Applications 118 (1988)
56-61. https://doi.org/10.1016/0021-8693(88)90033-6

[158] X-Q. Zhang, S-Y. Cui, G-X. Tian, Signless Laplacian state transfer Q-graphs, Applied Mathematics
and Computation 423 (2022). https://doi.org/10.1016/j.amc.2022.127070

[159] J. Zhou, C. Bu, J. Shen, Some results for the periodicity and perfect state transfer, Electron, Journal
of Combinatorial Theory, Series A 18 (2011). https://doi.org/10.37236/671

[160] J. Zhou, C. By, State transfer and star complements in graphs, Discrete Applied Mathematics 175
(2014) 130-134. https://doi.org/10.1016/j.dam.2013.08.028

[161] Z. Zimboras, M. Faccin, Z. Kádár, J. Whitfield, B. Lanyon, J. Biamonte, Quantum Trans-
port Enhancement by Time-Reversal Symmetry Breaking, Scientific Reports 3 2361 (2013).
https://doi.org/10.1038/srep02361

Citation: A. Khalilipour, M. Ghorbani, M. Arezoomand, A review on perfect, pretty good, state transfers and their
applications, J. Disc. Math. Appl. 10(1) (2025) 87–142.

https://doi.org/10.22061/jdma.2024.11198.1091

COPYRIGHTS
©2025 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attri-
bution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as
the original authors and source are cited. No permission is required from the authors or the publishers.

142

 https://doi.org/10.1016/j.cell.2019.03.005
 https://doi.org/10.1016/j.disc.2023.113362
 https://doi.org/10.1007/s10801-023-01288-6
 https://doi.org/10.1007/s10801-023-01288-6
 https://doi.org/ 10.1126/science.abn2100
 https://doi.org/10.48550/arXiv.2209.04630 
 https://doi.org/10.48550/arXiv.cs/9812012 
 https://doi.org/ 10.1126/science.add1964
 https://doi.org/10.1038/s41592-019-0496-6
 https://doi.org/10.1103/PhysRevLett.60.1494
 https://doi.org/10.1016/0021-8693(88)90033-6
 https://doi.org/10.1016/j.amc.2022.127070
 https://doi.org/10.37236/671
 https://doi.org/10.1016/j.dam.2013.08.028
 https://doi.org/10.1038/srep02361

	Introduction
	Definitions and Preliminaries
	Representation and Character of finite groups
	Cayley graph
	Spectra of Cayley graph
	PST on Cayley graphs
	PGST on Cayley graphs

	Results
	The results of PST
	PST in Cayley graphs on abelian groups
	PST in Cayley graphs on non-abelian groups

	The results of PGST
	PGST in Cayley graphs on abelian groups
	PGST in Cayley graphs on non-abelian graphs


	Application
	Conclusion

