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Background and Objectives: The two-axis inertially stabilized platforms (ISPs) face 
various challenges such as system nonlinearity, parameter fluctuations, and 
disturbances which makes the design process more complex. To address these 
challenges effectively, the main objective of this paper is to realize the stabilization 
of ISPs by presenting a new robust model-free control scheme. 
Methods: In this study, a robust adaptive fuzzy control approach is proposed for 
two-axis ISPs. The proposed approach leverages the backstepping method as its 
foundational design mechanism, employing fuzzy systems to approximate unknown 
terms within the control framework. Furthermore, the control architecture 
incorporates a model-free disturbance observer, enhancing the system's robustness 
and performance. Additionally, novel adaptive rules are devised, and the uniform 
ultimate boundedness stability of the closed-loop system is rigorously validated 
using the Lyapunov theorem. 
Results: Using MATLAB/Simulink software, simulation results are obtained for the 
proposed control system and its performance is assessed in comparison with 
related research works across two scenarios. In the first scenario, where both the 
desired and initial attitude angles are set to zero, the proposed method 
demonstrates a substantial mean squared error (MSE) reduction: 96.2% for pitch 
and 86.7% for yaw compared to the backstepping method, and reductions of 75% 
for pitch and 33.3% for yaw compared to the backstepping sliding mode control. In 
the second scenario, which involves a 10-degree step input, similar improvements 
are observed alongside superior performance in terms of reduced overshoot and 
settling time. Specifically, the proposed method achieves a settling time for the 
pitch gimbal 56.6% faster than the backstepping method and 58% faster for the yaw 
gimbal. Moreover, the overshoot for the pitch angle is reduced by 53.5% compared 
to backstepping and 35.5% compared to backstepping sliding mode control, while 
for the yaw angle, reductions of 43.6% and 37.6% are achieved, respectively. 
Conclusion: Through comprehensive simulation studies, the efficacy of the 
proposed algorithm is demonstrated, showcasing its superior performance 
compared to conventional control methods. Specifically, the proposed method 
exhibits notable improvements in reducing maximum deviation from desired 
angles, mean squared errors, settling time, and overshoot, outperforming both 
backstepping and backstepping sliding mode control methods. 
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Introduction 

Unmanned aerial inspection systems face challenges in 

maintaining optical imaging sensors' direction due to 

angular   disturbances   from  vehicle  motion,  wind,  and 

 
measurement errors. To tackle this, inertially stabilized 

platforms (ISPs) with gimbal assemblies are commonly 

employed [1]-[4]. However, the complex dynamics of 
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multi-axis ISPs, including strong nonlinearity and various 

uncertainties, make stabilization challenging [5]-[10]. 

The PID controller stands out as a popular choice in 

practical applications for its simple implementation. 

However, its derivative term can exacerbate high-

frequency disturbances, leading to rapid saturation of the 

controller output. To address this, modern modifications 

are used to automatically adjust control coefficients in 

different operating conditions, such as using the fuzzy 

approach in ISPs [11], [12]. Yet, increasing the number of 

fuzzy partitions complicates controller design and 

implementation. Thus, the fuzzy controller structure is 

often kept simple, impacting the PID controller's 

performance in ISP environments with uncertainties and 

disturbances. 

Researchers employ robust control strategies to tackle 

uncertainties in nonlinear systems. For example, in [13], 

authors investigate magnetically suspended gimbals and 

develop an 𝐻∞ method. Also, [14] proposes a mixed 

sensitivity 𝐻∞ controller for ISPs, aiming to strike a 

balance between robustness and performance. These 

static strategies assume bounded variables, and their 

complexity increases with uncertainty levels, impacting 

system efficiency. 

Besides, sliding mode control (SMC) methods are 

favored for severely nonlinear systems like ISPs due to 

their robustness against uncertainty [15]. As an 

example, [5] introduces a standard SMC to counter 

disturbances, while [4] proposes the super-twisting 

method to address chattering issues. Integral sliding 

mode control (ISMC), suggested in [16] and [17], further 

mitigates nonlinear disturbances and uncertainties in 

ISPs. However, the growing complexity of dynamic 

models and uncertainties diminishes SMC effectiveness. 

So, some combine SMC with the backstepping approach, 

as seen in [18]-[22]. Nevertheless, designing a robust 

backstepping-based controller for ISPs remains a 

challenge. For instance, [23] introduces an innovative 

adaptive neural network model integrated with 

backstepping control to address the difficulties posed by 

unknown disturbances and dynamics in nonlinear three-

degree-of-freedom (3-DOF) ISPs. ISPs can feature either 

two or three DOF, each configuration offering distinct 

benefits. A 2-DOF ISP generally consists of a two-axis 

gimbal assembly, providing stabilization over two axes 

such as azimuth and elevation [24]. Conversely, a 3-DOF 

ISP comprises a three-axis gimbal, enabling stabilization 

over three axes, thus facilitating more complex motion 

compensation and greater flexibility in target tracking. 

The additional degree of freedom in a 3-DOF ISP allows 

for more comprehensive control over the line of sight and 

offers enhanced disturbance rejection capabilities, 

making it suitable for high-accuracy 

applications [25], [26]. In contrast, a 2-DOF ISP is often 

more cost-effective and simpler to implement due to its 

reduced complexity and fewer moving parts [27]. 

However, it may face limitations in compensating for 

certain disturbances and body motions, especially in 

scenarios involving large payloads or significant external 

disturbances. 

To the best of author’s knowledge, the most effective 

strategy for mitigating lumped uncertainties involves 

using disturbance observers and rejection methods 

alongside well-designed controllers [23], [28]-[30]. For 

instance, [5] introduces continuous terminal sliding mode 

control with high-order sliding mode observers for 

estimating state variables and uncertainties, while [17] 

combines terminal sliding mode control with extended 

state observers in ISPs. Additionally, [31] presents a 

model predictive control method using a discrete-time 

disturbance observer, and [4] proposes continuous SMC 

with finite time disturbance observers. Besides, [32] 

presents an adaptive SMC algorithm for ISPs using 

disturbance observers. Also, [33] employs an Uncertainty 

and Disturbance Estimator (UDE) to estimate the 

composite disturbance and enhance the robustness of a 

Feedback Linearization-based controller designed for a 3-

DOF known nominal ISP system. These model-based 

methods enhance control performance by estimating 

disturbances, although model’s accuracy significantly 

impact their efficacy. 

In contrast to model-based disturbance observers, 

whose performance depends on the system model’s 

accuracy, model-free disturbance observers estimate 

lumped uncertainties using techniques such as neural 

networks. For example, [8] proposes an RBFNN-based 

adaptive disturbance control method for effective 

uncertainty estimation. However, using a linear system 

model significantly increases uncertainty levels and 

impacts observer performance.  

Another drawback is the neglect of rate of change in 

disturbances or estimation error. As well, [22] and [34] 

combines a backstepping sliding mode control with an 

adaptive radial basis function neural network estimator to 

address parametric uncertainties, friction, mass 

imbalance, and uncertain disturbances. They believe the 

sampling estimation period can be small in comparison to 

these variations. 

The above studies show that the dynamic model of 

ISPs is so complex and highly nonlinear that accurate 

mathematical modeling of all physical aspects is 

impossible. On the other hand, increasing the complexity 

of the model makes the control design and its 

implementation challenging. Therefore, researchers use 

models that include a variety of uncertainty resources, 

including parametric and structural uncertainties as well 

as internal and external disturbances. Controllers that use 

inaccurate dynamics or do not consider existing 
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disturbances or those that approximate the uncertainties 

based on the inaccurate model are doomed to failure in 

practice. However, the dynamical structure of ISPs is in a 

particular class of nonlinear systems in which the benefits 

of backstepping can be used. Despite the advantages of 

backstepping control, not using precise dynamics and not 

paying attention to the lumped uncertainties leads to 

irreparable consequences. Inspired by [35], [36], to tackle 

these issues, fuzzy approximators and disturbance 

observers can be coupled to estimate unknown dynamics 

and disturbances, respectively. 

Inspired by the related literature, the main difficulties 

can be stated as follows: 

 The existence of time-varying disturbances and 

highly nonlinearities in the system model makes it 

challenging to design a learning-based robust 

adaptive controller to deal with both of them. 

 Considering the system dynamics as unknown terms 

brings us closer to the real-world applications. Thus, 

how to design a disturbance observer on the basis 

of unknown system dynamics is an important issue. 

 Achieving robust stability of the overall system in 

the presence of various uncertainties is a serious 

issue. 

So, this paper introduces a fuzzy disturbance observer-

based backstepping control to track desired trajectories 

amidst uncertainties. It employs a nonlinear model-free 

disturbance observer to approximate time-varying 

disturbances, uncertainties, and fuzzy errors. This method 

enhances system performance by sharing information 

between the fuzzy approximator and disturbance 

observer. Besides, stability is verified via recursive 

Lyapunov-based analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling of Two-Axis ISPs 

Fig. 1 illustrates a typical two-axis ISP architecture, 

comprising three frames crucial for coupling analysis: the 

pitch frame (𝑝) with  the  coordinate  system  {𝑥𝑝, 𝑦𝑝, 𝑧𝑝},  

As clearly observed in Table 1, compared with the 

current relevant studies, the primary contributions of the 

suggested controller are as follows: 

i) For the ISP systems, this study is the first attempt to 

handle the various uncertainties, including time-

varying disturbances and highly nonlinearities, by 

employing an adaptive fuzzy-based disturbance 

observer. 

ii) Integrating the fuzzy learning algorithm with the 

model-free disturbance observer improves the 

system performance while the system information 

is not required during the process. 

iii) The design mechanism is based on the backstepping 

method, where the overall system’s stability is 

proven by compensating for the error of each 

subsystem for the ISP systems. In other words, if an 

adverse result occurs, it is easier to find its 

origination. 

The rest of this paper is arranged as follows. Section 2 

discusses the modeling of a two-axis ISP system, 

concluding that the resulting state space has a low 

triangular structure and contains structural and 

parametric uncertainty. Section 3 uses this structure to 

develop a controller based on the backstepping approach. 

However, to improve performance, the nonlinear 

dynamics of the model are assumed to be unknown and 

are identified by a fuzzy approximation. Also, a model-

free disturbance observer estimates the disturbances and 

the fuzzy approximation errors. The control signal exploits 

the approximated dynamics and disturbances, and the 

stability conditions are expressed. Section 4 presents the 

simulation results, followed by Section 5’s conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

the yaw frame (𝑎) with {𝑥𝑎, 𝑦𝑎, 𝑧𝑎}, and the base frame 

(𝑏) with {𝑥𝑏, 𝑦𝑏, 𝑧𝑏}. Notably, a two-axis gyro is 

incorporated for line-of-sight control, influenced by the 

Table 1:  Comparative analysis of implementation strategies for ISP systems 
 

Reference Model Linearity Model-based/free DOB-based Disturbance Type 

[3] nonlinear model-free No time-invariant and bounded 

[4] nonlinear model-based No time-varying 

[5], [19] linear model-based Yes not determined 

[16], [29], [31] linear model-based yes time-varying 

[8] linear model-free yes time-invariant and bounded 

[17], [33], [37], [38] nonlinear model-based yes time-invariant and bounded 

[6], [22], [34] nonlinear model-free yes time-invariant and bounded 

proposed approach nonlinear model-free yes time-varying 
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movements of the pitch and yaw gimbals. 
 

 
Encoders installed on the pitch and yaw gimbals 

measure their angular positions. The relative angular 

displacement between the base plate and the yaw gimbal 

is represented by 𝜃𝑎, while 𝜃𝑝 denotes the relative 

angular displacement between the yaw and pitch gimbals. 

Moreover, the angular rates between the gimbal 

coordinates are denoted as �̇�𝑎 and �̇�𝑝. By employing Euler 

transformation matrices, namely 𝐶𝑏
𝑎 and 𝐶𝑎

𝑝
, which 

pertain to rotations about the 𝑥-axis and the 𝑧-axis 

respectively, the angular rates of gimbals are specified as, 

𝜔𝑛𝑎
𝑎 = [𝜔𝑛𝑎𝑥

𝑎 , 𝜔𝑛𝑎𝑦
𝑎 , 𝜔𝑛𝑎𝑧

𝑎 ]
𝑇

= 𝐶𝑏
𝑎𝜔𝑛𝑏

𝑏 + [0, 0, �̇�𝑎]
𝑇

= [

𝜔𝑛𝑏𝑥
𝑏 cos 𝜃𝑎 + 𝜔𝑛𝑏𝑦

𝑏 sin 𝜃𝑎

−𝜔𝑛𝑏𝑥
𝑏 sin 𝜃𝑎 + 𝜔𝑛𝑏𝑦

𝑏 cos 𝜃𝑎

𝜔𝑛𝑏𝑧
𝑏 + �̇�𝑎

], 
(1) 

𝜔𝑛𝑝
𝑝

= [𝜔𝑛𝑝𝑥
𝑝

, 𝜔𝑛𝑝𝑦
𝑝

, 𝜔𝑛𝑝𝑧
𝑝

]
𝑇

= 𝐶𝑎
𝑝

𝜔𝑛𝑎
𝑎 + [�̇�𝑝, 0, 0]

𝑇

= [

𝜔𝑛𝑎𝑥
𝑎 + �̇�𝑝

𝜔𝑛𝑎𝑦
𝑎 cos 𝜃𝑝 + 𝜔𝑛𝑎𝑧

𝑎 sin 𝜃𝑝

−𝜔𝑛𝑎𝑦
𝑎 sin 𝜃𝑝 + 𝜔𝑛𝑎𝑧

𝑎 cos 𝜃𝑝

]. 
(2) 

Since the base frame is tied to the helicopter, 𝜔𝑛𝑏
𝑏 =

[𝜔𝑛𝑏𝑥
𝑏 , 𝜔𝑛𝑏𝑦

𝑏 , 𝜔𝑛𝑏𝑧
𝑏 ]

𝑇
 is the helicopter’s angular velocity. 

A.  Dynamics of Gimbals 

If the gimbals are treated as rigid bodies, their motion 

equations can be derived using the Newton–Euler theory. 

The total external torques are expressed as follows, 

 𝑇𝑎 = �̇�𝑎 + 𝜔𝑛𝑎
𝑎 × 𝐻𝑎, 𝑇𝑃 = �̇�𝑝 + 𝜔𝑛𝑝

𝑝
× 𝐻𝑝,  (3) 

where 𝑇𝑎 = [𝑇𝑎𝑥 , 𝑇𝑎𝑦 , 𝑇𝑎𝑧]
𝑇

 denotes the total external 

torque about the yaw gimbal, 𝑇𝑝 = [𝑇𝑝𝑥 , 𝑇𝑝𝑦 , 𝑇𝑝𝑧]
𝑇

 

represents the total external torque applied to the pitch 

gimbal, and 𝐻𝑎 and 𝐻𝑝 signify the total angular 

momentum of the gimbals. Assuming symmetry for each 

gimbal with respect to its coordinate and neglecting 

inertia products, the moment of inertia for the two 

gimbals is defined as, 

  𝐽𝑎 = 𝑑𝑖𝑎𝑔(𝐽𝑎𝑥 , 𝐽𝑎𝑦 , 𝐽𝑎𝑧), 

  𝐽𝑝 = 𝑑𝑖𝑎𝑔(𝐽𝑝𝑥 , 𝐽𝑝𝑦 , 𝐽𝑝𝑧) 
(4) 

Here, it is assumed that the gimbals have balanced 

masses. By substituting the angular momentums, angular 

rates, and total external torques about the yaw gimbal’s 

𝑥-axis and the pitch gimbal’s 𝑧-axis into  (3), the dynamic 

model of the gimbals is obtained. The pitch gimbal’s 

angular momentum is, 

𝐻𝑝 = 𝐽𝑝𝜔𝑛𝑝
𝑝

.      (5) 

Substituting   (5) in  (3) leads to the pitch gimbal’s 

angular momentum about the 𝑥-axis, 

   𝑇𝑝𝑥 = 𝐽𝑝𝑥 �̇�𝑛𝑝𝑥
𝑝

+ (𝐽𝑝𝑧 − 𝐽𝑝𝑦) 𝜔𝑛𝑝𝑦
𝑝

 𝜔𝑛𝑝𝑧
𝑝

.    (6) 

Due to the connection between the pitch and yaw 

gimbals, the yaw gimbal’s inertial angular momentum is, 

  𝐻𝑎 = 𝐶𝑝
𝑎 𝐻𝑝 + 𝐽𝑎 𝜔𝑛𝑎

𝑎     (7) 

Thus, by utilizing  (3), the projection of the resultant 

angular momentum along the yaw gimbal’s 𝑧-axis can be 

derived as, 

𝑇𝑎𝑧 = (𝐽𝑎𝑧 𝜔𝑛𝑎𝑧
𝑎

+ (𝐽𝑝𝑦 cos2 𝜃𝑝 + 𝐽𝑝𝑧 sin2 𝜃𝑝) 𝜔𝑛𝑎𝑧
𝑎 )

′

+ ((𝐽𝑝𝑦 − 𝐽𝑝𝑧) cos 𝜃𝑝 sin 𝜃𝑝 𝜔𝑛𝑎𝑦
𝑎 )

′

+ (𝐽𝑎𝑦 + 𝐽𝑝𝑦  cos2 𝜃𝑝

+ 𝐽𝑝𝑧  sin2 𝜃𝑝)𝜔𝑛𝑎𝑥
𝑎  𝜔𝑛𝑎𝑦

𝑎

− 𝐽𝑎𝑥𝜔𝑛𝑎𝑥
𝑎  𝜔𝑛𝑎𝑦

𝑎  − 𝐽𝑝𝑥 𝜔𝑛𝑝𝑥
𝑝

 𝜔𝑛𝑎𝑦
𝑎

+ (𝐽𝑝𝑦 − 𝐽𝑝𝑧) cos 𝜃𝑝 sin 𝜃𝑝  𝜔𝑛𝑎𝑧
𝑎  𝜔𝑛𝑎𝑥

𝑎  

   (8) 

where the prime operator signifies the time derivative. To 

finalize the development of a dynamic model for a two-

axis ISP, the subsequent section elaborates on 

formulating a dynamical model for a DC motor linked to 

 
 

Fig. 1: A typical configuration diagram for two-gimbal ISPs 
and the related coordinate frames. 
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each gimbal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.  Dynamical Model of Motor 

The high imaging loads necessitate the use of a DC 

motor with a gearbox, as depicted in Fig. 2, instead of a 

direct-driven torque motor to ensure stable control [3]. In 

Fig. 2, 𝐹 signifies the interacting force between the motor 

gear and the gimbal gear, with  𝑅𝑚 and 𝑅𝐿 denoting their 

respective radii, and where 𝐿 ∈ {𝑝, 𝑎} represents the 

pitch and yaw gimbals. Furthermore, 𝑁 = 𝑅𝐿/𝑟 stands for 

the gear ratio. 

In a gear-driven system, the torque applied to the 

gimbal is given by, 

 𝑇𝐿 = 𝑅𝐿𝐹 + 𝑇𝑑𝐿   (9) 

while the motor’s angular acceleration is described by, 

     �̈�𝑛𝑚 = (𝐾𝑡 𝑖𝑚 − 𝑟𝐹 + 𝑇𝑑𝑚) 𝐽𝑚⁄  (10) 

where 𝜃𝑛𝑚 is the attitude of the gimbal’s motor, 𝐾𝑡 

denotes the torque constant, and 𝑖𝑚 stands for the 

motor’s armature current. Also, external torque 

perturbations affecting the gimbal and the motor are 

represented by 𝑇𝑑𝐿 and 𝑇𝑑𝑚, respectively, predominantly 

reflecting the influences of mass imbalance, bearing 

friction, and gearing friction. 

Considering the electrical characteristics of a DC 

motor’s equivalent armature circuit, the armature voltage 

𝑢 is defined as, 

  𝑢𝐿 = 𝐾𝑒 �̇�𝑚/𝑏 + 𝑅𝑚 𝑖𝑚 + 𝐿𝑚 𝑑𝑖𝑚 𝑑𝑡⁄    (11) 

Here, 𝐿𝑚 and 𝑅𝑚 signify the motor’s inductance and 

resistance, respectively, while 𝐾𝑒 stands for the back 

electromotive force constant. Moreover, 𝜃𝑚/𝑏 represents 

the motor’s motion relative to the base plate. 

Additionally, the kinematic relations of the system are as 

follows, 

  𝜃𝑛𝐿 = 𝜃𝐿/𝑏 + 𝜃𝑛𝑏  (12) 

  𝜃𝑛𝑚 = 𝜃𝑚/𝑏 + 𝜃𝑛𝑏  (13) 

  𝜃𝑚/𝑏 = 𝑁 𝜃𝐿/𝑏  (14) 

In these equations, 𝜃𝑛𝐿 and 𝜃𝑛𝑏 denote the attitudes 

of the gimbal and the base with regard to inertial space, 

respectively, while 𝜃𝐿/𝑏 represents the gimbal’s motion 

relative to the base plate. 

By disregarding the negligible value of motor 

inductance and utilizing   (11) to  (14), we obtain, 

  𝑇𝑚 = 𝐾𝑡𝑖𝑚 = 𝐾𝑡 𝑅𝑚⁄ (𝑢𝐿 − 𝐾𝑒(�̇�𝑛𝑚 − �̇�𝑛𝑏))  (15) 

Also, by substituting  (15) into (10) and subsequently 

utilizing   (9), 𝑇𝐿 is derived as follows, 

𝑇𝐿 =  𝐾𝑡 𝑅𝑚⁄ (𝑢𝐿 − 𝐾𝑒(�̇�𝑛𝑚 − �̇�𝑛𝑏))

− 𝑁2 𝐽𝑚 �̈�𝑛𝐿 + (𝑁 𝑇𝑑𝑚 + 𝑇𝑑𝐿)

+ 𝑁(𝑁 − 1) 𝐽𝑚 �̇�𝑛𝑏 

 (16) 

In  (16), accounting for the yaw gimbal, the subscript 𝐿 

corresponds to 𝑎, thus 𝜃𝑛𝑏 = 𝜃𝑛𝑏𝑧
𝑎 , 𝜃𝑛𝐿 = 𝜃𝑛𝑎

𝑎 , and 𝑇𝐿 =

𝑇𝑎𝑧. Similarly, for the pitch gimbal, we have 𝜃𝑛𝑏 = 𝜃𝑛𝑏𝑧
𝑝

, 

𝜃𝑛𝐿 = 𝜃𝑛𝑝
𝑝

, and 𝑇𝐿 = 𝑇𝑝𝑥. 

Finally, considering    (6),    (8), and  (16), one can 

conclude the dynamic model of a two-axis ISP as follows, 

�̇�𝑛𝑝𝑥
𝑝

= 𝑓1(𝑡) + 𝑏1𝑢1 + 𝑑1 (17) 

�̇�𝑛𝑎𝑧
𝑎 = 𝑓2(𝑡) + 𝑏2𝑢2 + 𝑑2 (18) 

in which, 

𝑢1 = 𝑢𝑝, 𝑢2 = 𝑢𝑎   (19) 

𝑏1 = 𝑁𝐾𝑡 (𝑅𝑚(𝐽𝑝𝑥 + 𝑁2 𝐽𝑚))⁄  

𝑏2 =  
𝑁𝐾𝑡 cos 𝜃𝑝

𝑅𝑚(𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝)
 

  (20) 

𝑓1(𝑡) =
𝐾𝑡 𝐾𝑒 𝑁2 (𝜔𝑛𝑎𝑥

𝑝
− 𝜔𝑛𝑝𝑥

𝑝
)

(𝐽𝑝𝑥 + 𝑁2 𝐽𝑚)𝑅𝑚

+
𝑁 (𝑁 − 1) 𝑅𝑚 𝐽𝑚 �̇�𝑛𝑎𝑥

𝑝

(𝐽𝑝𝑥 + 𝑁2 𝐽𝑚)𝑅𝑚

−
(𝐽𝑝𝑧 − 𝐽𝑝𝑦)𝜔𝑛𝑝𝑦

𝑝
𝜔𝑛𝑝𝑧

𝑝
 

𝐽𝑝𝑥 + 𝑁2 𝐽𝑚
 

  (21) 

 

Fig. 2: A single gimbal gear-drive system [3]. 
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𝑓2(𝑡)

=
cos 𝜃𝑝 𝜔𝑛𝑎𝑦

𝑎 (𝜔𝑛𝑝𝑥
 𝑝

 𝐽𝑝𝑥 −  𝜔𝑛𝑎𝑥
𝑎  (𝐽𝑎𝑦 − 𝐽𝑎𝑥))

𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝

+
𝑁2𝐾𝑡𝐾𝑒 cos 𝜃𝑝 (𝜔𝑛𝑏𝑧

𝑎 − 𝜔𝑛𝑎𝑧
𝑎 )

𝑅𝑚(𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝)

+
𝑁(𝑁 − 1) cos 𝜃𝑝 𝑅𝑚 𝐽𝑚 �̇�𝑛𝑏𝑧

𝑎

𝑅𝑚(𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝)

+
𝐽𝑝𝑧 𝜔𝑛𝑝𝑧

𝑝
sin 2𝜃𝑝 (�̇�𝑝 + 𝜔𝑛𝑎𝑥

𝑎 )

2(𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝)

−
𝐽𝑝𝑦 𝜔𝑛𝑝𝑦

𝑝
 𝜔𝑛𝑎𝑥

𝑎  cos2 𝜃𝑝

𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝

−
Ψ(𝑡) 

𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝
 

Ψ(𝑡) = cos 𝜃𝑝  (𝐽𝑝𝑦 𝜔𝑛𝑝𝑦
𝑝

sin 𝜃𝑝)
′

+ (𝐽𝑎𝑧 + 𝐽𝑝𝑦 cos2 𝜃𝑝 + 𝐽𝑝𝑧 sin2 𝜃𝑝

+ 𝑁2𝐽𝑚)(𝜔𝑛𝑎𝑧
𝑎  sin 𝜃𝑝  �̇�𝑝

+ (𝜔𝑛𝑎𝑦
𝑎  sin 𝜃𝑝)

′
) 

  (22) 

𝑑1 = (𝑁 𝑇𝑑𝑚 + 𝑇𝑑𝑝 + Λ1) (𝐽𝑝𝑥 + 𝑁2𝐽𝑚)⁄    (23) 

𝑑2 =
𝑁𝑇𝑑𝑚 + 𝑇𝑑𝑎 + Λ2

𝐽𝑎𝑧 + 𝑁2𝐽𝑚 + 𝐽𝑝𝑧 cos2 𝜃𝑝
cos 𝜃𝑝   (24) 

where other angular velocities can be calculated using (1) 

and (2) in terms of the helicopter’s angular velocity 𝜔𝑛𝑏
𝑏 . 

In ISP systems, the moments of inertia (i.e., 𝐽𝑎 and 𝐽𝑝) 

are subject to estimation due to imprecise knowledge.  

These estimation errors, along with other parametric and 

structural uncertainties, are accounted for in dynamic 

equations (17)-(24) by Λ1 and Λ2. However, considering 

all uncertainties in system dynamics, particularly in 𝑓1 and 

𝑓2, which are highly complex and nonlinear, can lead to 

excessive uncertainty levels and consequently poor 

system performance. Therefore, in the following, only 𝑓1 

and 𝑓2 are treated as unknown and approximated using a 

Takagi-Sugeno fuzzy approximator. In addition, the fuzzy 

estimate errors in each subsystem, along with terms 𝑑1 

and 𝑑2, are regarded as a lumped disturbance. To 

approximate this lumped disturbance, disturbance 

observers utilize the approximated nonlinear terms 𝑓1 

and 𝑓2. 

Hence, by defining the state variables 𝑥1 = 𝜃𝑛𝑥
𝑝

 , 𝑥2 =

�̇�𝑛𝑥
𝑝

= 𝜔𝑛𝑝𝑥
𝑝

, 𝑥3 = 𝜃𝑛𝑧
𝑎  , and 𝑥4 = �̇�𝑛𝑧

𝑎 = 𝜔𝑛𝑎𝑧
𝑎 , the ISP 

system’s state-space model is obtained as, 

�̇�1 = 𝑥2 (25) 

�̇�2 = 𝑓1 + 𝑏1𝑢1 + 𝑑1 (26) 

�̇�3 = 𝑥4 (27) 

�̇�4 = 𝑓2 + 𝑏2𝑢2 + 𝑑2 (28) 

here, the nonlinear terms 𝑓1 and 𝑓2 are generally 

unknown, with all parametric and structural uncertainties 

encapsulated in the 𝑑1 and 𝑑2. This model comprises two 

subsystems with a low-triangular structure, enabling the 

utilization of backstepping control in its controller design. 

Main Results 

This section aims to design an adaptive fuzzy 

backstepping controller equipped with a model-free 

disturbance observer for the system (25)-(28). Following 

the backstepping method, the proposed approach 

involves four steps. As mentioned, to increase the 

efficiency of the designed controller, 𝑓𝑖, 𝑖 ∈ {1, 2} is 

considered unknown, which is approximated by a Sugeno-

type fuzzy logic system, 

𝑅𝑘: 𝐼𝐹 𝑥1𝑖𝑠 𝐹𝑖1
𝑘  𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑛𝑖𝑠 𝐹𝑖𝑛

𝑘  𝑇ℎ𝑒𝑛 𝑓𝑖 = Γ𝑖𝑘 

where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 is the inputs of fuzzy system, 𝑘 =

1, 2, … , 𝑙 is the rule number and 𝑙 is the number of rules, 

𝐹𝑖1
𝑘  is the fuzzy set with the membership function 𝜇

𝐹𝑖𝑗
𝑘(𝑥𝑗), 

and Γ𝑖𝑘 is a constant value. Using singleton fuzzifier, 

product inference and weighted average defuzzification, 

we obtain [39],  

𝑓𝑖 = Γ𝑖
𝑇ϕ𝑖(𝑥)  

where ϕ𝑖(𝑥) = [𝜙𝑖1(𝑥), 𝜙𝑖2(𝑥), … , 𝜙𝑖𝑙(𝑥)]𝑇, and 

𝜙𝑖𝑘(𝑥) = ∏ 𝜇
𝐹𝑖𝑗

𝑘 (𝑥𝑗)𝑛
𝑗=1 ∑ ∏ 𝜇𝐹𝑖𝑗

𝑚(𝑥𝑗)𝑛
𝑗=1

𝑙
𝑚=1⁄  is the 

membership function of the 𝑗𝑡ℎ rule’s antecedent part. 

Besides, Γ𝑖
𝑇 = [Γ𝑖1, Γ𝑖2, … , Γ𝑖𝑙]

𝑇 is the fuzzy weight vector. 

Considering the fuzzy approximation error 𝜖𝑖, 

  𝑓𝑖(𝑥) = Γ𝑖
∗𝑇ϕ𝑖(𝑥) + 𝜖𝑖     (29) 

where Γ𝑖
∗ = [Γ𝑖1

∗ , Γ𝑖2
∗ , … , Γ𝑖𝑙

∗]𝑇is the optimal fuzzy weight 

vector. Since 𝑓𝑖 and its corresponding optimal fuzzy 

weight vector Γ𝑖
∗ are unknown, their estimations is used 

in the control signals. In other words, 𝑓𝑖 = Γ̂𝑖
∗𝑇

ϕ𝑖 is 

employed in the proposed control signals, in which Γ̂𝑖
∗ is 

the estimated fuzzy weight vector such that the error of 

the fuzzy weight vector Γ̃𝑖 = Γ𝑖
∗ − Γ̂𝑖 should converge to 

zero ultimately. However, the fuzzy approximation error 

𝜖𝑖 and the uncertainties 𝑔𝑖𝑑𝑖 are considered lumped 
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disturbance 𝐷𝑖 = 𝑑𝑖 + 𝜖𝑖 which is observed using a 

disturbance observer �̂�𝑖. This leads to enhancing the 

robust behavior of the control system. It is assumed that 

positive real scalars bound the lumped disturbance 𝐷𝑖 and 

its variation. In other words, we assume �̇�𝑖
𝑇�̇�𝑖 ≤ 𝜁𝑖

2, 

where 𝜁𝑖 > 0 is a known positive real scalar. Here, the 

conservative assumption of zero variation is not 

considered. Furthermore, since the input membership 

functions 𝜙𝑖𝑗(𝑥𝑖), 𝑖 ∈ {1, 2} and 𝑗 ∈ {1, 2, … , 𝑙} are 

known, it is clear that ϕ𝑖
𝑇ϕ𝑖 ≤ 𝜂𝑖

2 where 𝜂𝑖 > 0 is known. 

More details are given in the following. 

Step 1) For the first subsystem (25) the tracking error 

is defined as, 

  𝜔1 = 𝑥1 − 𝑥1
𝑑 (29) 

in which 𝑥1
𝑑 is the desired reference signal. We choose the 

first virtual control, 

𝛽1 = −𝑘1𝜔1 + �̇�1
𝑑        (30) 

where 𝑘1 is a positive real constant. For the 2nd subsystem 

(26), the error surface 𝜔2 = 𝑥2 − 𝛽1 is defined. Thus, the 

derivative of the tracking error 𝜔1 is as follows, 

�̇�1 = �̇�1 − �̇�1
𝑑 = 𝑥2 − �̇�1

𝑑 = 𝜔2 + 𝛽1 − �̇�1
𝑑 (31) 

Substituting        (30) into (31) yields, 

�̇�1 = −𝑘1𝜔1 + 𝜔2   (32) 

Now, choosing the Lyapunov function 𝑉1 =
1

2
𝜔1

2 and 

considering   (32) leads us to, 

�̇�1 = −𝑘1𝜔1
2 + 𝜔1𝜔2   (33) 

Step 2) The derivative of the 2nd subsystem’s error 

surface is, 

�̇�2 = �̇�2 − �̇�1 = Γ1
∗𝑇ϕ1 + 𝑏1𝑢1 − �̇�1 + 𝐷1   (34) 

where 𝐷1 = 𝑑1 + 𝜖1 is the lumped disturbance. 

Considering the control signal, 

 𝑢1 = (−Γ̂1
Tϕ1 − 𝑘2𝜔2 − 𝜔1 + �̇�1 − �̂�1) 𝑏1⁄    (35) 

in which 𝑘2 > 0 is a real scalar and �̂�1 is the lumped 

disturbance’s estimation, and then substituting it into   

(34) gives, 

�̇�2 = Γ̃1
𝑇ϕ1 + �̃�1 − 𝜔1 − 𝑘2𝜔2 (36) 

In this step, the Lyapunov function is chosen as, 

𝑉2 = 𝑉1 +
1

2
𝜔2

2 +
1

2
Γ̃1

𝑇𝛾1
−1Γ̃1 +

1

2
�̃�1

2   (37) 

where 𝛾1 > 0 is the learning rate of adaptation 

mechanism. Hence, one can obtain, 

�̇�2 = −𝑘1𝜔1
2−𝑘2𝜔2

2 + Γ̃𝑇
1 (𝜔2𝜙1 − 𝛾1

−1Γ̇̂1)

+ �̃�1 (𝜔2 + �̇�1 − �̇̂�1) 
  (38) 

Using the fuzzy approximation for 𝑓1, we define the 

following model-free disturbance observer, 

�̂�1 = 𝐿1(𝑥2 − 𝜒2)

�̇�2 = Γ̂1
Tϕ1 + 𝑏1𝑢1 + �̂�1 − 𝐿1

−1𝜔2

   (39) 

in which 𝐿1 is a positive real constant; and the derivative 

of �̂�1 is, 

�̇̂�1 = 𝐿1(�̇�2 − �̇�2) = 𝐿1(Γ̃1
𝑇ϕ1 + �̃�1) + 𝜔2   (40) 

Employing   (40) in   (38), 

�̇�2 = −𝑘1𝜔1
2−𝑘2𝜔2

2 + Γ̃1
𝑇 (𝜔2𝜙1 − 𝛾1

−1Γ̇̂1)

+ �̃�1 (�̇�1 − 𝐿1(Γ̃1
𝑇ϕ1 + �̃�1)) 

  (41) 

Now, we choose the first adaptation law, 

Γ̇̂1 = 𝛾1(𝜔2ϕ1 − 𝛿1Γ̂1)   (42) 

where 𝛿1 > 0 is a real scalar. Using Young inequality, one 

can find, 

         �̃�1�̇�1 ≤
1

2
�̃�1

2 +
1

2
𝜁1

2

−�̃�1Γ̃1
𝑇ϕ1 ≤

1

2
𝜔1�̃�1

2𝜂1
2 +

1

2𝜔1
Γ̃1

𝑇Γ̃1

         Γ̃1
𝑇Γ̂1 ≤ −

1

2
Γ̃1

𝑇Γ̃1 +
1

2
‖Γ1

∗‖2

   (43) 

in which 𝜔1 > 0. Then, �̇�2 is obtained as, 

�̇�2 ≤ −𝑘1𝜔1
2−𝑘2𝜔2

2 − (
𝛿1

2
−

𝐿1

2𝜔1
) Γ̃1

𝑇Γ̃1

− (𝐿1 −
𝐿1𝜔1

2
𝜂1

2 −
1

2
) �̃�1

2

+ (
𝛿1

2
‖Γ1

∗‖2 +
1

2
𝜁1

2) 

  (44) 

Step 3) Considering the desired trajectory 𝑥3
𝑑 for the 

state variable 𝑥3 and define the error surface 𝜔3 = 𝑥3 −

𝑥3
𝑑, we have, 

 �̇�3 = �̇�3 − �̇�3
𝑑 = 𝑥4 − �̇�3

𝑑 = 𝜔4 + 𝛽2 − �̇�3
𝑑   (45) 

Another virtual control law is constructed as  𝛽2 =

−𝑘3𝜔3 + �̇�3
𝑑, where 𝑘3 is a positive constant. This is then 

substituted in (17), resulting in, 

�̇�3 = −𝑘3𝜔3 + 𝜔4   (46) 

Considering the Lyapunov function 𝑉3 = 𝑉2 +
1

2
𝜔3

2 as 

well as   (44) and   (46), one can obtain, 

�̇�3 ≤ −𝑘1𝜔1
2−𝑘2𝜔2

2−𝑘3𝜔3
2 + 𝜔3𝜔4

− (
𝛿1

2
−

𝐿1

2𝜔1
) Γ̃1

𝑇
Γ̃1

− (𝐿1 −
𝐿1𝜔1

2
𝜂1

2 −
1

2
) �̃�1

2

+ (
𝛿1

2
‖Γ1

∗‖2 +
1

2
𝜁1

2) 

  (47) 
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Step 4) The error surface for the last subsystem (28) is 

defined as 𝜔4 = 𝑥4 − 𝛽2. Hence, its derivative is, 

�̇�4 = Γ2
∗𝑇ϕ2 + 𝑏2𝑢2 + 𝐷2 − �̇�2   (48) 

in which 𝐷2 = 𝜖2 + 𝑑2 is the total disturbance include the 

fuzzy approximation error 𝜖2 for the term 𝑓2 and the other 

modeling uncertainties 𝑑2. The second control law is 

proposed as, 

𝑢2 = (−Γ̂2
Tϕ2 − 𝑘4𝜔4 − 𝜔3 + �̇�2 − �̂�2) 𝑏2⁄    (49) 

where 𝑘4 > 0 and �̂�2 is the estimation of 𝐷2. Substituting   

(49) into   (48) results in, 

�̇�4 = Γ̂2
Tϕ2 + �̃�2 − 𝑘4𝜔4 − 𝜔3   (50) 

The final Lyapunov function is chosen as, 

𝑉4 = 𝑉3 +
1

2
𝜔4

2 +
1

2
Γ̃2

𝑇𝛾2
−1Γ̃2 +

1

2
�̃�2

2 (51) 

where 𝛾2 > 0. The derivative of 𝑉4 can be obtained as, 

�̇�4 ≤ −𝑘1𝜔1
2−𝑘2𝜔2

2−𝑘3𝜔3
2−𝑘4𝜔4

2

+ Γ̃2
𝑇 (𝜔4ϕ2 − 𝛾2

−1Γ̇̂2)

+ �̃�2 (𝜔4 + �̇�2 − �̇̂�2) − (
𝛿1

2
−

𝐿1

2𝜔1

) Γ̃1
𝑇

Γ̃1

− (𝐿1 −
𝐿1𝜔1

2
𝜂1

2 −
1

2
) �̃�1

2

+ (
𝛿1

2
‖Γ1

∗‖2 +
1

2
𝜁1

2) 

  (52) 

Similar to the step 2, the following model-free 

disturbance observer is designed, 

�̂�2 = 𝐿2(𝑥4 − 𝜒4)

�̇�4 = Γ̂2
𝑇ϕ2 + 𝑏2𝑢2 + �̂�2 − 𝐿2

−1𝜔4

        (53) 

in which 𝐿2 is a positive real constant. So, 

�̇̂�2 = 𝐿2(�̇�4 − �̇�4) = 𝐿2(Γ̃2
𝑇ϕ2 + �̃�2) + 𝜔4        (54) 

Considering the adaptation law, 

Γ̇̂2 = 𝛾2(𝜔4ϕ2 − 𝛿2Γ̂2)        (55) 

where 𝛿2 > 0 and the following inequalities that obtained 

by Young inequality lemma, 

         �̃�2�̇�2 ≤
1

2
�̃�2

2 +
1

2
𝜁2

2

−�̃�2Γ̃2
𝑇ϕ2 ≤

1

2
𝜔2�̃�2

2𝜂2
2 +

1

2𝜔2
Γ̃2

𝑇Γ̃2

          Γ̃2
𝑇Γ̂2 ≤ −

1

2
Γ̃2

𝑇Γ̃2 +
1

2
‖Γ2

∗‖2

   (56) 

in which 𝜔2 > 0, Then, we have from   (52), 

�̇�4 ≤ −𝑘1𝜔1
2−𝑘2𝜔2

2−𝑘3𝜔3
2−𝑘4𝜔4

2

− (
𝛿1

2
−

𝐿1

2𝜔1
) Γ̃1

𝑇Γ̃1

− (𝐿1 −
𝐿1𝜔1

2
𝜂1

2 −
1

2
) �̃�1

2

+ (
𝛿1

2
‖Γ1

∗‖2 +
1

2
𝜁1

2) − (
𝛿2

2
−

𝐿1

2𝜔2
) Γ̃2

𝑇Γ̃2

− (𝐿2 −
𝐿2𝜔2

2
𝜂2

2 −
1

2
) �̃�2

2

+ (
𝛿2

2
‖Γ2

∗‖2 +
1

2
𝜁2

2) 

  (57) 

Expressing equation   (57) as �̇�4 ≤ −𝐴𝑉4 + 𝐵, where 

𝐴 = min {𝑘𝑖 , �̅�𝑗 , �̅�𝑗}, 𝑖 ∈ {1, … ,4}, 𝑗 ∈ {1, 2}, and 𝐵 =

(
𝛿1

2
‖Γ1

∗‖2 +
1

2
𝜁1

2 +
𝛿2

2
‖Γ2

∗‖2 +
1

2
𝜁2

2), it is evident that the 

overall system (25)-(28) exhibits uniformly ultimate 

boundedness (UUB) stability, ensuring that the signals 

involved in 𝑉4 remain bounded. 

For a clearer understanding of the proposed approach, 

a block diagram illustrating the structure of the model-

free control scheme is provided in Fig. 3. 

Simulation Results 

The efficacy of the suggested technique is evaluated by 

applying it to a model with parameters outlined in [3] 

and [6] (see Table 2) and compares with sliding mode 

control and backstepping sliding mode. While various 

types of uncertainties, including motor specs, mass 

imbalance, friction torque, and wind disturbance, are 

considered, simulation conditions for all three control 

methods are identical.  

This ensures that the noise and disturbances applied to 

the system in the simulation of the proposed method 

exactly match those applied during the simulation of the 

other two methods. 

In typical scenarios, the load is often not centered at 

the gimbals’ rotation center, leading to mass imbalance 

torque [40]. Additionally, bearing friction introduces a 

nonlinear torque acting as a disturbance. To simulate the 

influence of these disturbances, we consider the 

following torque expression, 

𝑇𝑑𝐿 = 1.7(𝑟𝑛𝑑 − 0.5)(sin(𝜔𝑡) + sin(2𝜔𝑡)),      (58) 

where 𝐿 ∈ {𝑝, 𝑎} represents pitch or yaw, respectively. 

Furthermore, to explore the nonlinear effects of gearing 

friction and other disturbances on the electric motors’ 

torque, we propose, 

𝑇𝑑𝑚 = 0.04(sin(𝜔𝑡) + sin(2𝜔𝑡))   (59) 

Moreover, fluctuations in the gimbals’ moment of 

inertia are set to be 20% of the nominal moment value. 

Thus, 𝐽𝑝 and 𝐽𝑎 can be represented as, 
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𝐽𝐿 = 𝐽𝐿
𝑛𝑜𝑚𝑖𝑛𝑎𝑙(1 + 0.4 (𝑟𝑛𝑑 − 0.5)),      (60) 

where 𝐿 ∈ {𝑝, 𝑎}. Simultaneously, random attitude 

perturbations of the helicopter’s stationary base plate 

caused by wind disturbances are represented as, 

𝜔𝑛𝑏𝜏
𝑏 (𝑡) = 0.6 (𝑟𝑛𝑑 − 0.5), 𝜏 ∈ {𝑥, 𝑦, 𝑧}      (61) 

In the first scenario, with both the desired and initial 

attitude angles set to zero, Fig. 4 illustrates the attitude 

angles of pitch and yaw gimbals under the influence of the 

three control techniques.  

Notably, the proposed control method exhibits 

significantly lesser deviation from the desired angles 

compared to both the backstepping control method and 

the backstepping sliding mode control method for both 

gimbals. This superiority is further evidenced by the mean 

squared errors presented in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3:  Nominal values for the parameters of model 
 

Parameter Nominal Value Unit 

𝑁 50  

𝐽𝑚 2.7 × 10−4 𝐾𝑔. 𝑚2 

𝐾𝑡 0.143 𝑁𝑚/𝐴𝑚𝑝 

𝐾𝑒 0.143 𝑉 𝑠𝑒𝑐 𝑟𝑎𝑑⁄  

𝑅𝑚 7.56 Ω 

[𝐽𝑎𝑥 , 𝐽𝑎𝑦 , 𝐽𝑎𝑧]
𝑇

 [0.540, 0.475, 0.162]𝑇 𝐾𝑔. 𝑚2 

[𝐽𝑝𝑥, 𝐽𝑝𝑦 , 𝐽𝑝𝑧]
𝑇

 [0.460, 0.267, 0.200]𝑇 𝐾𝑔. 𝑚2 

[𝜔𝑛𝑏𝑥
𝑏 , 𝜔𝑛𝑏𝑦

𝑏 , 𝜔𝑛𝑏𝑧
𝑏 ]

𝑇
 [0, 0, 0]𝑇 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  
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Fig. 3: Block Diagram of the proposed model-free control scheme for two-axis ISPs. 

Table 2:  Quantitative comparison of steady-state response in different scenarios for the evaluated control approaches 
 

  Attitude angle of Pitch gimbal (deg.) Attitude angle of Yaw gimbal (deg.) 

Scenario Approach 𝐦𝐚𝐱(|𝒆|) 𝒎𝒔𝒆(𝒆) 𝒔𝒕𝒅(𝒆) 𝐦𝐚𝐱(|𝒆|) 𝒎𝒔𝒆(𝒆) 𝒔𝒕𝒅(𝒆) 

 Backstepping 0.1535 0.0026 0.0507 0.1340 0.0015 0.0390 

First Backstepping SMC 0.0807 0.0004 0.0195 0.0759 0.0003 0.0175 

 Proposed Method 0.0404 0.0001 0.0118 0.0474 0.0002 0.0136 

 Backstepping 14.2217 5.3999 2.2386 11.2344 3.0565 1.6932 

Second Backstepping SMC 10.2482 1.5565 1.2276 10.1431 1.2727 1.1060 

 Proposed Method 9.9973 0.4145 0.6341 10.0034 0.4096 0.6303 
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Although the proposed method performs best, 

however, the better performance of the backstepping 

sliding mode control compared to the pure backstepping 

technique is not far from expected because the sliding 

mode method is insensitive to parameter variations and 

external disturbances [6]. 

In the second scenario, a step of 10 degrees is 

introduced to the attitude angles of the yaw and pitch 

gimbals to assess the dynamic response characteristics of 

the control methods. Simulation results pertaining to this 

scenario are presented in Fig. 5 and Table 3, where once 

again, the proposed method outperforms the others. In 

terms of dynamic response, the proposed method settles 

the pitch gimbal in 0.1953 seconds, which is significantly 

faster than the pure backstepping control (0.4497 

seconds) and the backstepping sliding mode method 

(0.4595 seconds). Similarly, the overshoot in the 

proposed method is 76% and 36% less than in pure 

backstepping and backstepping sliding mode control, 

respectively. Further details regarding the dynamic 

response characteristics of the investigated methods for 

both yaw and pitch gimbals are summarized in Table 4. 

Besides, to evaluate the control effort exerted by the 

proposed method and assess its effectiveness, we 

compare the control effort 𝑢2 for the Yaw gimbal in Fig. 6. 

It is evident that, generally, there is not a significant 

difference in control effort required. However, at the 

moment of angle change (1.5 seconds), the control effort 

in SMC-based methods is notably lower compared to the 

pure backstepping approach. Furthermore, the 

performance of the proposed method in terms of lamped  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disturbance tracking is depicted in Fig. 7, demonstrating 

the effective capability of the proposed approach to 

simultaneously estimate disturbances and uncertainties 

present in the system. 

Since fuzzy systems and disturbance observers are 

sharing information with each other, one cannot precisely 

determine whether fuzzy estimator can approximate 𝑑2. 

Hence, the aim of the proposed controller is achieved in 

view of the estimation task, if the estimation can track the 

lumped uncertainty with high precision. This job is 

confirmed by Fig. 7. 

Table 4:  Quantitative comparison of the transient response 
caused by using the control methods in pitch and yaw gimbals 

 

Approach 
Settling 

Time 
(Sec.) 

Peak 
(deg.) 

Overshoot 
(%) 

Values for pitch gimbal evaluation 

Backstepping 0.4497 24.2217 142.2168 

Backstepping SMC 0.4595 20.2482 102.4815 

Proposed Method 0.1953 16.6126 66.1255 

Values for yaw gimbal evaluation 

Backstepping 0.4438 21.2344 112.3436 

Backstepping SMC 0.4533 20.1431 101.4314 

Proposed Method 0.1875 16.3361 63.3610 

 

 
Fig. 4: Comparison of the steady-state response for both pitch and yaw gimbals in different control methods. 
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Fig. 6: Comparison of control signals for yaw gimbal in the 

second scenario. 
 

 

Fig. 5: Comparing transient response to a 10-degree step change in pitch and yaw gimbals attitudes. 

 

 

 

Fig. 7: Performance of the disturbance estimator for lumped 
disturbances of yaw gimbal in Scenario 2. 
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Conclusion 

In order to enhance the control performance of the ISP 

system, a disturbance observer-based adaptive fuzzy 

backstepping controller is developed in this paper. 

Integrated with a model-free disturbance observer, it 

ensures high-performance control in uncertain 

environments. In addition, the stabilization control with 

high accuracy is also provided in the presence of various 

uncertainties. The recursive Lyapunov-based analysis 

confirms the uniformly ultimate boundedness stability of 

the overall system.Different simulations and comparisons 

with two relevant control techniques, namely the 

backstepping control and the backstepping sliding mode 

control, demonstrate the proposed controller's 

superiority in the perspective of the transient  

response and the steady-state response. Inspired by 

the current study, we will present an adaptive 

constrained model-free fault-tolerant control scheme for 

the ISP system in the future. 
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