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Abstract. Much has been written about the golden ratio ϕ = 1+
√

5
2 and this strange number ap-

pears mysteriously in many mathematical calculations. In this article, we review the appearance of
this number in the graph theory. More precisely, we review the relevance of this number in topics
such as the number of spanning trees, topological indices, energy, chromatic roots, domination roots
and the number of domatic partitions of graphs.
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1 Introduction

The graph G is the ordered pair
(
V(G), E(G)

)
where V(G) is the set of elements called

vertices and E(G) is a finite set of pairs of distinct elements V(G) called set of edges. Two
vertices such as v1 and v2 are called adjacent, whenever {v1,v2} ∈ E(G). The vertex x is called
a common neighbor of v1 and v2, whenever x with both vertices v1 and v2 are adjacent. The
degree of the vertex v is the number of edges connected to the vertex v and it is denoted
by the symbol deg(v) or d(v). The vertex v is called isolate, if d(v) = 0. The minimum and
maximum degrees of the vertices of the graph G are denoted by δ(G) and ∆(G), respectively.
The graph H is called a subgraph of the graph G, whenever V(H)⊆ V(G) and E(H)⊆ E(G).
If we have V(H) = V(G) for the subgraph H, then we call H a spanning subgraph of G. A
spanning tree of a graph G is a spanning subgraph G which is also a tree. The number of
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spanning trees of a graph G, usually denoted by the symbol τ(G), is an important parameter
in graph theory that has many applications, including in chemistry and nanotechnology. The
sequence Fn of natural numbers defined by the equations F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2

(n ≥ 2) is called the Fibonacci sequence. The n-th term in the sequence is called the n-th
Fibonacci number. The Lucas sequence is denoted by Ln is Ln = Ln−1 + Ln−2 for n ≥ 3 with
initial conditions L1 = 1 and L2 = 3.

Recently, the book [16] titled “Fibonacci cubes with applications and variations” has been
published, which is a good book for the appearances of the Fibonacci sequence in graph
theory.

In mathematics, two quantities have the golden ratio (often denoted by the symbol ϕ)
if their ratio is equal to the ratio of their sum to the larger quantity. This property can be
expressed algebraically as follows when a > b > 0:

a + b
a

=
a
b
= ϕ.

This ratio is an irrational number, which is also a positive answer for the equation x2 − x −
1 = 0. One of the most beautiful ways to reach this golden ratio is using Fibonacci numbers in
the form of limn→∞

Fn+1
Fn

. Much has been said and written about this interesting and surprising
number [29].

In this paper, we review the relevance of the golden ratio in topics such as the number
of spanning trees, topological indices, chromatic roots, domination roots and the number of
domatic partitions of graphs.

2 The number of spanning trees and ϕ

Spanning graph trees and their number have been of interest to mathematicians for a
long time, and interestingly, the mentioned parameter has many applications in chemical
and nano-mathematical sciences. In this section, we examine the relationship between the
number of spanning trees of some graphs and the golden ratio. The number of spanning
trees of a graph can be a large number, for example the famous Petersen graph has 2000
labeled spanning trees [29].

Let τ(G) be the number of spanning trees of graph G. Therefore τ(G) ≥ 1 if and only if
G is connected and τ(G) = 1 if and only If G is a tree. The edge e of the graph G is said to
be contracted, whenever the edge e of the graph G is removed and the terminals of this edge
coincide. The new graph created under this operation is the contraction of the edge e in G
which is denoted by G ◦ e. A recursive relation to find the number of spanning trees of an
arbitrary graph G is as follows.

Theorem 2.1. [32] If e is an edge of the graph G, then τ(G) = τ(G − e) + τ(G ◦ e).

The recurrence relation τ(G) is computationally long and somewhat tedious despite its
interestingness. The tree-matrix theorem provides another way to calculate τ(G) using linear
algebra.
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Theorem 2.2. [32] (tree-matrix) Suppose G is a graph with order n ≥ 2 and set of vertices
{v1,v2, . . . ,vn}. In this case, τ(G) is equal to the cofactor of each entry of the matrix D(G)− A(G),
where D(G) is a diagonal matrix.

(dij)n×n =


deg(vi) i = j

0 i ̸= j

and A(G) is the adjacency matrix of G.

Klitman and Golden in 1975 obtained the number of spanning trees of the second power
of cycle Cn as follows [27]. We remind that the quadratic of a graph G is a graph obtained by
adding edges between vertices whose distance is equal to two. For example, the square of
the graph C4 is equal to the graph K4.

Theorem 2.3. [27] The number of spanning trees of the graph C2
n for n ≥ 5 is equal to τ(C2

n) = nF2
n .

Figure 1. wheel graph W7 and fan graph G7

Joining two graphs G1 = (V1, E1) and G2 = (V2, E2) is denoted by G1 ∨ G2 and is the graph
with the set of vertices V1 ∪ V2 and its edge set includes all the edges in the set

E1 ∪ E2 ∪ {{x,y} | x ∈ V1, y ∈ V2}.

For example, the graph resulting from joining K2 and K2 is the complete graph (K4) of order
4. The graph resulting from joining the circle graph of Cn and K1 is the wheel graph which
is denoted by Wn = Cn ∨ K1. The fan graph is denoted by the symbol Gn and is the join of
the path Pn and K1. In the figure 1. you can see the graph of W7 and G7. Next, using the
tree-matrix theorem, we obtain the number of spanning trees of the wheel graph ( [29]). We
need the following theorem, known as Binet’s theorem, which was obtained in 1843 by the
French mathematician Jacques-Philippe Marie Binet.

Theorem 2.4. [29] If α and β are two roots of the equation x2 − x − 1 = 0, then
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• For each natural number n we have:

Fn =
αn − βn

α − β
=

1√
5
(ϕn − (1 − ϕ)n).

• For each natural number n we have:

Ln = αn + βn = ϕn + (1 − ϕ)n.

Theorem 2.5. [29] The number of spanning trees of the wheel graph Wn for n ≥ 3 is

τ(Wn) = ϕ2n + (1 − ϕ)2n − 2.

Proof. If we denote the central vertex of the wheel graph by the symbol vn+1 and the rest of
the graph vertices by v1, ...,vn, then for i ̸= n + 1 we have deg(vi) = 3 and deg(vn+1) = n.
According to the tree-matrix theorem, we consider the following matrix:

D(Wn)− A(Wn) =



3 0 0 0 . . . 0 0
0 3 0 0 . . . 0 0
0 0 3 0 . . . 0 0

. . .

. . .
0 0 0 0 . . . n


−



0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0

. . .

. . .
0 0 0 0 . . . 1 0



=


−1

An −1
...

−1
−1 −1 . . . −1 n

 ,

Now, it is enough to obtain the cofactor of arbitrary entry of the matrix D(Wn) − A(Wn).
Here, we consider the entry in row (n + 1) and column (n + 1). We have:

τ(Wn) = det(An) = L2n − 2.

Now, using Theorem 2.4, we have the result.

Now, using the number of spanning trees of the wheel graph, we find the number of
spanning trees of the fan graph:

Theorem 2.6. The number of spanning trees of the fan graph Gn is equal to

τ(Gn) = ϕ2n−1 + (1 − ϕ)2n−1.

Proof. According to Theorem 2.1 for the wheel graph, we have: τ(Wn) = τ(Gn) + τ(Wn−1).
So τ(Gn) = τ(Wn)− τ(Wn−1) and the result is follows by Theorem 2.5.
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3 Topological indices and ϕ

The topological index of a graph G is a real number dependent on the graph G, which
represents a molecular chemical property whose molecular graph is G. This number does
not depend on the structure or appearance of the graph. In the chemical and mathematical
graph theory of chemistry, a topological index, also known as a connectivity index, is a type
of molecular descriptor that is calculated based on the corresponding graph of the molecule
of a chemical compound. Topological indices have many applications as tools for modelling
the chemical properties of molecules. Wiener’s index is one of the main studied topological
indices in terms of theory and application. This index was the first topological index used in
chemistry. The boiling point of organic compounds, as well as all their physical properties,
is functionally dependent on their number, type, and structure. The arrangement of atoms
in a molecule in a group of isomers, the number and type of atoms are constant, and there
are changes in physical properties only due to changes in structural interactions. American
chemist Harold Weiner [33] proved that the boiling point of paraffins with the sum the dis-
tances between carbons are related. He defined this index as W(G) = 1

2 ∑{x,y}⊆V(G) d(x,y),
where d(x,y) is the length of the shortest path between two vertices x and y.

The Hosoya index of graph G was introduced by Haruo Hosoya in 1971 [23]. This index
equals the sum of the number of k-matching of graph G and is denoted by the symbol Z(G).
In other words Z(G) = ∑

α′(G)
k=0 m(G,k), where m(G,k) denotes the number of matching sets of

size k. This index is often used in chemistry to check organic compounds.
Among the oldest and most famous topological indices, there are two famous topological

indices based on vertex degree that we consider here. The first Zagreb index and the second
Zagreb index. Zagreb indices were introduced more than forty years ago by Gutman and
Trinajestic [14]. The first and second Zagreb indexes of graph G are denoted by M1(G) and
M2(G), respectively, and they are:

M1 = M1(G) = ∑
v∈V(G)

d2(v),

M2 = M2(G) = ∑
uv∈E(G)

dG(u)dG(v) = ∑
uv∈E(G)

(d(u) + d(v)),

where d(u) is the degree of vertex u in graph G.
The generalized of the first Zagreb index of the graph G is denoted by Mk

1(G) and is
defined as follows:

Mk
1(G) = ∑

u∈V(G)

d(u)k.

Note that:

1. M1
1(G) = 2|E(G)|.

2. M2
1(G) = M1(G).

3. M3
1(G) = F(G),
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where F(G) is called the forgotten index.
Here, we review the relationship between the generalized Zagreb index

Mk
1(G) = ∑

u∈V(G)

d(u)k

and the golden ratio. The following theorem is a rewrite of Theorem 1 of [28] in the form
of topological indices. In other words, the following theorem gives an upper bound for the
M2(G) in terms of the sum of all vertex degrees to the power of ϕ2.

Theorem 3.1. For each natural number k and each graph G with ∆(G) ≤ 2k we have:

M2(G) ≤ k2−ϕMϕ2(G).

Knox, Mohar and Wood [28] showed by proving the next lemma (which we wrote as
a topological index) that the power ϕ2 and the constant kϕ−2 in the theorem 3.1 cannot be
improved.

Lemma 3.2. For any natural number k and ϵ > 0, there exists a graph G with ∆ ≤ 2k such that

(1 + ϵ)M2(G) ≥ k2−ϕMϕ2(G).

Huang, Shi and Xu proved the following interesting theorem for Hosoya index.

Theorem 3.3. [24] For a graph G of size m,

m + 1 ≤ Z(G) ≤ 1√
5

[
ϕm+2 − (−ϕ−1)m+2

]
.

4 The simplex graph of a graph and ϕ

In this section we review the relationship between the simplex graph of a graph and the
golden ratio. Simplex graphs were introduced by Bandelt and van de Vel [10]. They showed
that the chromatic number of the underlying graph equals the minimum number n such that
the simplex graph can be isometrically embedded into a Cartesian product of n trees. Imrich,
Klavžar and Mulder also used the simplex graphs as part of their proof that testing whether
a graph is triangle-free or whether it is a median graph may be performed equally quickly
( [25]). Let recall the following definition:

Definition 1. The simplex graph κ(G) of an undirected graph G is itself a graph, with one
node for each clique (a set of mutually adjacent vertices) in G. Two vertices of κ(G) are
linked by an edge whenever the corresponding two cliques differ in the presence or absence
of a single vertex.

Example 4.1. The simplex graph of the complete graph Kn, is a hypercube graph. In Figure 3. you
can see the cubic graph of Q4. Also in the form of Figure 4, You can see graphs Q2, Q3 and Q4.
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Figure 2. Graph G and its simplex graph

Figure 3. cubic graph Q4

Theorem 4.2. The simplex graph of every graph is a bipartite graph.

Proof. To prove that the simplex graph is bipartite, it is enough to place the vertices that
correspond to odd-sized cliques in the X section, and vertices corresponding to cliques of
even size in section Y. In this case, according to the definition of the simplex graph, no two
vertices in the X section (as well as in the Y section) are connected, and therefore the graph
is bipartite.

Like the hypercube graph, the vertices of the Fibonacci cube of order n may be labeled
with bitstrings of length n, in such a way that two vertices are adjacent whenever their labels
differ in a single bit. However, in a Fibonacci cube, the only labels that are allowed are
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Figure 4. cubic graphs Q2, Q3 and Q4.

bitstrings with no two consecutive 1 bits. If the labels of the hypercube are interpreted as
binary numbers, the labels in the Fibonacci cube are a subset, the fibbinary numbers ( [8]).
There are Fn+2 labels possible, where Fn denotes the nth Fibonacci number, and therefore
there are Fn+2 vertices in the Fibonacci cube of order n.

Theorem 4.3. The simplex graph of the complement of path graph Pn is Fibonacci cube.

It is clear that the simplex graph of κ(G), can be denoted by the symbol κ2(G) and
inductively the n-simplex graph G can be denoted by the symbol κn(G) and defined as
κn(G) = κ(κn−1(G)). According to the structure of this graph, we can find recurrence re-
lations for the number of vertices and edges κn(G). For convenience, we set vn = |V(κn(G))|
and en = |E(κn(G))|. Note that v0 = |V(G)| and e0 = |E(G)|. We have the following return
relations:

Theorem 4.4. For each n ≥ 2 we have:

vn = 3vn−1 − vn−2 − 1.

en = 3en−1 − en−2 + 1.

Proof. First, note that according to the definition of the simplex graph, the largest clique in
κ(G) is equal to 2-clique, or K2. Since the number of cliques in κ(G) equals |V(κ(G))| +
|E(κ(G))|+ 1 or is v1 + e1 + 1, it can be seen by induction that

vn = vn−1 + en−1 + 1.

And according to the structure of the graph κ(G) we have:

en = 2en−1 + vn−1.

By using these two relationships, both relationships can be easily obtained.

Recursive relations in the Theorem 4.4 are the second-order recursive relations, whose
general answer is as follows:

vn = c1(1 + ϕ)n + c2(2 − ϕ)n + 1. (1)
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en = d1(1 + ϕ)n + d2(2 − ϕ)n − 1. (2)

By inserting the initial conditions, the following answers are obtained:

vn =

(
v2 + 1 − ϕ − v1(2 − ϕ)

)
√

5
(1 + ϕ)n−1 +

(
v1(1 + ϕ)− v2 − ϕ)

)
√

5
(2 − ϕ)n−1 + 1.

en =

(
e2 − (1 − ϕ)− e1(2 − ϕ)

)
√

5
(1 + ϕ)n−1 +

(
e1(1 + ϕ) + e2ϕ)

)
√

5
(2 − ϕ)n−1 − 1.

Since 0 < 2− ϕ < 1 for very large n the power of this number tends to zero and therefore the
ratio en

vn
for large n is equal to the following fraction:

e2 − (1 − ϕ)− e1(2 − ϕ)

v2 + 1 − ϕ − v1(2 − ϕ)
.

By putting the relations v2 = v1 + e1 + 1 and e2 = 2e1 + v1, the above ratio becomes as follows:

v1 + e1ϕ − (1 − ϕ)

e1 + 2 − ϕ − v1(1 − ϕ)
.

If we multiply the denominator of this fraction in ϕ, its numerator is obtained. Therefore, we
will have the following theorem:

Theorem 4.5. For any graph G,

limn→∞
|E(kn(G))|
|V(kn(G))| = ϕ.

5 Energy of graphs and ϕ

If A is the adjacency matrix of G, then the eigenvalues of A, λ1 ≥ λ2 ≥ ... ≥ λn are said
to be the eigenvalues of the graph G. These are the roots of the characteristic polynomial
ϕ(G,λ) = ∏n

i=1(λ − λi). It is easy to see that the golden ratio ϕ can be eigenvalue of graph.
For example the eigenvalues of graph P4 are ±ϕ,±ϕ−1. The graph P4 is the smallest graph
of the form H ◦ K2, where H = K2 and ◦ is the corona product. For more information on
eigenvalues of corona of two graphs see [11].

The energy of the graph G is defined as E = E(G) = ∑n
i=1 |λi|. This definition was put

forward by I. Gutman [18] and was motivated by earlier results in theoretical chemistry [19].
In 2004 Bapat and Pati [9] obtained the following result:

Theorem 5.1. The energy of a graph cannot be an odd integer.

In 2008 Pirzada and Gutman communicated an interesting result:

Theorem 5.2. [30] The energy of a graph cannot be the square root of an odd integer.

In 2010, Alikhani and Iranmanesh proved the following result.

Theorem 5.3. [4] The golden ratio cannot be the energy of a graph.
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6 Chromatic roots and domination roots and ϕ

Let G = (V, E) be a simple graph and λ ∈ N. A mapping f : V → {1,2, . . . ,λ} is called a
λ-colouring of G, if f (u) ̸= f (v) whenever the vertices u and v are adjacent in G. The number
of distinct λ-colourings of G, denoted by P(G,λ) is called the chromatic polynomial of G. A
root of P(G,λ) is called a chromatic root of G. An interval is called a root-free interval for a
chromatic polynomial P(G,λ), if G has no chromatic root in this interval. It is well-known
that (−∞,0) and (0,1) are two maximal root-free intervals for the family of all graphs (see
[26]). Jackson [26] showed that (1, 32

27 ] is another maximal root-free interval for the family
of all graphs and the value 32

27 is best possible. The chromatic polynomial, chromaticity of
graphs and chromatic zeros studied well in [15].

Tutte [31] proved that 3+
√

5
2 = 1 + ϕ = ϕ2 cannot be a chromatic root. Alikhani and Peng

proved the following result:

Theorem 6.1. [5] ϕn(n ∈ N) cannot be roots of any chromatic polynomials.

We need the following theorems:

Theorem 6.2. [7] If α is a chromatic root, then for any natural number n, α + n is a chromatic root.

Theorem 6.3. [7] ϕ + 3 is a chromatic root.

By Theorems 6.2 and 6.3 we have the following corollary:

Corollary 6.4. For every natural number n ≥ 3, ϕ + n is a chromatic root.

Note that since ϕ + 1 = ϕ2, by Theorem 6.1, ϕ + 1 cannot be a chromatic roots. Harvey
and Royle [20] proved that ϕ + 2 is a chromatic root. Two graphs in Figure 5. have ϕ + 2 as a
chromatic root.

Figure 5. Two graphs with ϕ + 2 as a chromatic root.
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Alikhani and Peng studied the n-anacci constants and their powers as chromatic roots [6].
They proved that the 2n-anacci numbers cannot be zeros of any chromatic polynomials.

Theorem 6.5. [6] For every integer n ≥ 1, the 2n-anacci number φ2n and all natural powers of them
cannot be zero of any chromatic polynomial.

There is a conjecture in [6] which state that (2n + 1)-anacci numbers and all their natural
powers also cannot be chromatic zeros. They obtained the following result related to φ2n+1.

Theorem 6.6. [6] For every natural n, φ2n+1 cannot be a root of the chromatic polynomial of a
connected graph G with |V(G)| ≤ 4n + 2.

A set S ⊆ V is a dominating set of a graph G, if every vertex in V \ S has at least one
neighbor in S. The cardinality of a minimum dominating set in G is called the domination
number of G and is denoted by γ(G). The various different domination concepts are well-
studied now, however new concepts are introduced frequently and the interest is growing
rapidly. We recommend excellent so-called domination books by Haynes, Hedetniemi, and
Slater [21, 22].

Domination polynomial of a graph G is D(G, x) = ∑ d(G,k)xk is the generating function
for the number of dominating sets of G. Note that d(G,k) is the number of dominating sets of
G of size k. A root of D(G, x) is called a domination root of G. The set of distinct domination
roots of graph G is denoted by Z(D(G, x)).

For domination polynomial of a graph, it is clear that (0,∞) is zero-free interval. Brouwer
[12] has shown that −1 cannot be domination root of any graph G. For more details of the
domination polynomial of a graph at −1 refer to [2]. It also have shown that every integer
domination root is even [2]. Alikhani and Hasni proved the following theorem:

Theorem 6.7. [7] If n is an odd natural number, then −ϕn cannot be domination roots.

Let us recall the corona of two graphs. The corona of two graphs G1 and G2, as defined
by Frucht and Harary in [17], is the graph G1 ◦ G2 formed from one copy of G1 and |V(G1)|
copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2.

Theorem 6.8. [1] Let G be a connected graph of order n. Then, Z(D(G, x)) = {0, −3±
√

5
2 }, if and

only if G = H ◦ K2, for some graph H. Indeed D(G, x) = x
n
3 (x2 + 3x + 1)

n
3 .

The following corollary is an immediate consequence of Theorem 6.8.

Corollary 6.9. All graphs of the form H ◦ K2, have −ϕ2 as domination roots.

7 The number of domatic partition and ϕ

A domatic partition is a partition of the vertex set into dominating sets, in other words, a
partition π = {V1,V2, ...,Vk} of V(G) such that every set Vi is a dominating set in G. Cockayne
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and Hedetniemi [13] introduced the domatic number of a graph d(G) as the maximum order
k of a vertex partition. For more details on the domatic number refer to e.g., [34–36].

Motivated by enumerating of the number of dominating sets of a graph and domination
polynomial (see e.g. [1]), the enumeration of the domatic partition for certain graphs is a
natural subject.

Definition 2. Let DP(G, i) be the family of domatic partition of a graph G with cardinality i,
and let dp(G, i) = |DP(G, i)|.

In the following we show that

lim
n→∞

dp(Pn+1,2)
dp(Pn,2)

= ϕ.

Figure 6. Path graph and possible cases related to the Theorem 7.1.

Theorem 7.1. For n ≥ 4, dp(Pn,2) = dp(Pn−1,2) + dp(Pn−2,2), where dp(P2,2) = dp(P3,2) = 1.

Proof. It is easy to see that dp(P2,2) = dp(P3,2) = 1. Now, suppose that n ≥ 4 and let V(Pn) =

{v1,v2, . . . ,vn} as we see in figure 6.. Suppose that D = {A, B} is a domatic partition of Pn. If
{vn−1,vn} ⊆ A, then D is not a domatic partion, because then B is not a dominating set, since
vn is not dominated by any other vertices of B. So without loss of generality, we have vn−1 ∈ A
and vn ∈ B. To show that dp(Pn,2) = dp(Pn−1,2) + dp(Pn−2,2), consider the following cases:

Case (1). If we consider Pn−1, and let D1 = {A1, B1} a domatic partion of Pn−1, then without loss
of generality suppose that vn−1 ∈ A1. Then by our argument, vn−2 ∈ B1. In this case let,
A = A1 and B = B1 ∪ {vn}. Then it is clear that D = {A, B} is a domatic partition of Pn,
and we have dp(Pn−1,2) domatic partition of size 2 for Pn.
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Case (2). If we consider Pn−2, and let D2 = {A2, B2} a domatic partion of Pn−2, then without loss
of generality suppose that vn−2 ∈ A2. Then by our argument, vn−3 ∈ B2. In this case
let, A = A2 ∪ {vn−1} and B = B2 ∪ {vn}. Then it is clear that D = {A, B} is a domatic
partition of Pn, and we have dp(Pn−2,2) domatic partition of size 2 for Pn.

Clearly, the domatic partitions from Case (1) and Case (2) are different. We claim that we
have counted all the possible cases and only need to know what is happening to vn−1 and
vn for domatic partitions of Pn, and therefore we don’t need to see what happens in other
cases and other cases are included in the mentioned ones. To show our claim, suppose that
we continue our cases. If we consider Pn−3, and let D3 = {A3, B3} a domatic partion of Pn−3,
vn−3 ∈ A3, and vn−4 ∈ B3, then to make dominating sets from A3 and B3 to have domatic
partition, we need to consider A = A3 ∪ {vn−1} = A1 and B = B3 ∪ {vn−2,vn} = B1 ∪ {vn}
which is calculated in Case (1), or A = A3 ∪ {vn−2,vn}= B1 ∪ {vn} and B = B3 ∪ {vn−1}= A1

which is calculated in Case (1) too. By a similar argument, we conclude that we have counted
all domatic partitions for other cases too. Note that if a dominating set has three consequent
vertices, then its complement is not a dominating set. Therefore we have the result.

As an immediate result of Theorem 7.1, we have:

Corollary 7.2. limn→∞
dp(Pn+1,2)

dp(Pn,2) = ϕ.

Proof. Since dp(Pn,2) follows the Fibonacci sequence, we have the result.

In [3] we extend this result to weak 2-coloring of a graph. Let recall the following defini-
tion:

Definition 3. [3] A weak k-coloring of a graph G = (V, E) assigns a color c(v) ∈ {1,2, . . . ,k}
to each vertex v ∈ V, such that each non-isolated vertex is adjacent to at least one vertex with
different color.

So a weak 2-coloring of a graph is equivalent to finding a domatic partition of a graph of
size 2. In the following, let W(G,2) be the family of weak 2-coloring of a graph G, and let
w2(G) = |W(G,2)|. So dp(G,2) = w2(G).

Theorem 7.3. [3] For any path Pn of order n ≥ 4,

w2(Pn) = w2(Pn−1) + w2(Pn−2),

where w2(P3) = w2(P2) = 1.

As an immediate result of Corollary 7.3, we have:

Corollary 7.4. limn→∞
w2(Pn+1)

w2(Pn)
= ϕ.
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