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Background and Objectives: Distributed generations (DGs) based on renewable 
energy, such as PV units, are becoming more prevalent in distribution networks due 
to technical and environmental benefits. However, the intermittency and 
uncertainty of these sources lead to technical and operational challenges. Energy 
storage application, uncertainty analysis, and network reconfiguration are apt 
therapies to resist these challenges.  
Methods: Energy management of modern, smart, and renewable-penetrated 
distribution networks is tailored here considering the uncertainties correlations. 
Network operation costs including switching operations, the expected energy not 
served (EENS) index as the reliability objective, and the node voltage deviation 
suppression as the technical objective are mathematically modeled. Multi-
objective particle swarm optimization (MOPSO) is considered as the optimization 
engine. Scenario generation method and Nataf transformation are used in 
probabilistic evaluations of the problem. Moreover, the technique for Order 
Preference by Similarity to the Ideal Solution (TOPSIS) is deployed to make a final 
balance between different objectives to yield a unified solution. 
Results: To show the effectiveness of the proposed approach, the IEEE 33-node 
distribution network is put under extensive simulations. Different cases are 
simulated and interrogated to assess the performance of the proposed model. 
Conclusion: For different objectives dealing with different aspects of the network, 
remarkable achievements are attained. In brief, the final solution shows 4.50% 
decrease in operation cost, 13.07% improvement in reliability index, and 18.85% 
reduction in voltage deviation compared to the initial conditions. 
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Introduction 

With the reduction of fossil fuel resources and global 

concerns about environmental pollution caused by these 

resources, the trend towards distributed generation 

(DGs) based on renewable energy sources (RESs) has been 

increased [1]-[3]. The utilization of RESs has significantly 

contributed to positive environmental, technical and 

economic benefits. However, it has some challenges too. 

Due to the uncertainty in the power delivered by RESs to 

the network, the exploitation of these resources in 

distribution networks has faced with several 

challenges [4]. 

Solar energy based on photovoltaics (PVs), as one of 

the most common types of RESs, has attracted the 

attention of distribution network operators. These 

sources provide their output electrical power by receiving 

solar radiation. Changes in the intensity of sunlight during 

the day and the dependency to the generation power of 

these units cause changes in the generation of power in 

the distribution network nodes. On the other hand, the 

mismatch between generation and consumption would 

cause dumping of available energy. Under these 
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conditions, the utilization and non-utilization of the 

available energy of these units lead to challenges such as 

voltage deviation in the nodes or an increase in costs in 

case of increased power losses [5]. 

Meanwhile of getting smart and moldering the 

networks, one of the available solutions to alleviate these 

conditions as well as balancing the share of RESs 

generation and the share of consumed load would be 

adoption of energy storage systems (ESS) alongside 

RESs [6]-[8]. For instance, using ESSs together with PV 

units provides the possibility of obtaining maximum 

power from these units and a more uniform output 

profile. With the help of ESSs, the output power of PVs 

can be stored until the time of need for their 

consumption. Balancing the power through ESS separates 

generation and consumption times, effectively. 

Alongside, by ESS deployment, the stability of the 

transmission and distribution network and the overall 

security of the energy system increases as well [9]-[11]. 

The operation strategy in networks with high penetration 

of RESs along with ESSs has changed during the past 

decades to overwhelm the probable problems. For 

example, in peak load conditions, the operator must 

reduce energy costs and improve energy efficiency; in 

other operating states, the reduction of greenhouse gases 

is considered. On the other hand, the positive effect of 

RESs and ESSs on the distribution network from a 

technical point of view depends on several factors and 

various considerations should be made.  

The mentioned cases and sources of uncertainties 

have turned optimal energy management in distribution 

networks into a challenge task. Energy management is a 

set of methods and actions carried out in different 

systems to use energy correctly and maximize benefits or 

minimize costs without reducing the quality of services. In 

other words, energy management is a method to ensure 

the rational use of energy in a system to improve the 

efficiency of that system [12]. Efficient and dynamic 

energy management is essential in active distribution 

networks to function adequately. This helps to improve 

operating conditions regarding cost optimization and 

technical capabilities. It also enhances reliability indices 

and minimizes voltage deviations at network nodes.  

As mentioned, renewable resources are aligned with 

uncertainties and if the effects of the uncertainties in the 

problem are not considered, the uncertain parameters 

would heavily influence the optimization goals. Here, the 

optimization plans might deviate from the desired goals 

and lead to the inefficiencies. Besides, various correlated 

uncertainties should be considered to provide reliable 

and durable solutions.  

Several studies have been conducted on the optimal 

management of charging and discharging of EES besides 

RESs [13]-[15]. However, these studies have not modeled 

network reconfiguration capability. Meanwhile, some 

studies have used intelligent evolutionary optimization 

algorithms for optimal management of distribution 

networks considering reconfiguration. In reference [16], 

the enhanced gravitational search algorithm (GSA) is 

proposed to improve transient stability, reduce total 

operating costs, and reduce losses. In [17], a combined 

method using particle swarm optimization (PSO) and the 

Nelder-Mead simplex search algorithm is proposed to 

implement reconfiguration for reducing active power 

losses. Also, in [18], genetic algorithm (GA) is proposed for 

reconfiguring distribution networks by considering a 

variable population size. In the presented studies, the 

changes in daily load curve have been ignored and a 

predetermined period is considered. Therefore, these 

conditions cannot produce accurate results and provide 

an optimal solution for daily 24-hours scheduling of 

distribution networks. In [19], the objective function 

minimizes operation and reliability costs with Tabu 

search. ESSs serve multiple objectives including peak 

shaving, voltage regulation, and reliability enhancement. 

A method for optimal scheduling of active distribution 

networks is tailored in [20]. This method is a two-stage 

process that considers the uncertainty risk associated 

with RESs, load, electricity price, and system component 

failure. This study focuses on the optimal dispatching of 

active distribution networks with ESSs under these 

uncertain conditions. 

Although these studies have addressed uncertainties, 

possible correlations between them were ignored. Few 

studies have paid attention to this gap. In [21], 

probabilistic energy management of an active distribution 

network is proposed which includes plug-in hybrid 

electric vehicles and power electronics devices like soft 

open point and smart transformer with an objective 

function of the average voltage deviation to be 

minimized, improving voltage stability, and maximizing 

daily profits. The correlation between uncertain input 

variables is modelled by modifying the “Hong’s 2m point 

estimate method”. Multi-objective DGs planning in 

distribution networks by considering correlations among 

uncertainties, i.e., wind speed, light intensity and load 

demand, is considered in [22]. Here, the objective 

function minimizes the annual total costs and risks. 

The studies mentioned have analyzed the impact of 

correlation among uncertain input variables on the 

energy management problem. However, there are still 

gaps in terms of utilizing the probabilistic evaluation 

method that is independent of the problem's dimensions 

and the number of uncertain variables, as well as 

modelling the correlation between them. Additionally, 

there is a need to develop effective objective functions 

and consider the possible technical tools such as 

reconfiguration of distribution networks. The main 
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contributions of this paper are summarized as follows: 

• Providing a probabilistic framework for optimal 

reconfiguration of the distribution network, optimal 

scheduling of ESSs and optimal reactive power setting 

of the compensator for each period. In this view, the 

cost of purchasing energy from the upstream network 

and the switching cost is reduced, reliability is 

increased, and voltage deviation index (VDI) is 

suppressed; 

• Proposing a scenario generation approach in 

probabilistic evaluation of the problem; 

• Developing a multi-objective PSO (MOPSO) method to 

optimally schedule of the network and provide a set of 

optimal solutions based on the Pareto front concept; 

• Deploying the technique for Order Preference by 

Similarity to the Ideal Solution (TOPSIS) for a trade-off 

between the objectives. 

Modelling of Uncertainties and Their Correlations 

They are different sources of uncertainties affecting 

the deterministic model results. Effective solutions should 

be considered for this issue. In this paper, three uncertain 

variables say as the load, the intensity of solar irradiance, 

and the price of electricity supplied by the substation are 

considered. 

A.  Uncertainty Modelling 

 Active Power Load 

For each time period, the samples of active power 

loads are generated by the Normal distribution function 

as (1) [23]. 

  𝑓(𝑥) =
1

σ×√2𝜋
× 𝑒

−(𝑥−μ)2

2×σ2   (1) 

where, σ and μ are the standard deviation and mean 

values, respectively. It should be mentioned that x 

denotes the related uncertain variable. 

 Solar Radiation 

The beta distribution function generates the solar 

irradiance samples for each time period as (2) [24]. 

  𝑓(𝑅) =
Γ(𝛼𝛽+𝛽𝛽)

Γ(𝛼𝛽)Γ(𝛽𝛽)
× 𝑅𝛼𝛽−1 × (1 − 𝑅)𝛽𝛽  (2) 

where, 𝛼𝛽  and 𝛽𝛽  are the parameters of the beta 

distribution function. It should be mentioned that the 

output power of 𝑃𝑉  units is the function of solar 

irradiance. Therefore, the related characteristic is 

considered as (3). 

  𝑃𝑃𝑉(𝑅) =

{
 
 

 
 𝑃𝑟

𝑃𝑉 × (
𝑅2

𝑅𝑆𝑇𝐷𝑅𝐶
) 0 ≤ 𝑅 < 𝑅𝐶

𝑃𝑟
𝑃𝑉 ×

𝑅

𝑅𝑆𝑇𝐷
𝑅𝐶 ≤ 𝑅 < 𝑅𝑆𝑇𝐷

𝑃𝑟
𝑃𝑉 𝑅𝑆𝑇𝐷 ≤ 𝑅

  (3) 

where, R denotes the solar radiation, 𝑅𝐶  denotes the 

certain radiation point, 𝑅𝑆𝑇𝐷 denotes the solar radiation 

in the standard conditions, and 𝑃𝑟
𝑃𝑉  denotes the power 

output of the PV unit. 

 The Purchased Electricity Price  

For each time period, the samples of the price of 

electricity supplied by the substation are generated by the 

Normal distribution function. 

B.  Correlation Modelling  

The Nataf transformation, or the Nataf correlation 

transformation, is a mathematical technique to model 

correlated input variables in engineering and risk analysis. 

It is beneficial in situations where traditional methods 

assume that input variables are independent; but in 

reality, they exhibit correlations [25]. The steps to 

perform this method are summarized as follows: 

 Correlation Matrix (R) 

The first step is to characterize the correlations 

between the input variables. This is done by specifying a 

correlation matrix, denoted by R, which quantifies the 

pairwise correlations between the variables. 

 Cholesky Decomposition 

Once the correlation matrix R is defined, it is 

decomposed using the Cholesky decomposition method. 

The Cholesky decomposition factors a positive definite 

matrix into a product of a lower triangular matrix and its 

transpose. This decomposition transforms the correlated 

variables into a set of uncorrelated variables. 

 Transformation Function 

After obtaining the Cholesky decomposition, a 

transformation function is applied to the original 

correlated variables to obtain uncorrelated variables. This 

transformation involves multiplying the Cholesky factor 

with the vector of correlated variables. 

 Inverse Transformation 

Once the analysis is performed on the uncorrelated 

variables, the results need to be transformed back to the 

original correlated space. This is achieved by applying the 

inverse of the transformation function to the results 

obtained from the uncorrelated variables. The matrix M, 

as a matrix of uncertain variables of the problem, is 

represented by (4). 

 

(4) 

The covariance matrix of the M is equal to (5). 

 
(5) 

In (5), R is a symmetric matrix and it can be written 

according to the Cholesky decomposition method to 

obtain the value of L, where L is the Cholesky factor of a 

1

2

X

X
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lower triangular matrix. To construct the correlation 

vector M, assume that W is a vector with N dimensions of 

an uncertain variable whose values are independent and 

whose variance is equal to one. Therefore, its covariance 

matrix is given by (6). 

 
(6) 

Using (6), the covariance matrix M can be written by 

(7) and the correlation matrix M can be obtained. 

 
(7) 

Therefore, the correlation between the values of the 

uncertain vector M is applied. 

C.  Scenario Selection Method for Probabilistic Evaluation 

In this approach, a large number of scenarios are 

generated to create a precise model of the system. 

However, developing more scenarios results in a higher 

computational burden. Therefore, it is essential to select 

a number of scenarios that reduces the computational 

burden while maintaining a good approximation of the 

uncertain parameters. The backward method eliminates 

duplicate scenarios or scenarios with minimum distance 

and helps to reduce the number of scenarios [26]. 

Problem Formulation 

In active distribution operation scheduling, there are 

different time frames to be investigated. The most 

important one, which is the case of this study too, is the 

day-ahead operation scheduling of the network. This 

scheduling platform is usually in hourly basis, as the case 

of this study. The time frame resolution effects the system 

on computational burden and the accuracy of the 

obtained results which are the inputs for the next 

scheduling smaller time frames, such the hour-ahead and 

etc. This section discusses decision variables, objective 

functions, and all equal and unequal constraints of the 

developed model. 

A.  Decision Variables  

The decision variables in this study include the state of 

normally open (NO) and normally close (NC) switches, the 

amount of charge and discharge of ESSs, and the amount 

of injected reactive power of capacitors at each operation 

interval. These variables are shown in (8). 

  𝑍 = [𝑍𝑆𝑊  𝑍𝐸𝑆𝑆  𝑍𝐶𝑎𝑝]  (8) 

where, 𝑍𝑆𝑊 is the opened switches, 𝑍𝐸𝑆𝑆 is the amount of 

charge and discharge of ESSs, and 𝑍𝐶𝑎𝑝 is the amount of 

reactive power injected by capacitors. 

The switches opened in the problem can be expressed 

according to (9). 

𝑍𝑆𝑊 = [�̅�𝑆𝑊1ˎ�̅�𝑆𝑊2ˎ … ˎ�̅�𝑆𝑊𝑁𝑆𝑊
]  (9) 

 

 

is also in accordance by (10). 

 �̅�𝑆𝑊𝑖
= [�̅�𝑆𝑊𝑖

1 ˎ�̅�𝑆𝑊𝑖

2 ˎ … ˎ�̅�𝑆𝑊𝑖

𝑁𝑇 ]    𝑖𝜖{1ˎ2ˎ… ˎ𝑁𝑆𝑊}  (10) 

where, �̅�𝑆𝑊𝑖

𝑗
 denotes the 𝑖𝑡ℎ  opened switch in 𝑡𝑡ℎ  time 

interval and 𝑁𝑇 denotes the number of time intervals. 

The charge/discharge amount of ESSs in the problem 

can be expressed by (11). 

 𝑍𝐸𝑆𝑆 = [�̅�𝐸𝑆𝑆1ˎ�̅�𝐸𝑆𝑆2ˎ … ˎ�̅�𝐸𝑆𝑆𝑁𝐸𝑆𝑆
]  (11) 

where, �̅�𝐸𝑆𝑆𝑖  is the charge/discharge amount of ith ESSs 

and 𝑁𝐸𝑆𝑆 is the number of ESSs. However, the 𝑍𝐸𝑆𝑆𝑖  is also 

in accordance by (12). 

  𝑍̅̅ ̅𝐸𝑆𝑆𝑖 = [�̅�𝐸𝑆𝑆𝑖
1 ˎ�̅�𝐸𝑆𝑆𝑖

2 ˎ … ˎ𝑍𝐸𝑆𝑆𝑖
𝑁𝑇 ]    𝑖𝜖{1ˎ2ˎ… ˎ𝑁𝐸𝑆𝑆} (12) 

where, �̅�𝐸𝑆𝑆𝑖
𝑡  denotes the charge/discharge amount of 𝑖𝑡ℎ 

ESSs in the 𝑡𝑡ℎ time period. 

The amount of reactive power injected by capacitors in 

the problem can be expressed according to (13). 

  𝑍𝐶𝑎𝑝 = [�̅�𝐶𝑎𝑝1ˎ�̅�𝐶𝑎𝑝2ˎ … ˎ�̅�𝐶𝑎𝑝𝑁𝐶𝑎𝑝
]  (13) 

where, �̅�𝐶𝑎𝑝𝑖  is the amount of reactive power injected by 

the 𝑖𝑡ℎ capacitor and 𝑁𝐶𝑎𝑝 is the number of capacitors. It 

should be mentioned that �̅�𝐶𝑎𝑝𝑖  is denoted by (14). 

�̅�𝐶𝑎𝑝𝑖 = [�̅�𝐶𝑎𝑝𝑖
1 ˎ�̅�𝐶𝑎𝑝𝑖

2 ˎ … ˎ�̅�𝐶𝑎𝑝𝑖
𝑁𝑇 ]   𝑖𝜖{1ˎ2ˎ… ˎ𝑁𝐶𝑎𝑝} (14) 

where, �̅�𝐶𝑎𝑝𝑖
𝑗

 denotes the amount of reactive power 

injected by the 𝑖𝑡ℎ capacitor in the 𝑡𝑡ℎ time period. 

B.  Objective Functions  

This study considers the total energy cost purchased 

from the upstream network, switching cost, reliability 

index based on expected energy not served (EENS), and 

VDI as objective functions.  

Each objective function is introduced in the following 

and their mathematical relations are stated. It should be 

noted that according to the developed probabilistic 

framework, the expected value of each objective function 

is considered and the relationships are presented 

accordingly. 

 Overall Operation Cost 

This objective function is given by (15). 

𝐶𝑜𝑠𝑡 = ∑ ∑ 𝜌𝑘 × (∑ 𝐶𝑛ˎ𝑘ˎ𝑡
𝑠𝑠 × 𝑃𝑛ˎ𝑘ˎ𝑡

𝑠𝑠𝑁𝑆𝑢𝑏
𝑛=1 )𝐾

𝑘=1
𝑁𝑇
𝑡=1 +

∑ ∑ 𝐶𝑆𝑊 × |𝑆𝑖
𝑡 − 𝑆0,𝑖

𝑡 |
𝑁𝑆𝑊
𝑖=1

𝑁𝑇
𝑡=1   

(15) 

where, K is the number of scenarios, 𝜌𝑘 is the probability of 

kth scenario, 𝑁𝑆𝑢𝑏 is the number of substations, 𝐶𝑛ˎ𝑘ˎ𝑡
𝑠𝑠  is the 

price of energy from nth substation, 𝑃𝑛ˎ𝑘ˎ𝑡
𝑠𝑠  is the amount of 

active power received from 𝑛𝑡ℎ substation belonging to 𝑘𝑡ℎ 

scenario in 𝑡𝑡ℎ time period, 𝐶𝑆𝑊 is the switching cost, and 

𝑆𝑖
𝑡  and 𝑆0ˎ𝑖

𝑡  are the new and old state of the 𝑖𝑡ℎ  key in 𝑡𝑡ℎ 

period, respectively. 

( )
T

C E WW IW  

(MM ) ( )
T T T

C E E LWW L RM   

where, 𝑍𝑆𝑊𝑖
 denotes the 𝑖𝑡ℎ  opened switch and 𝑁𝑆𝑊 

denotes the number of opened switches. However, 𝑍𝑆𝑊𝑖
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 EENS as Reliability Index   

To increase the reliability, EENS index is minimized in 

the developed model. The mentioned index can be 

expressed according to (16) [27]-[28]. 

 𝐸𝐸𝑁𝑆 =  ∑ ∑ 𝜌𝑘
𝐾
𝑘=1

𝑁𝑇
𝑡=1   

× (∑ 𝑃𝑖ˎ𝑘ˎ𝑡 × (∑ 𝑈𝑙 + ∑ 𝑈𝑠
′

𝑠∈𝐻𝑖
′𝑙∈𝐻𝑖

)
𝑁𝑁𝑜𝑑𝑒𝑠
𝑖=1 )  

(16) 

where, 𝑁𝑁𝑜𝑑𝑒𝑠  denotes the number of nodes, 𝑃𝑖ˎ𝑘ˎ𝑡 

denotes the sum of the active power generation and 

consumption of the 𝑖𝑡ℎ node belonging to the kth scenario 

in 𝑡𝑡ℎ  period of the operation period, 𝑈𝑙  denotes the 

amount of unavailability related to the repair time of the lth 

branch down of the 𝑖𝑡ℎ node, 𝑈𝑠
′ denotes the unavailability 

related to the recovery time s of the branch forward of the 

𝑖𝑡ℎ  node, respectively. Also, 𝐻𝑖  and 𝐻𝑖
′  are the sets of 

branches downstream and upstream of the ith line, 

respectively. It should be noted that 𝑈𝑙  and 𝑈𝑠
′  are 

expressed by (17) and (18), respectively. 

 𝑈𝑙 = 𝛽𝑙 × 𝑡𝑙  (17) 

 𝑈𝑠
′ = 𝛽𝑠 × 𝑡𝑠

′   (18) 

where, 𝛽𝑙 and 𝛽𝑠 are the failure rates related to lth and sth 

branches, respectively. Also, 𝑡𝑙  and 𝑡𝑠
′  are the average 

repair time of the lth branch and the average recovery 

time of the 𝑠𝑡ℎ branch (distribution line), respectively. 

 VDI 

This objective function is defined based on difference 

between the network nodes' voltage magnitude and the 

distribution substation's voltage magnitude (usually 

assumed to be equal to 1 per unit) expressed by (19). 

𝑉𝐷𝐼 =
1

𝑁𝑇
∑ ∑ 𝜌𝑘 × (∑ (1 − |𝑉𝑖|)

2𝑁𝑁𝑜𝑑𝑒𝑠
𝑖=1 )

𝑘ˎ𝑡
𝐾
𝑘=1

𝑁𝑇
𝑡=1   (19) 

where, |𝑉𝑖| denotes the voltage magnitude of ith node. 

C.  Equal and Unequal Constraints  

At each time interval, the constraints related to the 

proposed optimization problem are considered as 

follows. In the probabilistic environment, the value of 

network output variables, such as the magnitude of the 

node voltage or current in distribution lines, is replaced 

by the expected value of these variables [29]-[30]. 

(20) 
 𝑃𝑠𝑠 +∑𝑃𝑃𝑉𝑖

𝑁𝑃𝑉

𝑖=1

+ ∑ ±𝑃𝐸𝑆𝑆𝑖

𝑁𝐸𝑆𝑆

𝑖=1

 

= ∑ 𝑃𝐿𝑖
𝑁𝐿𝑜𝑎𝑑
𝑖=1 +∑ 𝑃𝐿𝑜𝑠𝑠𝑒𝑠𝑖

𝑁𝐿𝑖𝑛𝑒𝑠
𝑖=1   

(21) 
 𝑄𝑠𝑠 +∑𝑄𝑃𝑉𝑖

𝑁𝑃𝑉

𝑖=1

+ ∑ 𝑄𝐶𝑎𝑝𝑖

𝑁𝐶𝑎𝑝

𝑖=1

 

= ∑ 𝑄𝐿𝑖
𝑁𝐿𝑜𝑎𝑑
𝑖=1 +∑ 𝑄𝐿𝑜𝑠𝑠𝑒𝑠𝑖

𝑁𝐿𝑖𝑛𝑒𝑠
𝑖=1   

(22)  𝐸𝑖ˎ𝑡 = 𝐸𝑖ˎ𝑡−1 ± 𝑃𝐸𝑆𝑆𝑖 × ∆𝑡  

(23)  𝐸𝐸𝑆𝑆
𝑚𝑖𝑛 ≤ 𝐸𝐸𝑆𝑆𝑖 ≤ 𝐸𝐸𝑆𝑆

𝑚𝑎𝑥                   𝑖 ∈ 𝑁𝐸𝑆𝑆  

(24) −𝑃𝐸𝑆𝑆
𝑚𝑎𝑥 ≤ 𝑃𝐸𝑆𝑆𝑖 ≤ +𝑃𝐸𝑆𝑆

𝑚𝑎𝑥           𝑖 ∈ 𝑁𝐸𝑆𝑆  

(25)  0 ≤ 𝑄𝐶𝑎𝑝𝑖 ≤ 𝑄𝐶𝑎𝑝
𝑚𝑎𝑥                        𝑖 ∈ 𝑁𝐶𝑎𝑝 

(26)  |𝑉|𝑚𝑖𝑛 ≤ E[|𝑉𝑖|] ≤ |𝑉|
𝑚𝑎𝑥          𝑖 ∈ 𝑁𝑁𝑜𝑑𝑒𝑠 

(27)  0.9 ≤ |𝑉𝑖| ≤ 1.1                             𝑖 ∈ 𝑁𝑁𝑜𝑑𝑒𝑠 

(28)  P(|𝑉𝑖| ≥ |𝑉|
𝑚𝑎𝑥) ≤ 0.05             𝑖 ∈ 𝑁𝑁𝑜𝑑𝑒𝑠 

(29)  P(|𝑉𝑖| ≤ |𝑉|
𝑚𝑖𝑛) ≤ 0.05             𝑖 ∈ 𝑁𝑁𝑜𝑑𝑒𝑠 

(30)  E[|𝐼𝑖|] ≤ |𝐼𝑟𝑎𝑡𝑒𝑖|                             𝑖 ∈ 𝑁𝐿𝑖𝑛𝑒𝑠 

(31)  |𝐼𝑖| ≤ 1.25 × |𝐼𝑟𝑎𝑡𝑒𝑖|                    𝑖 ∈ 𝑁𝐿𝑖𝑛𝑒𝑠 

(32)  P(|𝐼𝑖| ≥ |𝐼𝑟𝑎𝑡𝑒𝑖|) ≤ 0.05            𝑖 ∈ 𝑁𝐿𝑖𝑛𝑒𝑠 

where, 𝑃𝑠𝑠 and 𝑄𝑠𝑠 are the active and reactive power 

received from the upstream network, respectively, 𝑁𝑃𝑉 is 

the number of 𝑃𝑉 units, 𝑃𝑃𝑉𝑖  and 𝑄𝑃𝑉𝑖  are the output 

active and reactive power of 𝑖𝑡ℎ 𝑃𝑉, respectively, 𝑄𝐶𝑎𝑝𝑖  is 

the amount of reactive power injected by 𝑖𝑡ℎ capacitor, 

𝑃𝐸𝑆𝑆𝑖  is the amount of charging power (with a negative 

sign) or the amount of discharging power (with a positive 

sign) corresponding to the ith ESS, 𝑁𝐿𝑜𝑎𝑑 is the load 

number, 𝑃𝐿𝑜𝑠𝑠𝑒𝑠𝑖 and 𝑄𝐿𝑜𝑠𝑠𝑒𝑠𝑖 are the active and reactive 

power losses of the 𝑖𝑡ℎ line, respectively, ∆𝑡 is the time 

frame from operation period, 𝐸𝐸𝑆𝑆𝑖 is the amount of 

energy of the 𝑖𝑡ℎ ESS, 𝐸𝑖ˎ𝑡 and 𝐸𝑖ˎ𝑡−1 are the amount of 

energy available in the 𝑖𝑡ℎ ESS in the 𝑡𝑡ℎ and t-1th time 

periods, respectively, 𝐸𝐸𝑆𝑆
𝑚𝑖𝑛 and  𝐸𝐸𝑆𝑆

𝑚𝑎𝑥 are the lower and 

upper limits of the amount of energy available in ESSs, 

respectively. ESS is a device which provides a solution for 

energy storing and then discharging. In this way, to 

manage the uncertainties and especially when there are 

fluctuations in energy generation such as wind and 

photovoltaics and also energy consumption such as 

consumer behaviors, ESS provides a place where the 

energy shortfall could be compensated or extra energy 

generation could be stored. In this way, the developed 

operation scheduling model should determine the energy 

charging/discharging of ESS beside the other decision 

variables.  𝑃𝐸𝑆𝑆
𝑚𝑎𝑥 is the maximum active power that can be 

charged and discharged by ESSs, 𝑄𝐶𝑎𝑝
𝑚𝑎𝑥 is the maximum 

reactive power injected by the 𝑖𝑡ℎ capacitor, |𝑉|𝑚𝑖𝑛 and 
|𝑉|𝑚𝑎𝑥 are the lower and the upper limits of the nodes 

voltage magnitude, respectively. In operation scheduling 

problems, maintaining a proper voltage quality is of great 
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importance for a proper service provision for customers. 

To do so, technical constraints are considered which keep 

the voltage within the operation standards in the 

developed model. In this study, this requirement is met 

by constraints (26)-(29). 𝑃( ) is the probability operator, 

𝐸[ ] is the expected value operator, and |𝐼𝑟𝑎𝑡𝑒𝑖| is the 

maximum rate of 𝑖𝑡ℎ line.   

Simulation Results 

A.  Case Study  

In order to show the effectiveness of the proposed 

method, the IEEE 33-node test network is used. This 

network has 33 nodes, 32 branches, and 5 tie lines. The 

nominal voltage of this network is 12.66 kV [22].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: Load variations curve. 

 

 

It should be noted that the failure rate of the lines is 

considered such that the line with the lowest and highest 

impedance has a failure rate of 0.1 and 0.4 per year, 

respectively. The failure rate of the rest of the lines is 

obtained from the interpolation method [23]. Fig. 1 shows 

the single-line diagram of the IEEE standard 33-node 

network. 

B.  Assumptions  

The load curve for the study case is shown in Fig. 2. It 

is reminded that the operation period in this study 

contains 24 hours by 3-hours-duration step intervals. Fig. 

3 also shows the curve of variations in the purchase price 

of energy from the upstream network for each time 

period of the study period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Electricity price variations. 

 

 

 

Fig. 1: The IEEE 33-node test network. 
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It should be mentioned that the correlation between 

uncertain input variables is modeled by Nataf 

Transformation method. For this purpose, the correlation 

coefficient between loads in different nodes is assumed 

to be 0.2, the correlation coefficient between the 

intensity of sunlight in different nodes is 0.7, and the 

correlation coefficient between energy consumption and 

the intensity of sunlight in the corresponding nodes is 

assumed to be -0.2. The charging and discharging of ESSs 

is assumed to be between 20% and 80% of their total 

capacity. For the equal or unequal constraints, the 

following assumptions are also considered: 

 𝐸𝐸𝑆𝑆
𝑚𝑖𝑛 = 60 𝑘𝑊ℎ  

 𝐸𝐸𝑆𝑆
𝑚𝑎𝑥 = 240 𝑘𝑊ℎ  

 𝑃𝐸𝑆𝑆
𝑚𝑎𝑥 = 30 𝑘𝑊  

 |𝑉|𝑚𝑖𝑛 = 0.95  

 |𝑉|𝑚𝑎𝑥 = 1.05  

Also, it is assumed that three PV units with nominal 

capacity equal to 500 kW, 300 kW, and 400 kW are 

installed at nodes 8, 12, 28, respectively. It should be 

mentioned that the power factor of these units is 

considered equal to 1.  

In Table 1, shape parameters of the beta distribution 

function in different time periods is presented. It should 

be noted that these parameters are used for all three PV 

units. For example, the probability distribution function 

related to the intensity of sunlight in fourth and sixth 

periods is presented in Fig. 4. 
 

Table 1: Shape parameters of the beta distribution function 

 

Period 
𝜶𝜷 (

𝒌𝑾

𝒎𝟐
) 𝜷𝜷 (

𝒌𝑾

𝒎𝟐
) 

1 0 0 

2 0 0 

3 2.1440 0.4440 

4 2.1440 0.4440 

5 1.0820 0.3860 

6 1.0820 0.3860 

7 0.0714 0.6040 

8 0 0 

 

C.  Simulation results  

Table. 2 presents the statistical information related to 

the objective functions considered in this study in the 

initial evaluation conditions. These values are used to 

show the effectiveness of the proposed solution. It should 

be noted that Monte Carlo simulation (MCS) scenario 

generation is used to extract the information in Table 2. 

 
 

Fig. 4: Probable distribution related to the intensity of sunlight 

in the 4th and 6th periods. 
 

Table 2: The values of the objective functions in the initial 
evaluation conditions 
 

Objective 

functions 

Probabilistic methods 

MCS 
Scenario 

generation 

𝐄[ ] 𝛔[ ] 𝐄[ ] 𝛔[ ] 

𝑪𝒐𝒔𝒕 ($) 4143.58 396.81 4146.87 206.89 

𝑬𝑬𝑵𝑺 (
𝐤𝐖𝐡

𝐲𝐞𝐚𝐫
) 1027768 54088.96 1024829 41245.35 

𝑽𝑫𝑰 (𝒑. 𝒖. ) 0.1278 0.0209 0.1289 0.0127 

𝑻𝒊𝒎𝒆 (𝒔) 1300.12 3.45 

 

As it is clear from Table 2, scenario generation method 

has good accuracy in extracting the expected value of the 

objective functions; this is while, its computational time is 

much less than the MCS method. It is essential to mention 

that the standard deviation value error of the scenario 

generation method is higher than the expected value 

error of the MCS method. For example, the error of the 

scenario generation method compared to the MCS 

method in calculating the expected value and standard 

deviation of cost is 0.0793% and 47.86%, respectively. 

Since the expected value of the objective functions is used 

in this study, the scenario generation performance is very 

suitable. 

The MOPSO method is used to solve the proposed 

problem and the TOPSIS is contemplated to establish a 

logical compromise between different objective functions 

to reach to the final solution. Table 3 shows the value of 

the objective functions for this set of obtained solutions. 

As can be seen from this table, the value of the objective 

functions is obtained for each solution. Among the 



S. Abbasi et al. 

564  J. Electr. Comput. Eng. Innovations, 12(2): 557-567, 2024 
 

obtained solutions, solution number 1 is the best solution 

from the cost point of view. Under these conditions, the 

value of this objective function is decreased from 

$4146.87 in the initial conditions to $3718.82. 

Meanwhile, solution number 15 is the best solution from 

the viewpoint of EENS index. This solution has achieved 

19.48% improvement in this objective function.  
 

Table 3: The value of the objective functions for the set of 
optimal solutions obtained based on the Pareto front using 
MOPSO algorithm 
 

Solution 

No. 
𝑪𝒐𝒔𝒕 ($) 𝑬𝑬𝑵𝑺 (

𝒌𝑾𝒉

𝒚𝒆𝒂𝒓
) 𝑽𝑫𝑰 (𝒑. 𝒖. ) 

1 3718.82 945710 0.1045 

2 3774.89 930216 0.1013 

3 3793.68 925520 0.1026 

4 3865.81 907274 0.1019 

5 3919.62 893886 0.1049 

6 3960.12 890841 0.1046 

7 3962.17 888589 0.1075 

8 4046.62 869990 0.1068 

9 4073.78 861792 0.1065 

10 4128.61 851891 0.1086 

11 4155.60 843368 0.1120 

12 4219.15 832810 0.1136 

13 4222.10 829960 0.1152 

14 4247.13 825250 0.1174 

15 4250.20 825160 0.1170 

 

Also, solution number 2 is known as the best solution 

from the VDI point of view. By applying this solution, the 

value of this objective function decreases from 0.1289 to 

0.1013. Fig. 5 also shows the three-dimensional 

compromise space between different objective functions 

obtained for the problem per set of optimal solutions 

based on the Pareto front. 

The mentioned solutions are the best from the point of 

view of each objective function. The situation of an 

objective function for the best solution from the point of 

view of another objective function may be even worse 

than the initial conditions (for example, solution number 

15 has worsened the value of cost compared to the first 

evaluation). In this regard, TOPSIS is used to choose an 

optimal solution that can make a compromise between all 

the objective functions and improve all these functions to 

an appropriate extent. The ranking results of this method 

for the set of optimal solutions are obtained in Table 3 are 

presented in Table 4. 

 
 

Fig. 5: Three-dimensional compromise space between the 

objective functions based on the set of optimal solutions 
obtained from the Pareto front. 

 

 

Table 4: Decision-making results with TOPSIS 
 

Scenario 1 Scenario 2 

𝝎
𝟏
= 𝟎. 𝟓ˎ 𝝎𝟐 = 𝟎. 𝟐𝟓ˎ 

 𝝎𝟑 = 𝟎. 𝟐𝟓 

𝝎
𝟏
= 𝟎. 𝟑𝟒ˎ 𝝎𝟐 = 𝟎. 𝟑𝟑ˎ 

 𝝎𝟑 = 𝟎. 𝟑𝟑 

Rank 
Solution 

No. 
𝑪𝒍+ Rank 

Solution 

No. 
𝑪𝒍+ 

1 2 0.6967 1 6 0.6190 

2 3 0.6210 2 4 0.6000 

3 1 0.6786 3 5 0.5970 

 

As can be seen from Table 4, it is presented for two 

decision-making modes. In the first case, the importance of 

the cost objective function is more significant than that of 

the other objective functions (the weight coefficient of this 

objective function is higher). However, the importance of 

the EENS and VDI index is assumed to be the same. Under 

these conditions, solution number 2 is chosen as the 

preferred solution. In the second case, the weight 

coefficients of all objective functions are considered the 

same. In other words, importance of all objective functions 

for the network operator is the same. Under these 

conditions, solution 6 is selected as the final solution. Table 

5 shows this solution's optimal values. 

As can be seen from Table 5, each of the decision 

variables is optimally determined in each period of the 

network operation. This solution is known as a solution 

that has made a reasonable compromise between 

different objective functions. On the other hand, it is 

resistant to any uncertainty in the network and can be 

dynamically used by the network operator. 
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Table 5: optimal values of decision-making variables 
 

Decision 

variables 

Study period 

th1 th2 th3 th4 th5 th6 th7 th8 

𝒁𝑺𝑾𝟏
 6 7 6 6 5 7 6 7 

𝒁𝑺𝑾𝟐
 11 10 13 14 10 10 14 14 

𝒁𝑺𝑾𝟑
 13 13 21 21 14 13 21 21 

𝒁𝑺𝑾𝟒
 17 26 26 26 25 25 27 26 

𝒁𝑺𝑾𝟓
 26 30 31 30 30 30 31 30 

𝒁𝑬𝑺𝑺𝟏  (𝒌𝑾) 16.56 10.49 -23.61 -5.18 -21.18 38.18 -3.05 14.98 

𝒁𝑬𝑺𝑺𝟐  (𝒌𝑾) 2.94 5.51 -15.60 -9.80 10.05 16.00 -4.60 -4.65 

𝒁𝑬𝑺𝑺𝟑  (𝒌𝑾) 10.18 -19.40 10.12 0.5489 10.18 2.56 -26.9 20.16 

𝒁𝑪𝒂𝒑𝟏  (𝒌𝑽𝑨𝒓) 34.30 41.90 39.35 70.14 35.50 56.80 65.10 32.65 

𝒁𝑪𝒂𝒑𝟐  (𝒌𝑽𝑨𝒓) 51.94 59.10 53.26 54.48 93.26 50.68 64.30 26.90 

 

Fig. 6 shows the charging and discharging state of 

storage for each operation period. In this study, the 

charge state is assumed to be a negative sign and the 

discharge state is considered a positive sign. This figure 

shows that storage is often charged during low energy 

price hours. Meanwhile, as energy prices become more 

expensive, storage devices are usually in a state of 

discharge. Table 6 presents statistical information related 

to cost in different periods, which is very important in risk 

management and knowing the number of changes in the 

objective function due to the uncertainties above. 
 

 
 

Fig. 6: The charging and discharging state pf storage for each 
operation period. 

Table 6: Operation cost statistical information  
 

Period 𝑬[ ] 𝝈[ ] 

th1 328.91 14.36 

th2 335.45 14.61 

th3 325.08 18.90 

th4 404.68 23.40 

th5 510.95 27.90 

th6 468.80 25.62 

th7 689.59 30.48 

th8 658.12 30.01 

 
In general, the results obtained in this section showed 

that the proposed study method in solving the problem of 

energy management along with the optimal 

rearrangement of distribution networks with the goals of 

reducing the cost of operation, including the cost of 

purchasing energy from the upstream network and 

reducing switching costs, improving the reliability index in 

the form of an index EENS and VDI enhancements are very 

effective. Considering a wide range of uncertainties and 

including correlations between uncertain input variables 

leads to providing more reliable solutions. Meanwhile, 

providing a set of optimal solutions gives the network 

operator more flexibility in decision-making. 

Conclusion 

In this study, the MOPSO method was shown to 

provide a good performance in solving the energy 

management problem along with the rearrangement of 

distribution networks. This method, with the ability to 

provide a set of solutions based on the Pareto front, gives 

more decision-making power to the network operator. 

The solutions provided by this method can be 

summarized in four modes. The solution chosen as the 

best solution from the cost of operating point of view 

reduced the value of this objective function by 10.32%. At 

the same time, the EENS and VDI indices improved by 

7.72% and 18.93%, respectively. The solution obtained as 

the best solution from the reliability improvement point 

of view was able to improve the value of this objective 

function by 19.48%. Meanwhile, network operation cost 

for this situation has increased by 2.57% and VDI has also 

improved by 9.23%. The solution chosen as the best 

solution from the VDI point of view reduced the value of 

this objective function by 21.41%. Meanwhile, this 

solution improved the operating cost and EENS indices by 

8.97% and 9.23%, respectively. By applying TOPSIS to the 

set of solutions obtained for the problem in question and 

considering the same weighting factor for all objective 

functions, a solution was obtained that can be said to be 
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a balanced solution for the situation. Because it 

guarantees the relative improvement of all objective 

functions, this solution has improved the operating cost 

value by 4.50%, the EENS index value by 13.07% and the 

VDI value by 18.85% compared to the initial conditions. 

The effectiveness of the scenario generation method was 

proved as one of the probabilistic evaluation methods in 

this problem. This method has a much higher speed than 

methods like MCS. Meanwhile, its relative error rate in 

comparison of statistical moments compared to the MCS 

method as the reference one is appropriate and 

acceptable. The correlation between non-deterministic 

input variables affects the distribution and extraction of 

non-deterministic samples. Therefore, it can be said that 

the problems' uncertainties are more severe, and the 

obtained solutions are closer to reality. Changing the 

extraction of input samples effectively solves the 

problem. Therefore, all the obtained solutions based on 

the Pareto front in this problem are more resistant 
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