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Background and Objectives: Cadastral boundary detection deals with locating the 
boundary of the ownership and use of land. Recently, there has been high demand 
for accelerating and improving the automatic detection of cadastral mapping. As 
this problem is in its starting point, there are few researches using deep learning 
algorithms.  

Methods: In this paper, we develop an algorithm with a Mask R-CNN core followed 
with geometric post-processing methods that improve the quality of the output. 
Many researches use classification or semantic segmentation but our algorithm 
employs instance segmentation. Our algorithm includes two parts, each of which 
consists of a few phases. In the first part, we use Mask R-CNN with the backbone 
of a pre-trained ResNet-50 on the ImageNet dataset. In the second part, we apply 
three geometric post-processing methods to the output of the first part to get 
better overall output. Here, we also use computational geometry to introduce a 
new method for simplifying lines which we call pocket-based simplification 
algorithm. 
Results: We used 3 google map images with sizes 4963 × 2819, 3999 × 3999, and 
5520 × 3776 pixels. And divide them to overlapping and non-overlapping 400×400 
patches used for training the algorithm. Then we tested it on a google map image 
from Famenin region in Iran. To evaluate the performance of our algorithm, we 
use popular metrics Recall, Precision, and F-score. The highest Recall is 95%, which 
also maintains a high precision of 72%. This results in an F-score of 82%. 

Conclusion: The idea of semantic segmentation to derive boundary of regions, is 
new. We used Mask R-CNN as the core of our algorithm, that is known as a very 
suitable tools for semantic segmentation. Our algorithm performs geometric post-
process improves the f-score by almost 10 percent. The scores for a region in Iran 
containing many small farms is very good.  
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Introduction 

One of the bases of land administration systems is 

recording the ownership and physical location of real 

properties, which are called cadastres [1]. Recently, 

cadastral mapping has received considerable attention. 

An effective cadastral system formalizes private property 

rights, which is very important to promote agricultural 

productivity, support national development, and secure 

an effective land market [2]. 

However, estimates suggest that about 75% of the 

world's population doesn’t have access to a formal 

system to register and safeguard their land rights. 

Establishing a complete land cadaster and keeping it up-

to-date is a contemporary challenge for many developing 

and developed countries [3], [4]. This lack of recorded 
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land rights increases insecure land tenure and fosters 

existence-threatening conflicts, particularly in developing 

countries. Recording land rights spatially, i.e., cadastral 

mapping by traditional field surveying approaches, is 

considered the most expensive, time-consuming, and 

labor-intensive part of a land administration system. 

Therefore, in order to speed up the process, we need 

innovative tools [5], [6]. 

Earth observation satellites provide very high-

resolution (VHR) images. Unmanned aerial vehicle (UAV) 

images are also available in different areas. According to 

the Union of Concerned Scientists (UCS), there were 971 

EO satellites in orbit on the 30th of April 2021. For 

context, when they did a similar report at the end of April 

2018, there were only 684 satellites, so there has been a 

41.95% increase over the three years [7]. 

Since the availability of VHR images, remote sensing 

has been used for mapping cadastral boundaries instead 

of field surveying and is advocated by fit-for-purpose 

(FFP) land administration [3]. In these images, visible 

cadastral boundaries are often marked by physical objects 

such as rivers, roads, water drainages, building walls, 

clusters of stones, fences, strips of uncultivated land, 

ditches, etc. [1]. These boundaries are apparent in 

remotely sensed images and can be automatically 

identified using image processing algorithms [6].  

Recent studies have highlighted the effectiveness of 

deep learning techniques, such as Convolutional Neural 

Networks (CNNs), in extracting high-level representations 

crucial for detection and classification tasks, opening up 

new opportunities in cadastral boundary detection [8,9]. 

In deep learning, two primary approaches are 

commonly employed to train CNNs: starting from scratch 

or utilizing transfer learning [10]. In this study, we opt for 

the Mask R-CNN model with a pre-trained ResNet-50 

backbone from the ImageNet dataset for instance 

segmentation to identify cadastral boundaries. This 

approach, initially used by Mayer et al. [11], focuses on 

delineating the boundaries of individual fields. Here we 

focus on finding the boundary of each individual farm and 

leveraging transfer learning for pre-trained ResNet-50 

was used. Also, we introduce a new geometric method for 

simplifying lines (extracted boundary) which we call the 

Pocket-based simplification algorithm that achieves 

better performance than the commonly used Douglas-

Peucker algorithm [12]. 

The Core of our algorithm is a Mask R-CNN with the 

backbone of a pre-trained ResNet-50 on the ImageNet 

dataset to produce the initial output, which is a 

probability map of fields or non-field pixels. Then, Otsu's 

binary method with a certain threshold is applied to the 

output to identify which pixels represent fields. Finally, 

Canny edge detection algorithm delineates the 

boundaries of these fields. In the second part, to enhance 

the results, we eliminate fields that have very small area. 

Then, we remove polygons inside other polygons, and 

finally, the extracted lines (boundaries) are simplified 

using a new geometric simplification algorithm. The third 

part involves accuracy assessment where we add a buffer 

to the ground-truth boundaries and calculate Recall, 

Precision, and F-score in various scenarios. 

This paper is organized as follows: in section Literature 
Review we review recent results in this field. In the 
section Method, we first describe our algorithm in detail 
and evaluation methods. Details on the training data are 
provided in the section Experimental Study. Section 
Evaluation following by section results and discussion, 
focuses on assessing the model and comparing our 
proposed simplification algorithm with the state-of-the-
art. Finally, in the last section, we present our final 
conclusion and open problems. 

Literature Review 
In this section, we review some studies in this field and 

discuss various image processing methods to address 

problems. 

Some methods for cadastral mapping are based on 

image segmentation and edge detection. In Drăguţ et al. 

[13], they introduce a new automated approach called 

Multi-Resolution Segmentation (MRS) for parameterizing 

multi-scale image segmentation of multiple layers. This 

approach relies on the potential of local variance to 

detect scale transitions in geospatial data. Classical edge 

detection aims to identify sharp changes in image 

brightness through local measurements, including first-

order (e.g., Prewitt or Sobel) and second-order (e.g., 

Gaussian or Laplacian) derivative-based detection [14]. 

In a study by Crommelinck et al. [15] they aimed to 

apply computer vision techniques to analyze remotely 

sensed UAV images for UAV-based cadastral mapping. 

Their approach involved a three-step process for 

identifying cadastral boundaries. The first step is image 

preprocessing, where the UAV orthoimage underwent 

resampling to lower resolutions and was divided into 

patches. Next, in boundary delineation, they utilized the 

Globalized Probability of Boundary (gPb) contour 

detection method, the state-of-the-art computer vision 

method, on each patch. This process generated contour 

maps with probabilities assigned to contours per pixel. 

Lastly, in image post-processing, all patches from the 

same image were combined to create a unified contour 

map and a binary boundary map, which was then 

converted into vector format. This systematic procedure 

allowed for the representation of cadastral boundaries 

for mapping applications. 

Numerous studies have employed Convolutional 

Neural Network (CNN) tools for cadastral mapping, with 

Crommelinck et al. [16] presenting a three-step workflow. 

The first step involves image segmentation to extract 
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visible object outlines, followed by boundary 

classification to predict the likelihood of boundaries for 

the extracted segment lines. The final step is interactive 

delineation, connecting these lines based on the 

predicted boundary likelihood. 

For image segmentation, Multiresolution 

Combinatorial Grouping (MCG) generates closed 

contours that show the outlines of objects. Then, a 

boundary classification is applied to the resulting post-

processed MCG lines, using two machine learning 

approaches: Random Forest (RF) and pre-trained VGG19 

through transfer learning, to achieve boundary likelihood 

per line. Interactive delineation facilitates the creation of 

final cadastral boundaries through various functions as a 

plugin in QGIS. All training images used in their study are 

obtained from UAV images. 

In Fetai et al. [17], UAV images are utilized in their 

workflow, which comprises three main steps: Image pre-

processing, boundary detection and extraction, and data 

post-processing. The initial step involves resampling the 

UAV orthoimage, followed by applying the ENVI feature 

extraction module [18], [19] to each down-sampled UAV 

orthoimage. In the final step, extracted objects are 

filtered and simplified. 

Xia et al. [6] utilize deep Fully Convolutional Networks 

(FCNs) to detect cadastral boundaries using UAV images 

captured over urban and semi-urban areas. They 

approach boundary detection as a supervised pixel-wise 

image classification task to differentiate between 

boundary and non-boundary pixels. The network 

employed in their research is a modified version of the 

FCN with dilated kernel (FCN-DK) detailed in [20]. Other 

studies in this field can be found in [21]-[23]. 

Our solution is based on instance segmentation, which 

has become one of the relatively important, complex, and 

challenging areas in computer vision research. Hafiz et al. 

[24] review some advances in instance segmentation: 

Girshick et al. [25] were among the first to explore 

CNNs for instance segmentation [26]. They developed the 

R-CNN technique, which integrated AlexNet [27] along 

with a region proposal using the selective search 

technique [28]. However, it has some drawbacks, such as 

having difficult and slow training. Therefore, Girshick [29] 

introduced Fast R-CNN, which addressed some of the 

issues of R-CNN and improved its object detection ability. 

In Zagoruyko et al. [30], MultiPath Network was 

introduced by applying three modifications to the 

standard Fast R-CNN model. Initially, skip connections 

have been integrated to grant the object detector access 

to features from various network layers. Subsequently, a 

foveal component has been used to leverage the context 

of objects across varying resolutions. Lastly, an integral 

nature loss function has been included. 

Although Fast R-CNN improved detection speed 

significantly, it still depended on external region 

proposals, which posed a computational bottleneck. To 

address this issue, Ren et al. [31] introduced the Faster R-

CNN model with a Region Proposal Network (RPN) for 

efficient and accurate region proposal generation. This 

model utilized the same backbone network and extracted 

features from the last shared convolutional layer for both 

RPN-based region proposal and Fast R-CNN region 

classification. 

Finally, He et al. [32] introduced Mask R-CNN as a 

straightforward and adaptable model for instance 

segmentation. This model efficiently achieves instance 

segmentation by combining object detection with the 

concurrent creation of precise masks. Mask R-CNN builds 

upon the foundation laid by Faster R-CNN. Typically, 

Faster R-CNN includes a branch dedicated to recognizing 

object bounding boxes. Mask R-CNN enhances this 

framework by introducing a parallel object mask 

prediction branch, thereby improving the overall 

performance of the model. 

Method 

In this section, we present our algorithm that consists 

of two main parts: A deep convolutional network that 

detects boundaries, and a geometric post-process that 

simplifies the boundary and cleans up the map. 

A. R-CNN 

Here, we propose an effective pipeline for detecting 

the boundaries of two fields in satellite images. The core 

module in this pipeline is a Mask R-CNN model. This 

model is responsible for detecting each field in small input 

images of size 400*400. The R-CNN is a two-stage 

detection algorithm. The first stage identifies a subset of 

regions in an image that might contain an object, i.e., a 

field. The second stage classifies the object in each region 

and returns a probability map of the presence of an 

object, i.e., a field over pixels. 

The input images were raw images without additional 

labels or external data. In order to find the borders of 

fields in a supervised manner, we manually generated 

labels for some of the input images. Using the LabelMe 

[33] library, we carefully generated a mask for each input 

image, coloring each field area from 1 to 256 such that 

neighboring fields have different colors. 

To train an instance segmentation model, we set the 

Mask R-CNN model with the backbone of a pre-trained 

ResNet-50 [34] on the Imagenet dataset [35]. ResNet-50 

is selected as the backbone for its ability to convert input 

images into feature vectors of size 4096. These feature 

vectors play a crucial role in predicting the bounding box, 

class, and mask of each identified object. Without 

leveraging ResNet-50 as the backbone, the model would 

require a much larger amount of data for training 

purposes. Deeper ResNet networks require more 

computational power, and since we are working with 

super-large images, it is suitable choice. Finetuning a pre-
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trained model would give better results in our 

experiments. Choosing the input size of this model is a 

tricky challenge. Small input images would cause the 

detected object to be more fragmented, while large input 

images would cause the model to ignore small features 

and consider small fields as noise. We chose an input size 

of 400*400 so that the models would detect enough small 

features and fields, and the output fields would not be too 

fragmented, while keeping the computational cost of 

training the model reasonable. 
A dataset of 400*400 patches was extracted from the 

input images, and R-CNN models were trained on them. 

The model tries to detect each field as an individual 

object, and for each object, it returns a probability mask 

stating whether a pixel is in a field or not. In the challenge, 

we do not need each field alone, but we want some sense 

of the borders. So, if we could only identify the interior 

area of each field, we can extract the borders. To simplify 

the overall solution, we apply max pooling to all the 

detected object masks. 
Our solution for this challenge consists of five steps: 

patchify, R-CNN model, unpatchify, edge and border 

detector, and border refiner. During inference time, we 

slide a window of size 400*400 with steps of 200 pixels on 

the input image. This way, the patches overlap. This step 

is called patchify. Each patch goes into the RCNN model, 

and the resulting masks are aggregated together to create 

the final large output. This step is called unpatchify. On 

the overlapping parts of patches, we apply different 

methods to aggregate the probabilities: max pooling, 

averaging, summation, and harmonic mean. 
At the end of the unpatchify step, we obtain a large 

mask of the input model where values close to 1 are more 

likely to be fields. In order to extract borders from masks, 

we apply Otsu’s binarizing method [36] to binarize 

probability masks adaptively; then the canny edge 

detection algorithm [37] applies to the output, and the 

resulting image contains only edges and borders of the 

fields. 

Mask R-CNN is an advanced model for object detection 

and instance segmentation, building upon the 

foundations of Faster R-CNN. Faster R-CNN itself is 

designed to accurately identify and localize objects within 

an image by predicting both their bounding boxes and 

class scores. Mask R-CNN enhances this by introducing an 

additional branch that predicts segmentation masks for 

each identified object instance, providing a more detailed 

analysis of the image content. This capability is 

particularly useful in scenarios where precise object 

outlines are required, beyond mere detection. 

In this study, we introduce a refined instance 

segmentation framework based on the integration of the 

Mask Region-based Convolutional Neural Network (Mask 

R-CNN) with a ResNet-50 architecture, pre-trained on the 

Comprehensive Object Detection, Localization, and 

Segmentation (COCO) dataset. This framework is 

engineered to perform dual functions: object detection 

and instance segmentation, enabling precise pixel-wise 

delineation of objects within an image. Utilizing the 

concept of transfer learning, the pre-trained model serves 

as a foundational backbone, facilitating accelerated 

training convergence and reducing the necessity for 

extensive domain-specific data. 

The core adaptation of the model revolves around the 

customization of the Region of Interest heads, specifically 

the box predictor and the mask predictor, to cater to a 

user-defined number of object classes. The adjustment 

process begins with the box predictor, where the input 

features for the classifier are derived from the pre-

existing model structure.  

Subsequently, the original Fast R-CNN predictor is 

substituted with a novel Fast R-CNN Predictor, 

recalibrated to project the model's output to the specified 

number of classes. This alteration enables the adapted 

model to classify objects into a bespoke set of categories, 

diverging from the standard categorization learned during 

its initial training on the COCO dataset. 

Parallel to the modifications in the box predictor, the 

mask predictor undergoes a similar transformation. The 

original mask predictor is replaced with a newly 

instantiated Mask R-CNN Predictor. This adjustment 

entails the configuration of input features alongside the 

introduction of an intermediate hidden layer with 256 

nodes, culminating in the ability to generate class-specific 

segmentation masks.  

Data augmentation is a critical technique in the field of 

machine learning and computer vision, particularly 

beneficial for enhancing the robustness and 

generalization capabilities of deep learning models. By 

artificially expanding the training dataset through various 

transformations, data augmentation introduces a 

diversity of perspectives, angles, and environmental 

conditions, simulating a more comprehensive range of 

real-world scenarios. 

This process significantly mitigates the risk of 

overfitting, as the model is trained on a broader spectrum 

of data instances, improving its ability to generalize to 

unseen data. Moreover, data augmentation is applied. 

For this purpose, mirrored versions of the training images 

are added. Doing so ensures that the model is not biased 

towards the original orientation of objects within the 

images, fostering an ability to accurately detect and 

segment objects regardless of their horizontal alignment.  

The model, leveraging a custom adaptation of the 

Mask R-CNN architecture with a ResNet-50 backbone, is 

trained using a Stochastic Gradient Descent (SGD) 

optimizer. This choice is motivated by SGD's proven 

efficacy in handling noise and its capacity for 
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generalization in large-scale data scenarios. The learning 

rate is set at 0.005, a value that balances the trade-off 

between training speed and the risk of overshooting 

minima in the loss landscape. To enhance the 

optimization process, a momentum of 0.9 is set, 

facilitating the acceleration of the optimizer in relevant 

directions and improving convergence speed.  

Additionally, a weight decay of 0.0005 is applied as a 

regularization measure to prevent overfitting by 

penalizing large weights, ensuring the model's 

generalizability to unseen data. 

The learning rate is reduced by a factor of 10 every 3 

epochs. This approach, known as step decay, is 

instrumental in fine-tuning the model's performance by 

gradually decreasing the learning rate, allowing for more 

refined adjustments to the model weights as training 

progresses. 

The training process spans 50 epochs, a duration 

determined to strike an optimal balance between 

achieving sufficient model convergence and avoiding 

excessive computational expenditure. The choice of 50 

epochs is also influenced by empirical observations of 

model performance over time, ensuring that the model 

benefits from prolonged exposure to the training data 

without succumbing to overfitting. 

B. Geometric Post-Process 

Having a clean output as a binary PNG image, we need 

to transform it into a shapefile that can be used in 

Geographic Information Systems (GIS) like QGIS, ArcGIS, 

etc. Therefore, we extract polygons from the output 

image and after vectorizing it, a shapefile is created. The 

resulting polygons need further post-processing. First, we 

need to define some concepts, then we investigate post-

process steps. 
 

 
Fig.  1: Mask RCNN model. 

 

A subset S of the plane is called convex if and only if for 

any pair of points p, q ∈  S the line segment 𝑝𝑞̅̅ ̅ is 

completely contained in  𝑆. The convex hull of a set S 

(denoted by 𝐶𝐻(𝑃)) is the smallest convex set that 

contains 𝑆. To be more precise, it is the intersection of all 

convex sets that contain 𝑆 [38]. 

The pockets of a simple polygon are the polygonal 

areas outside the polygon, but inside its convex hull [38]. 

In Fig. 2, three white polygons are pockets.  

 

Fig. 2: Polygon P and its three pockets in white. 

 
Our post-process performs three steps: 

1. Deleting small polygons: Polygons with an area less 

than a fixed number with respect to Ground Sample 

Distance (GSD) of an image are removed because they 

have an area less than a real farm in that region. 

2. Deleting polygons inside other polygons: We want 

to make sure no polygon contains any smaller polygon 

inside. 

3. Simplifying over-segmentation: Over-segmentation 

can cause serrated edges in polygons. There are different 

simplification methods such as the Douglas-Peucker 

algorithm. We develop a new algorithm called the pocket-

based simplification algorithm. Here is how this algorithm 

works: 

Given a polygon 𝑃, we compute all of its pockets, 

𝑃1  … 𝑃𝑘. Now for each pocket, we calculate two 

distances:  

1. 𝑑𝑖𝑠𝑡: The length of the edge that belongs to the 

pocket but not the polygon 𝑃. We call this edge probable 

edge (numerized marked edges in Fig. 1). 

2. 𝑑: The summation on the length of all edges 

belongs to pocket except the probable edge. 

Then we choose certain threshold (denoted by 𝑡) and 

if 𝑑 < 𝑡 × 𝑑𝑖𝑠𝑡, all edges used for calculating 𝑑 are added 

as edges of polygon 𝑃′. Else, only the probable edge is 

added as an edge of polygon 𝑃′. At the end of the process, 

polygon 𝑃′ which is the simplified version of polygon 𝑃 is 

added to the shapefile instead of the original polygon 𝑃 

itself. This process is repeated for all extracted polygons, 

resulting in a final shapefile with the simplified output. 

This approach can be beneficial for reducing the 

complexity of the shapefile while preserving important 

geometric characteristics of the original polygons. 

Fig. 3 illustrates the impact of the three geometric 

post-processing steps on the raw shapefile. These steps 

include deleting small polygons, deleting polygons inside 

another one, and simplifying over-segmentation. 

In Fig. 4, a comparison is made among the raw output, 

the output after applying the Douglas-Peucker algorithm, 

and the output after applying the Pocket-based 

simplification algorithm. The differences among these 

outputs showcase how each algorithm affects the 

shapefile in terms of simplification and preservation of 

geometric details. This comparison can provide insights 
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into the effectiveness of each algorithm in achieving the 

desired level of simplification while maintaining the 

essential characteristics of the original data. 

 

 

Fig. 3: Raw output (right) and the output after applying 
geometric post process (left), Simplified by Douglas-Peucker 

algorithm. 

 

 

Fig. 4: Picture of boundary without simplification (1-black), 
simplified by Douglas-Peucker algorithm (2-red) and simplified 

by Pocket-based algorithm (3-blue). 
 

Experimental Study 

In this section, we present the data for training and 

how we prepare them to be ready for input to Mask R-

CNN and the system process executed on. 

A. Training Data 

We use three images for training the network: an aerial 

image, an ortho image, and a Famenin Irrigated image. 

These images have dimensions of 4963 × 2819, 3999 × 

3999, and 5520 × 3776 pixels respectively. The Famenin 

Irrigated image is a satellite image obtained from Google 

Earth, while the other two are UAV images taken in 

farmlands in Iran and Ethiopia. Since we are solving an 

instance segmentation problem, we need to create masks 

for each image to achieve our goal. We created the masks 

ourselves, as no online dataset satisfied our needs. To 

create the masks for the training data, we used LabelMe, 

a free graphical image annotation tool written in Python 

with a graphical interface built using Qt. In the final steps, 

each image was divided into tiles of 400 × 400 pixels, 

resulting in almost 300 tiles for the training data. Fig. 5 

shows the result of a field together with its labeled mask. 

The only important requirement for the masks is that 

fields sharing the same boundary should not have the 

same color. Therefore, non-neighbor fields are free to 

have the same colors. 

 

 

Fig. 5: Result of a training image with it’s labeled mask. 
 

B. System Config 

The entire process of this study was implemented in 

Python. The training of the instance segmentation model 

was conducted using four K80 GPUs to optimize the 

balance between computational power and resource 

accessibility. This configuration facilitated a distributed 

training approach, enhancing efficiency and reducing 

training duration without compromising accuracy. The 

training time in this system takes approximately 2 hours. 

Evaluation 

In this section, we present the performance of our 

detected boundary. 

A comparison of the accuracy assessment results 

obtained in this study with those from other studies 

cannot be done due to several reasons. Various UAVs and 

satellites may yield different quality images, and the study 

objects exhibit significant variations in terms of nature, 

size, location, and characteristics. To enable a reliable 

comparison of accuracy assessments across different 

feature extraction methods, each method needs to be 

individually studied and subsequently tested within the 

same study area(s) [17]. 

We calculate all accuracy assessments on one of the 

pictures from Famenin, which is 3432 × 3621 pixels. This 

picture isn't used for training and is only used for testing. 

For validating the predicted results with ground truth, a 

certain buffer is often considered for the reference 

boundary in cadastral mapping [19]. We consider both  

5- and 6-pixel buffers for the reference boundary, which 

means the original reference boundary has a width of 1 

pixel while in evaluation it is 5 or 6 pixels. 

The measures we use to evaluate our work are 

common ones in this field: precision, recall, and F-score. 
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Precision represents whether the assigned boundary is 

valid. Recall shows the ability of the network to find all the 

boundaries, and F-score is the harmonic mean between 

precision and recall, which is a good overall measurement 

for final evaluation. 

After overlapping our output boundary with the 

buffered reference, we calculate the mentioned 

measures using these formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                             (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 𝐵𝐹                                                        (2) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                       (3) 

If we consider binary classification for the confusion 

matrix, class positive stands for pixels labeled as 

"boundary," and class negative stands for pixels labeled 

as "non-boundary." Thus, we can create a confusion 

matrix and calculate the measures. BF in the recall 

formula stands for the buffer that we considered for the 

boundary reference in the Famenin test picture, and its 

quantification is different in each case. The rationale for 

the recall formula is that the sum of True Positives (TP) 

and False Positives (FP) represents the total number of 

detected boundary pixels, while TP + False Negatives (FN) 

indicates the total boundaries in the buffered reference, 

not the original reference. Therefore, to obtain the total 

boundaries in the original reference, which has a width of 

one pixel, we divide the sum of TP and FN by BF [6]. 

Results and Discussion 

In this section, we present the performance of our 

detected boundary. 

As we can see in Table 1, it is obvious that when we 

make the buffer thicker by 1 pixel, both precision and 

recall rise as more detected boundaries fall into the 

reference boundary buffer. A recall of 95% in a 6-pixel 

buffer shows that R-CNN finds almost all boundaries of 

the image. However, because the precision is less than 

80%, we should note that some boundaries are detected 

that are not in the reference, making them extra. 

If we fix the buffer, then the recall in both methods of 

simplifying polygons is almost equal, but precision is 

always better in the Pocket-based algorithm, indicating 

that more valid boundaries fall into the reference buffer 

in our method than in the Douglas-Peucker algorithm. 

The important point is that precision achieved by a  

5-pixel buffer and the paper's method is 67%, while this 

precision is achieved by the Douglas-Peucker algorithm 

only when the buffer is 6 pixels. This demonstrates how 

much stronger the Pocket-based algorithm works in 

finding valid boundaries compared to the Douglas-

Peucker algorithm. 

Based on better precision and almost equal recall in 

the Pocket-based simplification algorithm, our method 

consistently achieves a higher F-score. Therefore, based 

on these results, we can conclude that our simplification 

method, also known as the Pocket-based simplification 

algorithm, performs better in all tested situations. 

 
Table 1: Accuracy comparison with respect to buffer and 
simplification method 

 

Buffer Method Precision Recall F-Score 

5 pixels Douglas-Peucker 60 85 70 

5 pixels Pocket-based 67 87 76 

6 pixels Douglas-Peucker 66 95 78 

6 pixels Pocket-based 72 95 82 

 

It is worth mentioning that our primary objective is to 

detect cadastral boundaries of farmlands. However, our 

presented method can also identify boundaries of 

buildings and other types of land in rural or urban areas. 

Additionally, there are many smallholders in our images, 

and detecting them is more challenging than identifying 

larger objects. One of the main issues with our detected 

boundaries is that the extracted polygons tend to be more 

rounded at the edges rather than straight. Therefore, 

geometric post-processing significantly impacts our 

network output and enhances its quality. 

Conclusion 

In this study, the Mask R-CNN model was used to solve 

instance segmentation for the automatic detection of 

cadastral boundaries in VHR images. The Mask R-CNN 

model is based on transfer learning, utilizing a pre-trained 

ResNet-50 backbone from the ImageNet dataset. The 

network can accept input at any desired resolution, and 

the output is a large mask of the input image, where 

values close to one represent the field. To extract the 

boundaries of each field from the masks, we apply Otsu's 

binarizing method to adaptively binarize the probability 

masks. Subsequently, the Canny edge detection algorithm 

is applied to the output, resulting in an image containing 

only cadastral boundaries. Since the instance 

segmentation method is used, the network's output 

contains individual boundaries for each field. Following 

the creation of a shapefile from the binary PNG output of 

the network, three geometric post-processing procedures 

are applied to enhance the raw output of the Mask R-

CNN. 

In the first step, polygons with an area smaller than a 

specific threshold based on the minimum area of farms in 

that region and the image's GSD are removed. In the 

second step, all polygons that are contained within 

another polygon are eliminated, as farms are non- 

overlapping. The final step involves using two methods to 

simplify the detected boundaries. While the Douglas-
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Peucker algorithm, a well-known approach for line 

simplification, is utilized, a new method called the Pocket-

based simplification algorithm is introduced and shown to 

outperform the Douglas-Peucker algorithm. This method 

is named after the pockets produced when creating the 

convex hull of each polygon. Based on a specific 

threshold, decisions are made regarding whether to add 

a pocket or connect edges between two endpoints of a 

polygon, resulting in a new simplified polygon. The 

Pocket-based simplification algorithm demonstrates 

higher accuracy in precision compared to the Douglas-

Peucker algorithm, with nearly identical recall rates. This 

indicates that both methods can effectively identify 

cadastral boundaries, but the Pocket-based simplification 

algorithm excels at detecting valid boundaries. The final 

evaluation is based on the F-score, which is the harmonic 

mean between precision and recall and consistently 

favors the Pocket-based simplification algorithm over the 

Douglas-Peucker algorithm. 

Instance segmentation for detecting automatic 

cadastral boundaries has shown promising results, 

suggesting that employing other networks optimized for 

instance segmentation may further improve outcomes. 

There are some open problems:  

Our algorithm does not detect and delete urban/rural 

areas, resulting in segmentation of those areas, which 

reduce the precision and recall of our algorithm. One 

solution is to use semantic segmentation to detect and 

delete urban/rural areas. Then, we use our algorithm to 

detect boundary of farmlands. 

The result heavily depends on the texture and shape of 

farmland that differs in different geographical regions and 

type of farmlands.  

In this research, we utilize only the three visible 

channels of images (RGB). However, incorporating 

invisible bands alongside RGB bands in satellite images 

can enhance the performance of this algorithm. 

Abbreviations  

VHR Very Hight Resolution 

UAV Unmanned Aerial Vehicle 

EO Earth Observation 

MRS Multi Resolution Segmentation 

CNN Convolutional Neural Network 

MCG Multiresolution Combinatorial 

Grouping 

FCN Fully Convolutional Network 
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