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Background and Objectives: In genetic network control, RC-Centrality is 
introduced as a new control centrality measure to address the control of linear 
time-invariant networks. The objective of this study is to propose an optimal 
control centrality metric that quantifies the centrality of individual nodes or groups 
of nodes within a network. Specifically, RC-Centrality identifies key nodes or node 
groups that can act as controllers, such as genes regulating the gene expression 
process. To assess the effectiveness of this method, RC-Centrality is compared 
with standard centralities in a real genetic network. Additionally, the research 
delves into the role of uncertainty structure in altering the priority order of RC-
Centrality. 
Methods: The RC-Centrality measure is introduced based on an optimal control 
problem to address weighted, directed, and signed networks. Robust controllers 
are designed to ensure Lyapunov stability under uncertainty. A cost function is 
introduced to measure the performance metric represented by input energy in the 
presence of uncertainty. 
Results: The study presents RC-Centrality as an effective measure for identifying 
key nodes in genetic networks suitable for control. In-silico simulations are 
conducted to evaluate its performance in comparison to standard centralities. The 
research highlights the impact of uncertainty structure on the priority of RC-
Centrality. 
Conclusion: RC-Centrality offers a promising approach to identify essential nodes 
in genetic networks for control purposes. Its performance is demonstrated 
through simulations, and the study emphasizes the influence of uncertainty 
structure on the centrality measure's prioritization. This research has implications 
for understanding and controlling genetic networks, particularly in the presence 
of uncertainty. 
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Introduction 
Graph theoretical representations are widely utilized to 

model biological networks and the relationships between 

various cellular components such as genes, proteins, 

mRNAs, and metabolites. The nodes of the graph, also 

referred to as agents, represent biological units, while 

links represent connections between them [1]. Identifying 

influential biological units plays an important role in 

designing and analyzing growth, death, division, and 

survival processes. Centrality analysis  is proposed as a 

valuable guide to predict and identify key units in 

biological networks, such as genetic networks [2]-[6].  

By combining centrality analysis with optimal control 

strategies, an effective approach has been developed to 

steer biological networks in the presence of uncertainty 

toward their desired states. This paper aims to contribute 
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to the subject by investigating novel control centrality 

that exploits the network’s structure and performance 

metrics for optimal control in uncertain genetic networks. 

A. Related Work 

Centrality measures are employed to quantify the 

importance of components in biological, brain, social and 

urban traffic networks [7]-[9]. Here, several individual 

centrality measures for each agent have been listed for 

unweighted, undirected, and unsigned networks, used in 

our examples later on. Degree centrality 𝐶𝐷(𝑖) is defined 

as the number of agent 𝑖’s neighbors. Closeness centrality 

𝐶𝑐𝑙(𝑖) is formulated as an inverse sum of the length of 

shortest paths between agent 𝑖 and all other agents. The 

basic definition of Betweenness centrality measure 𝐶𝐵(𝑖) 

measures the extent to which an agent 𝑖 lies on the 

shortest paths between other agents as an intermediate 

agent. The eigenvector centrality of agent 𝑖, 𝐶𝐸(𝑖), 

captures the agent’s influence in the network based on 

the importance of its neighbors [7]. Although there are 

many methods for generalizing individual centralities, 

several papers are made on reformulations of individual 

centrality measures to extend them to group centrality 

[10], [11]. 

Energy optimization approach, which is also the 

approach taken in this work, is a branch of recent 

research used in Gramian-based centrality measures to 

control the given network in a desired direction [12], [13]. 

The control centralities 𝐶𝑝(𝑖) and 𝐶𝑞(𝑖) are formulated as 

the trace of the controllability and observability Gramian 

for node 𝑖, respectively [13]. The extension of this method 

to the discrete case introduces the proposed control 

centrality measures 𝐶𝑊(𝑖) and 𝐶𝑀(𝑖), formulated as the 

trace of the controllability and observability Gramian for 

node 𝑖, respectively [26]. Many recent papers on the 

subject of control energy requirements depend on the 

properties of controllability Gramian [14]-[16]. For 

uncertain networks, the influence of uncertainty on the 

energy is formulated in terms of the Lyapunov equation 

to minimize the required energy that guarantees stability 

[17]-[19]. The common characteristic of the efforts 

mentioned above in centrality measures’ definition is that 

they are all proposed to quantify the importance of the 

focal node in the network. However, a great deal of 

research focuses on trying to quantify the power of a 

specific agent in controlling a network named control 

centrality [20], [21]. Several methods are used to quantify 

the influence of each agent or link in uncertain networks 

as their centrality measure [22], [23]. 

Despite research in the field of control centrality, some 

limitations are significant. First, the links’ direction and 

weight in genetic regulatory networks (GRNs) model 

provide a more detailed and accurate description of gene 

expression process in biological systems’ behavior. 

Second, interactions between genes are generally 

described by a signed graph, where the positive and 

negative weights represent the transcriptional activators 

and repressors attached to them, respectively. However, 

it should be noted that the specific studies discussed in 

[2], [6] do not address these key aspects. Furthermore, 

the dynamics of genetic networks are paramount for 

comprehending gene regulation processes and capturing 

the time-dependent behaviors of the genes and their 

interactions. However, references [3]-[5] do not 

specifically delve into the dynamics of their networks.  

While in a genetic regulatory network, energy 

consumed by each gene from the external environment 

utilizes in gene expression process to control the network 

in a desired behavior to reach a given target. In practice, 

injecting the input energy into the cell for expressing 

genes in controlling biological processes is a costly and 

time-consuming process as they need to be done on living 

organisms [24]. On the other hand, the intrinsic nature of 

biological networks encompasses inherent uncertainty 

[25]. Thus, control centrality of genetic networks in 

presence of uncertainty according to optimal energy 

consumption is an important quantifier to identify the 

central genes to prevent off-target effects. 

B. Contributions 

While research on control centrality for weighted, 

directed, and signed networks with control inputs has 

been conducted (see [13] and [26]), these measures face 

limitations in dealing with network uncertainty, a 

common feature in biological networks. Furthermore, 

existing measures are solely based on network dynamics 

and do not adequately adapt to different control 

scenarios. Conversely, measures proposed in [22] and 

[23] consider network dynamics and performance metrics 

but are not suitable for directed, signed networks, or 

those with control inputs. To address these gaps, this 

paper proposes a comprehensive control centrality 

measure that incorporates dynamics, performance 

metrics, and control inputs, making it applicable across 

various weighted, directed, and signed network types and 

scenarios. In this paper, the RC-Centrality is proposed to 

characterize the centrality of feedback controllers in 

weighted, directed, and signed (WDS) networks without 

and in the presence of uncertainty. The proposed robust 

control centrality quantifies both individual and group 

centralities as a measure of control that each input set has 

on the rest of the WDS network in the presence of 

uncertainty (WDS+U). By introducing a Gramian-based 

control centrality, not only is the Lyapunov stability of 

closed-loop system achieved, but also the optimal value 

of required energy for each input set to place a target set 

states in their steady state from initial time to final time is 

minimized. An input set is a set of independent control 

agents (e.g., controlling genes) which receive input signals 

to steer target set, a set of agents that cannot be 
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controlled directly due to their biological characteristics, 

to desired states (e.g., gene concentrations). 

C. Paper Organization 

The rest of this paper is organized as follows: In Section 

2, the preliminaries of graph theory, network analysis, 

and a linear time-invariant (LTI) model of WDS genetic 

networks are represented. In Section 3, the RC-Centrality 

bounded by the eigenvalues of a proposed Gramian, is 

derived. Section 4 is about a control centrality algorithm 

based on the mathematical relation to stability 

conditions. Several numerical examples in matched and 

unmatched structures of uncertainties are simulated in 

Section 5 to illustrate the effectiveness of the proposed 

approach. The paper is summarized in Section 6, where 

future research directions are stated. 

Preliminaries 

The set of 𝑛 ×𝑚 matrices with real entries is denoted 

by 𝑅𝑛×𝑚. Given a matrix 𝐴, the symbol 𝐴𝑖𝑗 denotes the 

(𝑖,𝑗)-th entry of 𝐴, while 𝐴𝑇 and 𝐴−𝑇 mean the transpose 

and the inverse of the transpose of 𝐴. 

A generic WDS network is denoted by a graph 𝐺 =
(𝑉,𝐸,𝐴) where 𝑉 = {𝑣1, … ,𝑣𝑛 } and 𝐸 ⊂ 𝑉 × 𝑉  are the 

set of agents and the set of links, respectively, where a 

link is drawn from 𝑣𝑖 to 𝑣𝑗, as 𝑒𝑖𝑗 ∈ 𝐸, if the agent 𝑣𝑗 

interacts with the agent 𝑣𝑖. In other words, if  𝑣𝑗 

influences 𝑣𝑖 through its dynamics. In addition, 𝑎(𝑒𝑖𝑗), ∶

𝐸 → 𝑅 also denoted by 𝑎𝑖𝑗, is the strength of the link 𝑒𝑖𝑗, 

which captures the significance of the agent 𝑣𝑗 to 𝑣𝑖.  

Table 1 shows the comparison between our control 

centrality measure with established ones. 

Moreover, for simplicity, it is defined that 𝑎𝑖𝑗 = 0 if 

𝑒𝑖𝑗 ∉ 𝐸 and 𝑎𝑖𝑖 = 0, ∀𝑖 = 1,… ,𝑛. Then, the adjacency 

matrix 𝐴 ∈ 𝑅𝑛×𝑛 comprised of coefficients 𝑎𝑖𝑗 is used to 

describe the network topology. For each agent 𝑣𝑖, 𝑎𝑖 is 

defined as the total significance of other agents to 𝑣𝑖 as 

[8]:  

𝑎𝑖 =∑𝑎𝑖𝑗

𝑛

𝑗=1

. 

The 𝑛 × 𝑛 Laplacian matrix of 𝐺, denoted by 𝐿, is 

defined as 

𝐿 = 𝒟 − 𝐴 
in which 𝒟 is the degree matrix of graph 𝐺 as [36]: 

𝒟𝑖𝑗 = {
𝑎𝑖 if 𝑖 = 𝑗
0 otherwise

 

The mathematical state of each agent 𝑖 ∈ 𝑉 is 

described by a scalar state variable 𝑥𝑖(𝑡) at time 𝑡 ≥ 0.  It 

is assumed that only an arbitrary, but fixed, subset 𝑆 ⊂ 𝑉, 

which is the input set, receives control inputs. The control 

inputs can then be represented as:  

𝑢(𝑡) = [𝑢1(𝑡)…𝑢𝑛(𝑡)]
𝑇 

in which 𝑢(𝑡) ∈ 𝑅𝑛 represents all possible control inputs, 

while 𝐵 ∈ 𝑅𝑛×𝑛 restrict them to the subset 𝑆, where only 

a selected subset of control inputs is active. The input 

matrix 𝐵 defines the agents in which the activated control 

inputs are injected. The structure of matrix 𝐵 may vary 

depending on the location of the activated control inputs 

in the network. 

Table 1: Comparison of the proposed control centrality with existing centrality measures 
 

Centrality 
measures 

Considers 
dynamics 

of 
network 

Applicable 
to 

weighted 
graph 

Applicable 
to 

directed 
graph 

Applicable 
to signed 

graph 

Considers 
uncertainty 

in model 

Considers 
effect of 

input 
signal(s) 

Extendable 
to group 
centrality 

Network & 
performance-

driven 
measure 

[13]         

[26]         

[20]         

[22], [23]         

[21]         

[27], [28]         

[29]         

[30], [11], [31], 
[6] 

        

[3]         

[32], [4]         

[33]         

[2], [34], [35], 
[5] 

        

Our measure         
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RC-Centrality 

Consider the following class of uncertain LTI systems 

with the state vector 𝑥(𝑡) ∈ 𝑅𝑛 and the adjacency matrix 

𝐴 ∈ 𝑅𝑛×𝑛. 

      (1)   𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + ∆(𝑝)𝑣(𝑡) 

The control input is partitioned into two parts: 1) 

𝑢(𝑡) ∈ 𝑅𝑛 is the “certain” part, which affects the system 

via matrix 𝐵 ∈ 𝑅𝑛×𝑛 that has no uncertainty, and 2) 

𝑣(𝑡) ∈ 𝑅𝑛 is the second part that enters the system via 

the bounded uncertainty ∆(𝑝) ∈ 𝑅𝑛×𝑛, where 𝑝 ∈ 𝑃 is an 

uncertain parameter vector, and no uncertainty is 

imposed upon 𝐴 and 𝐵 matrices.  

It is also assumed that the pair (𝐴,𝐵) is stabilizable and 

controllable. 

A.   Robust Control Energy level for a Network 

In the biological context, control input could be a 

regulatory signal coming from outside of the considered 

process or an externally supplied agent applied to a cell. 

The process of applying control input into a cell by an 

experimenter can be very expensive and time consuming 

[24]. Thus, in this subsection, the cost function is 

proposed due to the importance of the control inputs in 

GRNs. An energy-based quantity is defined to consider 

the effect of uncertainty on the consumed energy of the 

WDS+U network 𝒢.  

Definition 1. The robust control energy level is defined as 

follows that tries to be a reflection of the consumed 

energy of uncertain LTI system (1) from the initial time 

𝑡0 = 0 to the final time 𝑡𝑓 → ∞: 

(2) 𝐽𝑅 =
1

2
∫(𝑢𝑇(𝑡)𝑅𝑢(𝑡) + 𝑣𝑇(𝑡)𝑄𝑣(𝑡))𝑑𝑡

∞

0

 

where 𝑅,𝑄 ∈ 𝑅𝑛×𝑛 are symmetric and positive definite 

weighting matrices. 

RC-Centrality for an Input Set 

Uncertainty is a significant factor influencing the 

consumed energy to steer a network from its initial states 

to desired final states. To capture this influence, the 

following control centrality measure is introduced for the 

activated input set 𝑆 in the WDS+U network 𝒢. 

Definition 2. For a WDS+U network 𝒢 = (𝒱,ℰ,𝐴) 

described by (1), the RC-Centrality of input set 𝑆 from the 

initial state 𝑥(𝑡0) at 𝑡0 = 0 to the given final state 𝑥(𝑡𝑓) 

at 𝑡𝑓 → ∞  is defined as 

       (3)   𝐶𝑅𝐶(𝑆) =
1

𝐽𝑅
∗(𝐵)

 

where 𝐽𝑅
∗(𝐵) is the optimal value of robust control energy 

level (2). The diagonal matrix 𝐵 is designed in such a way 

that 𝑆 is the activated input set. Only nonzero elements in 

matrix 𝐵 are selected according to the set 𝑆 to receive 

control inputs. 

Energy-based Characterization of 𝐶𝑅𝐶 

In this subsection, we relate the optimal value of the 

robust control energy level (2) to the RC-Centrality by an 

auxiliary system. Consider the following LTI system: 

      (4)     𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝛾(𝐼 − 𝐵𝐵†)𝑣(𝑡) 

where 𝐵† ∈ 𝑅𝑛×𝑛 is pseudo-inverse matrix of 𝐵 defined 

as 𝐵† = (𝐵𝑇  𝐵)−1 𝐵𝑇 such that 𝐵𝑇  𝐵 is non-singular and 

𝛾 is a design parameter which satisfies an inequality to 

guarantee the stability of the uncertain LTI system in (1) 

characterized later on in Section 4.2. 

In the next theorem, it is proved that characterizing 

𝐶𝑅𝐶(𝑆) for the uncertain LTI system in (1) is equivalent to 

finding the inverse of the optimal value of input energy in 

(2), 𝐽𝑅
∗ , for the auxiliary system described as (4). 

Theorem 1. Consider the uncertain LTI system described 

as (1). For any input set 𝑆, the robust control centrality 

𝐶𝑅𝐶(𝑆) can be expressed as: 

      (5) 

  𝐶𝑅𝐶(𝑆) = (𝑥(𝑡𝑓) − 𝑒
𝐴𝑡0𝑥(𝑡0))

−1
(∫ 𝑒𝐴𝜏
∞

0

[𝐵𝑅−1𝐵𝑇

+ 𝛾2(𝐼 − 𝐵𝐵†)𝑄−1(𝐼 − 𝐵𝐵†)𝑇]𝑒𝐴
𝑇𝜏𝑑𝜏) (𝑥(𝑡𝑓)

− 𝑒𝐴𝑡0𝑥(𝑡0))
−𝑇

 

Proof. According to the Hamilton-Jacobi-Bellman (HJB) 

equation for optimality [19], the Hamiltonian form for the 

auxiliary system (4) based on the cost function (2) is 

represented as 

𝐻(𝑡) =
1

2
(𝑢𝑇𝑅𝑢 + 𝑣𝑇𝑄𝑣) + 𝜆𝑇(𝐴𝑥 + 𝐵𝑢 + 𝛾(𝐼 − 𝐵𝐵†)𝑣) 

where 𝜆(𝑡) ∈ 𝑅𝑛 is a Lagrange multiplier. Using the 

stationary conditions, the optimal control laws are 

obtained as: 

      (6) 

𝑢∗(𝑡) = 𝑅−1𝐵𝑇𝑒𝐴
𝑇𝑡(∫ 𝑒𝐴𝜏

∞

0
[𝐵𝑅−1𝐵𝑇 +

𝛾2(𝐼 − 𝐵𝐵†)𝑄−1(𝐼 −

𝐵𝐵†)𝑇]𝑒𝐴
𝑇𝜏𝑑𝜏)

−1
[𝑥(𝑡𝑓) − 𝑒

𝐴𝑡0𝑥(𝑡0)],  

𝑣∗(𝑡) = 𝛾𝑄−1(𝐼 − 𝐵𝐵†)𝑇𝑒𝐴
𝑇𝑡 (∫ 𝑒𝐴𝜏

∞

0

[𝐵𝑅−1𝐵𝑇

+ 𝛾2(𝐼

− 𝐵𝐵†)𝑄−1(𝐼

− 𝐵𝐵†)𝑇]𝑒𝐴
𝑇𝜏𝑑𝜏)

−1

[𝑥(𝑡𝑓)

− 𝑒𝐴𝑡0𝑥(𝑡0)] 

The optimal value of robust control energy level 

affected by the optimal control laws in (6) is determined 

as 
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      (7) 

𝐽𝑅
∗(𝐵) = [𝑥(𝑡𝑓) − 𝑒

𝐴𝑡0𝑥(𝑡0)]
𝑇
(∫ 𝑒𝐴𝜏
∞

0

[𝐵𝑅−1𝐵𝑇

+ 𝛾2(𝐼
− 𝐵𝐵†)𝑄−1(𝐼

− 𝐵𝐵†)𝑇]𝑒𝐴
𝑇𝜏𝑑𝜏)

−1

[𝑥(𝑡𝑓)

− 𝑒𝐴𝑡0𝑥(𝑡0)] 

which is the inverse of robust control centrality 𝐶𝑅𝐶(𝑆), 

that completes the proof.                                                  ∎ 

Remark 1. The proposed control centrality is consistent 

with physical interpretation in the sense that the higher 

the 𝐶𝑅𝐶(𝑆) of input set 𝑆, the less input energy it 

consumes to steer the WDS+U network 𝒢 to the given 

final states. 

Remark 2. The proposed control centrality incorporates 

the dynamics of the network and the performance metric. 

Even with the fixed structure of the network, by changing 

the weighting matrix of the control inputs, the centrality 

of node or set of nodes will change accordingly.  

Encapsulation 

The robust reachability Gramian is defined as 

      (8) 

  𝐺𝑅(𝐵) = ∫ 𝑒𝐴𝜏
∞

0

[𝐵𝑅−1𝐵𝑇

+ 𝛾2(𝐼

− 𝐵𝐵†)𝑄−1(𝐼 − 𝐵𝐵†)𝑇]𝑒𝐴
𝑇𝜏𝑑𝜏 

This is in fact the reachability Gramian of [37] modified 

to uncertain system (1) from the initial time 𝑡0 to the final 

time 𝑡𝑓. The final state difference vector 𝑑𝑓 =

[𝑑𝑓1…𝑑𝑓𝑛] ∈ 𝑅
𝑛 is defined as the difference between 

the final states and the zero-input solution as 

 (9)  𝑑𝑓 = 𝑥(𝑡𝑓) − 𝑒
𝐴𝑡0𝑥(𝑡0) 

Based on Definition 2 and (5), the control centrality 

measure 𝐶𝑅𝐶(𝑆) defined in (3) can be encapsulated as 

follows: 

    (10)  𝐶𝑅𝐶(𝑆) = 𝑑𝑓
−1𝐺𝑅(𝐵)𝑑𝑓

−𝑇 

Remark 3. Considering the challenges in applying control 

input, especially to genetic networks, such as the high 

cost of practical biological experiments, it is desirable to 

determine whether a selected input set 𝑆 is central to 

control the WDS+U network 𝒢. The concept of proposed 

control centrality concerns the optimal amount of 

required input energy in the controllable LTI system to 

steer the initial states to their final states.   

Next, some lower and upper bounds for 𝐶𝑅𝐶(𝑆) is 

established. 

Bounds of RC-Centrality 

The following theorem is provided to drive theoretical 

bounds of the RC-Centrality of (10). Lemma 1 is needed to 

later prove the theorem. 

Lemma 1. [38] If 𝑞(𝑋) = 𝑋𝑇𝐴𝑋 is a quadratic form in 𝑋 =
[𝑥1, … ,𝑥𝑛]

𝑇 for a square matrix 𝐴, then there exists an 

invertible orthogonal matrix F such that  

𝑞(𝑋) = 𝜆1𝑥̃1
2 +⋯+ 𝜆𝑛𝑥̃𝑛

2 

where 

[
𝑥̃1
⋮
𝑥̃n

] = 𝐹𝑇 [

𝑥1
⋮
𝑥n
] 

and {𝜆1, … ,𝜆𝑛 } is the set of 𝐴’s eigenvalues. In the 

following theorem, the 𝑛 eigenvalues of  𝐺𝑅(𝐵) are 

denoted, from the lowest to the highest, as  

𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵)) ≤ ⋯ ≤ 𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵)). 

Theorem 2. Consider the controllable LTI system in the 

presence of uncertainty in (1). The control centrality 

measure 𝐶𝑅𝐶(𝑆) is bounded below and above as follows: 

∑
𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵))

𝑑̃𝑓𝑖
2

𝑛

𝑖=1

≤ 𝐶𝑅𝐶(𝑆) ≤∑
𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵))

𝑑̃𝑓𝑖
2

𝑛

𝑖=1

 

 where  

[

𝑑̃𝑓1
⋮
𝑑̃𝑓𝑛

] = 𝐹𝑇 [

𝑑𝑓1
⋮
𝑑𝑓𝑛

] 

for the existing orthogonal matrix 𝐹.     

Proof. According to the Lemma 1 and the definition of 

𝐶𝑅𝐶(𝑆), we have:  

𝐶𝑅𝐶(𝑆) =  𝑑𝑓
−1𝐺𝑅(𝐵)𝑑𝑓

−𝑇

= 𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵))(𝑑̃𝑓1
−𝑇)

2
+⋯

+ 𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵))(𝑑̃𝑓𝑛
−𝑇)

2
 

This can be expressed in matrix form as 

𝐶𝑅𝐶(𝑆)

= [𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵)) … 𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵)) ] [
1

𝑑̃𝑓1
2

…
1

𝑑̃𝑓𝑛
2 ]

𝑇

 

So, the bounds for 𝐶𝑅𝐶(𝑆) can be found, which are 

functions of 𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵)) and 𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵)) as follows: 

𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵))∑
1

𝑑̃𝑓𝑖
2

𝑛

𝑖=1

≤ 𝐶𝑅𝐶(𝑆) ≤  𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵))∑
1

𝑑̃𝑓𝑖
2

𝑛

𝑖=1

 

 ∎ 

The bounds on 𝐶𝑅𝐶(𝑆) for input set 𝑆 could be helpful, 

especially in the case that characterizing the exact value 

of 𝐶𝑅𝐶(𝑆) is computationally too complex. In the 

following corollary, the worst-case energy is considered 

that the WDS+U network 𝒢 consumes the maximum 

amount of input energy to steer initial states to final 

states for matrix 𝐵. 

Corollary 1. For any input set 𝑆, the upper bound on the 

control energy of 𝐶𝑅𝐶(𝑆) is proportional to the inverse of 

the smallest eigenvalue of 𝐺𝑅(𝐵). 
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Proof. According to the definition of 𝐶𝑅𝐶(𝑆), the bounds 

of input energy function are exactly the same as the 

method proposed in Theorem 2 as follows: 

∑ 𝑑̃𝑓𝑖
2𝑛

𝑖=1

𝜆𝑚𝑎𝑥(𝐺𝑅(𝐵))
≤ 𝑑𝑓

𝑇𝐺𝑅
−1(𝐵)𝑑𝑓 ≤

∑ 𝑑̃𝑓𝑖
2𝑛

𝑖=1

𝜆𝑚𝑖𝑛(𝐺𝑅(𝐵))
< ∞ 

In the worst-case, the upper bound on the input 

energy would be obtained as 

max
𝑆
𝑑𝑓
𝑇𝐺𝑅

−1(𝐵)𝑑𝑓 ∝ 𝜆𝑚𝑖𝑛
−1 (𝐺𝑅(𝐵))  ∎ 

The importance of the bounds is that for a controllable 

network in theory, the network may still not be 

controllable in practice. For instance, unreasonable 

values of the input energy are required to steer biological 

complex systems in some practical direction [39]. 

Special Case: In the Absence of Uncertainty 

We compare the proposed control centrality with 

other known standard centrality measures (degree, 

closeness, betweenness, and eigenvector centrality) in 

Case Study 1. Therefore, the control centrality is defined 

based on the RC-Centrality’s definition to quantify the 

impact of input set 𝑆 in the WDS network 𝒢 to compare 

other measures. 

Definition 3. For a WDS network 𝒢 = (𝒱,ℰ,𝐴)  described 

by the LTI controllable system in (11) as: 

    (11)  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

The, the control centrality of input set 𝑆 is defined as 

     (12) 

  𝐶𝐶(𝑆) = 𝐶𝑅𝐶(𝑆) − 𝑑𝑓
−1 (∫ 𝑒𝐴𝑡𝛾2(𝐼

∞

0

− 𝐵𝐵†)𝑄−1(𝐼

− 𝐵𝐵†)𝑇𝑒𝐴
𝑇𝑡𝑑𝑡)𝑑𝑓

−𝑇 

The value of 𝐶𝐶(𝑆) can be encapsulated in the 

following form: 

      (13)  𝐶𝐶(𝑆) = 𝑑𝑓
−1𝐺(𝐵)𝑑𝑓

−𝑇 

where the reachability Gramian is represented as [37] 

     (14)  𝐺(𝐵) = ∫ 𝑒𝐴𝜏
∞

0

𝐵𝑅−1𝐵𝑇𝑒𝐴
𝑇𝜏𝑑𝜏 

Remark 4. In the control centrality defined in (13), the 

importance of input set 𝑆 is the inverse of the optimal 

value of input energy 𝐽 =
1

2
∫ 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡
∞

0
 to steer the 

initial state 𝑥(𝑡0)  at 𝑡0 = 0 to their desired state 𝑥(𝑡𝑓) at 

𝑡𝑓 → ∞  through input set 𝑆. 

Calculation of RC-Centrality 

In the previous section, we introduced a novel control 

centrality measure designed for systems operating under 

uncertainty. The RC-Centrality emerged as the optimal 

solution for energy optimization in a scenario without 

uncertainty, a solution that we demonstrated to be 

applicable to systems in presence of uncertainty, as 

proven in the preceding section. In this section, we delve 

into the role of robust controllers in ensuring system 

stability. We establish that the control centrality of these 

robust controllers, acting as driver nodes, provides 

valuable insights into their placement while 

simultaneously guaranteeing the Lyapunov stability of the 

closed-loop system across individual or grouped inputs.  

A.  A Lyapunov-based Solution for 𝐺𝑅(𝐵) 

The first step in calculating 𝐶𝑅𝐶(𝑆) in (10) is 

characterizing 𝐺𝑅(𝐵) formulated in the following 

theorem. 

Theorem 3. Consider a WDS+U network 𝒢 = (𝒱,ℰ,𝐴) 

described by (1). Suppose that there exists a design 

parameter 𝛾 such that satisfies (17). Then, the robust 

reachability Gramian, 𝐺𝑅(𝐵) is the unique solution that is 

positive definite of the following Lyapunov equation: 

         (15) 

  𝐴𝐺𝑅(𝐵) + 𝐺𝑅(𝐵)𝐴
𝑇

+ (𝐵𝑅−1𝐵𝑇

+ 𝛾2(𝐼 − 𝐵𝐵†)𝑄−1(𝐼 − 𝐵𝐵†)𝑇)
= 0 

Proof. The solution to the Lyapunov equation in (15) is 

obtained using the robust reachability Gramian in (8). 

𝐺𝑅(𝐵) + 𝐺𝑅(𝐵)𝐴
𝑇

= 𝑒𝐴𝑡[𝐵𝑅−1𝐵𝑇

+ 𝛾2(𝐼

− 𝐵𝐵†)𝑄−1(𝐼 − 𝐵𝐵†)𝑇]𝑒𝐴
𝑇𝑡 |

∞
𝑡 = 0

 

It is clear that if 𝐴 is Hurwitz, then lim
𝑡→∞

𝑒𝐴𝑡 = 0. 

Therefore, 𝐺𝑅(𝐵) is the solution of the Lyapunov 

equation in (15). The proof of the uniqueness of 𝐺𝑅(𝐵) as 

the solution is straightforward and omitted. 

Consequently, 𝐺𝑅(𝐵) is the unique solution of the 

Lyapunov equation in (15), thereby completing the proof.                                                                                       

∎ 
A necessary and sufficient condition for the analysis of 

Lyapunov stability of systems in the presence of 

uncertainty is the existence and uniqueness of solution to 

Lyapunov equation [19]. The result of the theorem is used 

in the next subsection to prove that the condition for the 

Lyapunov stability of the uncertain LTI system in (1) is 

satisfied. 

The 𝛾 Condition on Robust Stability 

A main step in measuring the RC-Centrality indices for 

input set 𝑆 in (10) is finding design parameter 𝛾. The result 

of Lemma 2 can be used to characterize 𝛾, which is done 

next. 

Lemma 2. Assume that 𝐺𝑅(𝐵) is the unique solution, 

which is positive definite, of the Lyapunov equation (15) 

for the LTI system with uncertainty in (1). Then, the 

optimal control laws are obtained as follows: 
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  (16) 
 [
𝑢(𝑡)
𝑣(𝑡)

] = [
𝑅−1𝐵𝑇𝐺𝑅(𝐵)

𝛾𝑄−1(𝐼 − 𝐵𝐵†)𝑇𝐺𝑅(𝐵)
] 𝑥(𝑡)

= [
𝐾
𝐿
] 𝑥(𝑡) 

Proof.  The proof is very similar to that of Theorem 1 and 

is thus removed.                                                                   ∎ 

The coefficients of state feedback 𝐾 and 𝐿 are now 

utilized to find a suitable value for 𝛾. 

Theorem 4. Consider the controllable LTI system in (1) 

with bounded uncertainty ∆(𝑝). The robust control 

centrality 𝐶𝑅𝐶(𝑆) indicates the centrality of controllers 

𝑢(𝑡) = 𝐾𝑥(𝑡) activated by input set 𝑆 which robustly 

stabilizes the closed-loop system (1) for all  𝑝 ∈ 𝑃. The 

design parameter 𝛾 and feedback gains 𝐾 and 𝐿 can be 

found in such a way to satisfy the following inequality: 

 (17) inv(𝛾)𝐿𝑇𝑄∆(𝑝)𝐿 > −
1

2
(𝐾𝑇𝑅𝐾 − 𝐿𝑇𝑄𝐿

+ 2𝐾𝑇𝑅𝐵†∆(𝑝)𝐿) 

Proof. Suppose that the robust control energy level 

defined in (2) is the Lyapunov function candidate for the 

uncertain system in (1) of the following form: 

     (18) 𝑉(𝑥) = min
𝑢,𝑣

∫(𝑢𝑇(𝑡)𝑅𝑢(𝑡) + 𝑣𝑇(𝑡)𝑄𝑣(𝑡))d𝑡

∞

0

 

the HJB equation is satisfied by the proposed 𝑉(𝑥), which 

reduces to 

    (19) 

 min
𝑢,𝑣

(𝑢𝑇(𝑡)𝑅𝑢(𝑡) + 𝑣𝑇(𝑡)𝑄𝑣(𝑡)

+ 𝑉𝑥
𝑇(𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

+ 𝛾(𝐼 − 𝐵𝐵†)𝑣(𝑡))) 

where 𝑉𝑥 ≜
𝜕𝑉(𝑥)

𝜕𝑥
.  The optimal control laws 𝑢(𝑡) = 𝐾𝑥(𝑡) 

and 𝑣(𝑡) = 𝐿𝑥(𝑡) must make the derivative of 

𝑢𝑇(𝑡)𝑅𝑢(𝑡) + 𝑣𝑇(𝑡)𝑄𝑣(𝑡) + 𝑉𝑥
𝑇(𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) +

𝛾(𝐼 − 𝐵𝐵†)𝑣(𝑡)) zero with respect to 𝑢(𝑡) and 𝑣(𝑡), 

respectively [18], [19]. Hence, 

    (20)  2𝑥𝑇(𝑡)𝐾𝑇𝑅 + 𝑉𝑥
𝑇𝐵 = 0 

    (21)  2𝑥𝑇(𝑡)𝐿𝑇𝑄 + 𝑉𝑥
𝑇𝛾(𝐼 − 𝐵𝐵†) = 0 

It is clear that the integral type of Lyapunov function 

𝑉(𝑥) proposed by (18) is a positive definite function for 

system in (1): 

𝑉(𝑥) > 0    𝑥 ≠ 0 
𝑉(𝑥) = 0    𝑥 = 0 

It will be shown that 𝑉̇(𝑥) < 0 for all 𝑥 ≠ 0 using (1). 

According to the HJB equation (19) and Lemma 2, we 

have: 

𝑉̇(𝑥(𝑡)) = −𝑥𝑇𝐾𝑇𝑅𝐾𝑥 − 𝑥𝑇𝐿𝑇𝑄𝐿𝑥 + 𝑉𝑥
𝑇𝐵𝐵†∆(𝑝)𝐿𝑥

+ 𝑉𝑥
𝑇(𝐼 − 𝐵𝐵†)∆(𝑝)𝐿𝑥

− 𝑉𝑥
𝑇𝛾(𝐼 − 𝐵𝐵†)𝐿𝑥 

which, combined with (20) and (21), implies that 

    (22) 
 𝑉̇(𝑥) = −𝑥𝑇𝐾𝑇𝑅𝐾𝑥 + 𝑥𝑇𝐿𝑇𝑄𝐿𝑥

− 2𝑥𝑇𝐾𝑇𝑅𝐵†∆(𝑝)𝐿𝑥
− 2𝛾−1𝑥𝑇𝐿𝑇𝑄∆(𝑝)𝐿𝑥 

and consequently, 

      (23) 
 𝑉̇(𝑥) = 𝑥𝑇(−𝐾𝑇𝑅𝐾 + 𝐿𝑇𝑄𝐿 − 2𝐾𝑇𝑅𝐵†∆(𝑝)𝐿

− 2𝛾−1𝐿𝑇𝑄∆(𝑝)𝐿)𝑥 

Equation (23) has the form of 𝑥𝑇𝛨(𝑝)𝑥, then by (17) 

𝑉̇(𝑥) < 0      𝑥 ≠ 0 

𝑉̇(𝑥) = 0      𝑥 = 0 

Then, it is clear that 𝑉(𝑥) is a Lyapunov function for 

system (1). Therefore, according to the Lyapunov stability 

theorem, the system in (1) using the optimal control laws 

𝑢(𝑡) = 𝐾𝑥(𝑡) and 𝑣(𝑡) = 𝐿𝑥(𝑡) for all 𝑝 ∈ 𝑃 would be 

asymptotically stable.                                     ∎ 

Corollary 2.  For any input set 𝑆 ⊆ 𝑉, the Lyapunov 

candidate function is the optimal value of robust control 

energy level to achieve the following property: 

    (24)   𝑉(𝑥) = 𝐽𝑅
∗(𝐵) =

1

𝐶𝑅𝐶(𝑆)
 

This shows the impact of robust controller 𝑢(𝑡) 

activated via matrix 𝐵, which holds the above property. In 

the next subsection, an algorithm is proposed for 

calculating the control centrality  𝐶𝑅𝐶(𝑆) of input set 𝑆. 

Algorithm to Calculate 𝐶𝑅𝐶 

The proposed control centrality measure is 

summarized as Algorithm 1. It should be noted that the 

first iteration starts with the nominal value of uncertainty. 

Moreover, during the calculation of RC-Centrality 

Algorithm, the optimal controllers 𝑢(𝑡) and 𝑣(𝑡) in (16) 

stabilize the LTI system (1) in the presence of uncertainty.  

 

Algorithm 1: Robust Control Centrality 
 

Input: Input set 𝑆, 𝐴, 𝐵∆(𝑝), 𝑡0, 𝑡𝑓, 𝑥(𝑡0), 𝑥(𝑡𝑓) 

Output: 𝐶𝑅𝐶(𝑆) or 𝐶𝐶(𝑆) 

1. Pick 𝑠 ∈ 𝑆. 

2. Compute 𝑑𝑓 using (9). 

3. If uncertainty exists   % RC-Centrality 

    3.1. Decompose 𝐵∆(𝑝) into 𝐵 and Δ(𝑝) using 𝑠 and (1).  

    3.2. Find 𝐺𝑅(𝐵) and 𝛾 using (16) subject to (15) and (17). 

    3.3. Calculate 𝐶𝑅𝐶(𝑠) using (10). 

    3.4. Repeat steps 3.1 to 3.3 for each individual or group 
set of 𝑆. 

4. else   % Control Centrality 

    4.1. Find 𝐺(𝐵) using (14). 

    4.2. Calculate 𝐶𝐶(𝑠) using (13). 

    4.3. Repeat steps 4.1 to 4.2 for each individual or group 
set of 𝑆. 

5. End 

 

It is noted that step 3. 2 in Algorithm 1 could be done 

by convex optimization method in MATLAB. Also, in this 

step, metaheuristic methods such as particle swarms and 

genetic algorithms can be used. However, these 

approaches were not used in the case studies presented 

in this paper. 
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In the next section, the controllable and asymptotically 

stable system (1) in the presence of bounded uncertainty 

∆(𝑝) is considered. The RC-Centrality is used to identify 

input set’s importance in the closed-loop system with 

robust control law 𝑢(𝑡). In this WDS+U genetic network 

𝒢, maximization of 𝐶𝑅𝐶(𝑆) corresponds to minimizing 

input energy of input set S to reach the desired final state 

𝑥(𝑡𝑓). 

Numerical Examples 

In this section, we present an example of a real genetic 

regulatory network to demonstrate the effectiveness of 

the proposed control centrality strategy using Algorithm 

1. The GRN, consisting of five nodes, is relatively simple 

but serves to illustrate the method’s effectiveness in 

various scenarios, including the absence and presence of 

uncertainty with different structures. Additionally, we 

evaluate the feasibility of numerical computation in 

MATLAB for the parameters 𝛾 and 𝐺𝑅(𝐵). 

Let 𝒜 = 𝐶 = −diag(1)5×5, 𝐷 = diag(0.8)5×5, and 

the Hill function is 𝑓(𝑥) =
𝑥2

(1+𝑥2)
. (Robust) control 

centrality is calculated to transfer the states of the linear 

GRN system in (11) from the initial concentrations of 

protein and mRNA, 𝑀(0) = 𝑃(0) = [5]5×1, to the final 

states at the origin. In this part, it is assumed that control 

input 𝑢𝑖(𝑡) is a repressor transcription factor of gene i to 

prevent the target genes from being upregulated [40]. 

A.  Case Study 1: A Non-WDS Network 

A case study is here given to show the differences and 

similarities between the control centrality and standard 

centrality measures such as degree, closeness, 

betweenness and eigenvector centrality for unweighted 

and undirected networks. Consider a GRN without loops, 

shown in Fig. 1.  
 

 
 

Fig.  1: The GRN model of Case Study 1. 

 

The coupling matrix is  𝐺1 = 

[
 
 
 
 
0 1 1 1 0
1 0 1 1 1
1
1
0

1
1
1

0
0
0

0
0
1

0
1
0]
 
 
 
 

. 

 

The control centrality in (13) is compared with the 

well-known aforementioned centrality measures in 

Tables 2 and 3. 

According to Tables 2 and 3, the proposed control 

centrality agrees with the previous individual centrality 

measures for simple (non WDS) networks. Node 2 is more 

central, and nodes 1 and 4 have the same centrality based 

on degree, closeness, betweenness, eigenvector, and the 

proposed control centrality measures. Table 2 presents 

the order of individual and group centralities to illustrate 

the similarity and difference between the control 

centrality and other established measures. 
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3 4

5

Table 2: Scores based on various individual and group centrality methods 
 

 Input 
set S 

𝐶𝐷(𝑆) 𝐶𝑐𝑙(𝑆) 𝐶𝐵(𝑆) 𝐶𝐸(𝑆) 𝐶𝐶(𝑆) 

Individual 
Centrality 

{1} 
{2} 
{4} 

0.75 
1 
0.75 

0.2 
0.25 
0.2 

0.14 
0.37 
0.14 

3.1 
3.7 
3.1 

4.5 
4.7 
4.5 

  

Group 
Centrality  

{1,2} 
{1,4} 
{2,4} 
{1,2,4} 

1 
1 
1 
1 

0.33 
0.33 
0.33 
0.5 

0.66 
0.25 
0.66 
1 

N.A. 
N.A. 
N.A. 
N.A. 

5.5 
5.3 
5.5 
6 

N.A.: Not applicable 

 

Table 3:  Priorities based on various centrality measures 
 

Order of Centralities 

𝐶𝐷({1,2,4}) = 𝐶𝐷({2,4}) = 𝐶𝐷({1,2}) = 𝐶𝐷({1,4}) = 𝐶𝐷({2}) > 𝐶𝐷({1}) = 𝐶𝐷({4}) 

𝐶𝑐𝑙({1,2,4}) > 𝐶𝑐𝑙({2,4}) = 𝐶𝑐𝑙({1,2}) = 𝐶𝑐𝑙({1,4}) > 𝐶𝑐𝑙({2}) > 𝐶𝑐𝑙({1}) = 𝐶𝑐𝑙({4}) 

𝐶𝐵({1,2,4}) > 𝐶𝐵({2,4}) = 𝐶𝐵({1,2}) > 𝐶𝐵({2}) > 𝐶𝐵({1,4}) > 𝐶𝐵({1}) = 𝐶𝐵({4}) 

𝐶𝐸({2}) > 𝐶𝐸({1}) = 𝐶𝐸({4})              

𝐶𝐶({1,2,4}) > 𝐶𝐶({2,4}) = 𝐶𝐶({1,2}) > 𝐶𝐶({1,4}) > 𝐶𝐶({2}) > 𝐶𝐶({1}) = 𝐶𝐶({4}) 
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It is clear from Table 3 that based on control centrality, 

𝐶𝐶({1,2,4}) also gets the highest score as other methods 

to prevent upregulation of target set {3,5}. The degree 

centrality scores of input sets {1,2},{1,4},{2,4},{1,2,4} 

are all equal to 1 and the scores of the input sets 

{1,2},{1,4},{2,4} are equal per the group closeness 

centrality. However, the groups which contain individual 

with high centrality score, {1,2},{2,4}, inherit some of 

these scores in group betweenness and input centrality 

than the other group centrality {1,4}. 

Case Study 2: A Real Genetic Network 

In this subsection, we consider the application of 

control centrality to a real genetic regulatory network 

(GRN), which has been both theoretically predicted and 

experimentally validated in Escherichia coli [41]. We 

specifically focus on the dynamics of the repressilator, a 

well-studied system. The repressilator is composed of 

three repressor genes (𝑙𝑎𝑐𝑙, 𝑡𝑒𝑡𝑅, and 𝑐𝑙) along with their 

corresponding promoters. 

Consider the WDS genetic network with five genes 

drawn in Fig. 2 [41], in which each agent describes a gene. 

The ↓ sign denotes an activation link, and the ⊥ sign 

denotes a repression link. The coupling matrix is  

𝐺2 = 0.5 ×

[
 
 
 
 
0 −0.5 0.75 0 0

−0.5 0  0 0.5 1
0
1
0

0.75
−0.5
0

0
0
0

0
0
1

0
0
0 ]
 
 
 
 

. 

 

 
 

Fig.  2: Genetic regulatory network model [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This network has the same nodes and connections, as 

the one in previous case study, but weights and directions 

and signs are also added. 

The individual and group control centralities for this 

network are calculated using (13) and are depicted in 

descending order in Fig. 3. 

The target set {3,5} in this genetic network will be paid 

attention to again. Based on control centrality 

investigation in Case Study 1, input nodes {1} and {4} gain 

the same centrality measures, and it can’t be determined 

which one is more important. However, in this example, 

input node {1} has a higher rank than {4} since, according 

to the coupling matrix 𝐺2, 𝑡𝑓1 has a more repression 

influence over all other genes in this network topology 

rather than 𝑡𝑓4, which explains why input node {1} 

requires less input energy to steer the system towards the 

desired final state. 

 
 

Fig.  3: Control Centrality Without Uncertainty. 
 

In comparison between the control centrality 

measures for weighted, directed, and signed networks 

considering the effect of control inputs proposed in [13] 

and [26] and our measure, we use Table 4 to demonstrate 

the similarities between them.  

In the following subsection, the control centrality for 

GRN would be calculated in the presence of uncertainty. 
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Table 4:  Priorities of control centrality measures for the WDS network 
 

Order of Centralities 

𝐶𝐶({1,2,4}) > 𝐶𝐶({12}) > 𝐶𝐶({24}) > 𝐶𝐶({1,4}) > 𝐶𝐶({2}) > 𝐶𝐶({1}) > 𝐶𝐶({4}) 

𝐶𝑝({1,2,4}) > 𝐶𝑝({12}) > 𝐶𝑝({24}) > 𝐶𝑝({1,4}) > 𝐶𝑝({2}) > 𝐶𝑝({1}) > 𝐶𝑝({4}) 

𝐶𝑞({1,2,4}) > 𝐶𝑞({12}) > 𝐶𝑞({24}) > 𝐶𝑞({1,4}) > 𝐶𝑞({2}) > 𝐶𝑞({1}) > 𝐶𝑞({4}) 

𝐶𝑊({2}) > 𝐶𝑊({1}) > 𝐶𝑊({4}) 

𝐶𝑀({2}) > 𝐶𝑀({1}) > 𝐶𝑀({4}) 
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RC-Centrality in the Genetic Network 

Genetic regulatory networks often contain a significant 

amount of uncertainty. This uncertainty is categorized 

into two broad classes. Matched uncertainty stems from 

the lack of knowledge or inherent biological phenomena 

in the intrinsic dynamics of the system under examination 

without input. In GRNs, for example, noise in gene 

expression can induce uncertainty in the products. The 

second type of uncertainty results from the applied input 

to the system. The unmatched uncertainty is profoundly 

present due to practical limitation and measurement 

errors or noises of the inputs in various experimental 

experiences, such as a moderate change of the input in a 

transition region [25]. 

In this part, the uncertainty should be decomposed 

into matched and unmatched parts defined 

mathematically next. It is proven that the unmatched 

uncertainty needs more input energy to satisfy the 

condition (17) in order to guarantee robust stability. This 

condition depends on the design parameter 𝛾 that can be 

found by computer programming, e.g., the MATLAB 

toolbox and Yalmip. 

Case Study 3: Matched Uncertainty 

If the uncertainty ∆(𝑝) can be written in the form of 

𝐵𝜑(𝑝) for some 𝜑(𝑝), it can be considered as the 

matched uncertainty. In this subsection, matched 

uncertainty is applied to the model using degree structure 

for the uncertainty ∆(𝑝). 

The degree uncertainty is a matched uncertainty form 

that can be considered in RC-Centrality. In this case, the 

dynamics of the state space model are given by 

    (25)   𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝒟(𝑝)𝑣(𝑡), 𝑝 ∈ [−1,1] 

where 𝑝 is an uncertain parameter vector, and 𝐷(𝑝) =

𝑝.diag([𝑑1…𝑑5 ]) is the degree matrix of the underlying 

coupling graph of the GRN. In this case study, the matrix 

𝐷(𝑝) is 𝐷(𝑝) = 𝑝.diag([0.125,0.5,0.375,0.25,0.5]) and 

a design parameter 𝛾 for the input set 𝑆, that satisfies 

condition (17), can be obtained using Yalmip. 
 

 
 

Fig.  4: RC-Centrality for the Degree Uncertainty. 

 
According to the RC-Centrality depicted in Fig. 4, 

parameter 𝛾 is not sufficiently large to change the priority 

of 𝐶𝑅𝐶(𝑆) compared to 𝐶𝐶(𝑆) in Fig 3. These plotted 

figures reflect that the value of 𝐶𝐶(𝑆) of each input set is 

larger than 𝐶𝑅𝐶(𝑆) obtained for the uncertain model, that 

is since a cost applies to deal with uncertainty. 

As a consequence of the above case study, the 

matched uncertainty cannot change the order of priority 

for the robust control centrality. The case of unmatched 

uncertainty will be examined next. 

Unmatched Uncertainty 

In this section, two types of unmatched uncertainty 

∆(𝑝) are considered, which cannot be written in the form 

of 𝐵𝜑(𝑝), and the RC-Centrality would be calculated for 

each case. 

Case Study 4: Laplacian Uncertainty 

The second type is Laplacian uncertainty. The updated 

equation of the state space model can now be described 

as follows: 

     (26)  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐿(𝑝)𝑣(𝑡), 𝑝 ∈ [−1,1] 

where 𝐿(𝑝) = 𝑝.𝐿 is the Laplacian uncertainty matrix. The 

value of the RC-Centrality can be computed and  

drawn in Fig. 5. 

According to Fig. 5, while agents 2 and 1 are the most 

individual central agents responding to the matched 

uncertainty, respectively, they are the least central agents 

in the presence of Laplacian uncertainty. This observation 

can be explained as the following: since the non-zero 

entries of unmatched uncertainty of each input set are 

larger, the input set needs more energy to deal with the 

uncertainty by activated input set, which is compatible 

with our simulation results to characterize design 

parameter 𝛾 and feedback gains 𝐾 and 𝐿 in Theorem 4. 
 

 
Fig.  5: RC-Centrality for the Laplacian Uncertainty. 

 

Case Study 5: Adjacency Uncertainty 

The third type of uncertainty can be considered due 

to the communication with its regulatory neighbors of the 

input set. The following relation is taken into account: 

𝐺(𝑝) = 𝐺𝑟𝑒𝑝(𝑝) + 𝐺𝑎𝑐𝑡(𝑝) 

where, 𝐺𝑎𝑐𝑡(𝑝) and 𝐺𝑟𝑒𝑝(𝑝) are the repression and 

activation uncertainties, respectively, defined as: 

𝐺𝑎𝑐𝑡(𝑝) = {
𝑝𝛼𝑖𝑗  if e𝑖𝑗 > 0

0 otherwise
 , 
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𝐺𝑟𝑒𝑝(𝑝) = {
−𝑝𝛼𝑖𝑗  if e𝑖𝑗 < 0

0 otherwise
 

This uncertainty model applies to the adjacency matrix 

of the underlying coupling of the GRN. 

    (27)  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐺(𝑝)𝑣(𝑡), 𝑝 ∈ [−1,1] 

with regard to the adjacency uncertainty 𝐺(𝑝), the RC-

Centrality for all input sets is depicted in Fig. 6. 

It is worth noting that while Fig. 3-5 imply that input 

set {1,2,4} is the most central set, it can be seen from Fig. 

6 that based on the RC-Centrality, input node {2} is the 

most central set with respect to the proposed type of 

unmatched uncertainty. That is due to its position with 

other genes in the network, i.e., input node {2} has many 

repression links with both the target set and other agents 

to steer states to the origin and consumes less energy 

based on Theorem 4 to deal with the adjacency 

unmatched uncertainty matrix entries. However, it is 

observable that the input set {1,2,4} needs much more 

input energy to reach the desired states, which can be 

deduced from the adjacency unmatched uncertainty 

matrix. 

According to Fig. 6, it is also concluded that the group 

RC-Centrality may improve or diminish compared to the 

individual indices depending on the structure of 

unmatched uncertainty, which confirms the utility of the 

proposed centrality measure in the presence of 

unmatched uncertainty. 
 

 

Fig.  6: RC-Centrality for the Adjacency Uncertainty. 
 

We note that the term expressed in the last part of (12) 

is a function of the parameter 𝛾 and weighting matrix 𝑄, 

which are designed to properly with uncertainty. In the 

presence of unmatched uncertainty, 𝛾 requires a larger 

amount of input energy to satisfy the condition (17). So, 

it is expected to see more energy for the unmatched 

uncertainty highly related to the non-zero entries of ∆(𝑝). 

Conclusion 

A Robust Control Centrality measure is introduced in 

this paper based on an optimal value of input energy level 

needed for steering the states of an LTI network from the 

initial values at 𝑡0 to their desired states at the final time 

𝑡𝑓 in presence of uncertainty.  

In biological context, the proposed measure can be 

used to characterize the amount of control inputs used in 

controlling biological process. The proposed control 

centrality measure is related to the reachability Gramian 

of the weighted, directed, signed genetic networks that 

can be associated with the individual agents and agent 

groups. In genetic networks, the presence of inherent 

uncertainty poses a significant challenge in characterizing 

a robust control centrality. However, this challenge is 

addressed by adopting an optimal control approach in 

terms of the centrality of the robust controllers to 

stabilize the uncertain controllable GRN. Finally, the 

effectiveness of the proposed centrality measure is 

verified via simulation of a real GRN network under 

different scenarios of matched and unmatched 

uncertainties and comparison with established measures. 

The input resource allocation framework discussed in this 

paper is general, therefore, studying strategies for fixed 

budget constraints or variation in the cost of different 

control inputs in the network forms an interesting future 

research direction. 

Results and Discussion 

In future work, we shall introduce centrality measures 

as energy calculation for unstable systems with regard to 

the optimal energy to reach a desired steady state. 

Moreover, questions surrounding the terminal time and 

final steady states as two essential elements, which may 

affect the structure of the optimal energy, will be 

investigated. 

Appendix A. An LTI model for GRNs 

GRNs describe relationships between genes in a cell. 

They can be modeled as a WDS network [42]. The 

network’s agents are genes, and the agent’s state is the 

concentration of mRNA and protein of the gene 

expression. Each weighted and directed link in the WDS 

network represents power and direction of regulatory 

relationships, respectively. The activator or repressor 

transcription factor associates, respectively, with the 

positive or negative sign of the link in GRN’s model. 

A modified state space model for GRNs, based on the 

models provided in [41], [43] is proposed in this paper as 

follows: 

(28) 
𝑚̇𝑖(𝑡) = −ℴ𝑖𝑚𝑖(𝑡) +∑𝑏𝑖𝑗(𝑝𝑗(𝑡))

𝑛

𝑗=1

+ ℬ𝑖𝑢𝑖(𝑡) 

𝑝̇𝑖(𝑡) = −𝑐𝑖𝑝𝑖(𝑡) + 𝑑𝑖𝑚𝑖(𝑡)           𝑖 = 1,2, … ,𝑛 

where the concentration of mRNA and protein of gene 𝑖 

are denoted by 𝑚𝑖(𝑡), 𝑝𝑖(𝑡) ∈ 𝑅. ℴ𝑖 and 𝑐𝑖’s are the 

degradation rates of mRNA and protein, respectively, and 

𝑑𝑖 is a bounded constant.  Control input 𝑢𝑖 is applied to 

gene 𝑖 if it is activated via 𝐵𝑖; otherwise, it is zero. 𝑏𝑖𝑗(. ) 

is expressed by the Hill form as: 
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    (29)  𝑏𝑖𝑗 (𝑝𝑗(𝑡))=

{
 
 

 
 𝛼𝑖𝑗

(𝑝𝑗(𝑡) 𝛽⁄ )
𝐻

1+(𝑝𝑗(𝑡) 𝛽⁄ )
𝐻 if  𝑎𝑖𝑗 > 0

𝛼𝑖𝑗
1

1+(𝑝𝑗(𝑡) 𝛽⁄ )
𝐻 if  𝑎𝑖𝑗 < 0

0 otherwise

 

where 𝛽 is a positive constant, 𝐻 is the Hill coefficient, 

and transcription rate 𝛼𝑖𝑗 is a bounded constant that 

determines the power of gene 𝑗 to gene 𝑖 in the regulation 

mechanism. The coupling matrix between genes is 

defined as 

𝐺𝑖𝑗 = {

𝛼𝑖𝑗 if 𝑎𝑖𝑗 > 0

−𝛼𝑖𝑗 if  𝑎𝑖𝑗 < 0

0 otherwise

 

We know that: 

𝛼𝑖𝑗
(𝑝𝑗(𝑡) 𝛽⁄ )

𝐻

1 + (𝑝𝑗(𝑡) 𝛽⁄ )
𝐻 = 𝛼𝑖𝑗 − 𝛼𝑖𝑗

1

1 + (𝑝𝑗(𝑡) 𝛽⁄ )
𝐻 

Then, (28) can be rewritten as 

             (30) 

   𝑚̇𝑖(𝑡) = −ℴ𝑖𝑚𝑖(𝑡) +∑𝐺𝑖𝑗𝑔 (𝑝𝑗(𝑡))

𝑛

𝑗=1

+ ℬ𝑖𝑢𝑖(𝑡)

+ 𝑙𝑖 

𝑝̇𝑖(𝑡) = −𝑐𝑖𝑝𝑖(𝑡) + 𝑑𝑖𝑚𝑖(𝑡),       𝑖 = 1,2, … ,𝑛 

where 𝑙𝑖 = ∑ 𝛼𝑖𝑗𝑗∈𝑉𝑖1
  is the basal rate, 𝑉𝑖1 is the set of 

repressors of gene 𝑖, i.e., 𝑎𝑖𝑗 < 0, and 𝑔(𝑝) =
(𝑝 𝛽⁄ )𝐻

1+(𝑝 𝛽⁄ )𝐻
. In 

compact matrix form, (30) can be rewritten as 

(31) 
  𝑚̇(𝑡) = 𝒜𝑚(𝑡) + 𝐺𝑔(𝑝(𝑡)) + ℬ𝑢(𝑡) + 𝑙 

  𝑝̇(𝑡) = 𝐶𝑝(𝑡) + 𝐷𝑚(𝑡) 

where 𝐺 = 𝐺𝑖𝑗 ∈ 𝑅
𝑛×𝑛, 𝑚(𝑡) =

[𝑚1(𝑡), … ,𝑚𝑛(𝑡)]
𝑇 ,  𝑝(𝑡) = [𝑝1(𝑡), … ,𝑝𝑛(𝑡)]

𝑇 , 𝒜 =
diag(−ℴ1,…, − 𝑜𝑛), ℬ = diag(ℬ1,…,ℬ𝑛), 𝐶 =
diag(−𝑐1,…, − 𝑐𝑛), 𝐷 = diag(𝑑1,…,𝑑𝑛) , 𝑙 = [𝑙1,…,𝑙𝑛]

𝑇, 

𝑔(𝑝(𝑡)) = [𝑔(𝑝1(𝑡)),…,𝑔(𝑝𝑛(𝑡))]
𝑇

. 

Consider an equilibrium point (𝑚∗,𝑝∗,𝑢∗) of the 

nonlinear system (31), meaning that 𝒜𝑚∗ + 𝐺𝑓(𝑝∗) +

ℬ𝑢∗ + 𝑙 = 0, and 𝐶𝑝∗ + 𝐷𝑚∗ = 0. It will be shifted to the 

origin by letting 𝑀(𝑡) = 𝑚(𝑡) − 𝑚∗, 𝑃(𝑡) = 𝑝(𝑡) − 𝑝∗ 

[44]. Thus, we have 

    (32) 
  𝑀̇(𝑡) = 𝒜𝑀(𝑡) + 𝐺𝑓(𝑃(𝑡)) + ℬ𝑢(𝑡), 

  𝑃̇(𝑡) = 𝐶𝑃(𝑡) + 𝐷𝑀(𝑡). 

where 𝑀(𝑡), 𝑃(𝑡) ∈ 𝑅𝑛and  𝑓(𝑃(𝑡)) = 𝑔(𝑃(𝑡) + 𝑝∗) −

𝑔(𝑝∗).The linearized control system at (𝑚∗,𝑝∗,𝑢∗) is: 

[
𝑀̇(t)

𝑃̇(t)
] = [

A11 A12
A21 A22

] [
𝑀(t)

𝑃(t)
] + [

ℬ
0
] 𝑢(t) 

where 𝐴11 = 𝒜, 𝐴12 = 𝐺
𝜕𝑓

𝜕𝑃
(𝑚∗,𝑝∗,𝑢∗) , 𝐴21 = 𝐷, 𝐴22 =

𝐶. So, an LTI model of GRNs with state variables 𝑥(𝑡) =

[
𝑀(𝑡)
𝑃(𝑡)

] is as follows: 

    (33) 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

where 

𝐴 = [
A11 A12
A21 A22

] , 𝐵 = [
ℬ
0
]. 

The LTI system (33) is formed by applying control input 

to capture the dynamics of gene networks in an efficient 

way [45].  
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