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Article info:  
This research investigates the effectiveness of various vibration data acquisition 

techniques coupled with different machine learning models for detecting 

anomalies and classifying them. To this end, synthetic vibration data was 

generated for techniques such as eddy current proximity transducers (ECPT), 

accelerometer sensor, blade tip timing, laser doppler vibrometer (LDV), and 

strain gauge. Afterward, the data was pre-processed and used to train gradient 

boosting machine, support vector machine, and random forest models. 

Performance evaluation metrics, including accuracy, recall, F1-score, receiver 

operating characteristic, and area Under curve were employed to assess the 

models, revealing varying degrees of success across combining techniques and 

models. Notable achievements were observed for the random forest model 

coupled with the eddy current proximity transducers technique, underscoring 

the significance of informed technical selection and model optimization in 

enhancing vibration anomaly detection systems in combined cycle power 

plants. The results showed that the LDV technique has a significant increase in 

accuracy from about 0.49 to approximately 0.52, while the ECPT technique has 

improved from about 0.9 to close 1.0. These advances highlight the growing 

accuracy of the methods and enable the development of more efficient and 

reliable learning machines.  
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1. Introduction  

 

Vibration analysis plays an important role in 
various engineering applications in industry, 
such as structural health assessment and fault 
diagnostics, through the identification and 
analysis of vibration patterns [1]. One of these 
influential industries in the economy of countries 
is petrochemicals and power plants. In this 
regard, combined cycle Power Plants (CCPPs) 

utilize the gas turbine and Rankine cycle to 
generate electricity efficiently and eco-friendly 
[2]. The most important components of CCPP 
are gas and steam turbines, condensers, cooling 
towers, Heat Recovery Steam Generators 
(HRSGs), and electric generators [3]. Among 
them, gas turbine is a vital part of this system as 
it provides the primary energy source. Therefore, 
regular maintenance and correct operation of this 
part, for example, gas turbine, is necessary for 
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the optimal performance of the system [4]. In 
other words, any unbalance or malfunction in the 
gas turbine can lead to reduced efficiency, 
production, and unscheduled shutdowns that 
affect the overall performance of the CCPP [5, 
6]. Fig. 1 demonstrates some of the serious 
damages caused to the gas turbine of the Kirkuk 
power plant in Iraq. 
The main objective of this study is to investigate 
the potential of machine learning models, 
particularly the random forest classifier, in 
analyzing synthetic vibration data obtained from 
various measurement techniques, including eddy 
current proximity transducers (ECPT), 
accelerometer sensor (AS), blade tip timing 
(BTT), laser doppler vibrometer (LDV), and 
strain gauge (SG). Such a comprehensive study 
was conducted for the first time in a CCPP. For 
this purpose, vibration data was gathered for 
each technique, machine learning models were 
trainedو and finally evaluated using performance 
metrics such as accuracy, recall, F1-score, 
receiver operating characteristic (ROC), and 
area under curve (AUC). In the following, first, 
a detailed overview of the current state of the 
mentioned industry in monitoring and measuring 
gas turbine vibration, as well as the introduction 
of numerous industrial approaches for this 
purpose, will be discussed. Beyond that, the 
article will go into the pros and cons of each 
method. 
 

1.1. Causes of vibration in gas turbine 
 

Internal faults, natural disasters, and human error 
are the primary factors contributing to the 
catastrophic failure of gas turbines in CCPPs. 
Understanding vibration and its root causes is 
critical to gas turbine design and maintenance, 
ensuring reliable electricity generation and 
averting failures. In the following, a brief 
description of the causes will be given. 
 

1.1.1. Shaft unbalancing 
 

In rotating machines such as CCPP machines, 
two common sources of vibration are 
unbalanced and misalignment, which lead to 
excessive vibration, noise, and wear.  
Unbalance and misalignment can damage 
bearings, shafts, couplings, and other 
components, increase maintenance costs and 
downtime, and thus reduce system efficiency by 
increasing power consumption and reducing 
output. Sudhakar and Sekhar extensively studied 
coupling misalignment and its effects, focusing 

on detection methods using motor current signs, 
noise, thermography, and machine learning [7]. 
Their findings emphasize the importance of 
minimizing vibrations by addressing 
misalignment and unbalance, potentially 
reducing machine power consumption by 10–
15% [8]. Furthermore, bearing misalignment 
significantly affects the thickness of the 
protective film; even a slight misalignment leads 
to a 40% reduction in bearing load capacity [9]. 
A visual representation of bearing damage due to 
misalignment in a CCPP turbine is shown in Fig. 
2. 
 
1.1.2. Critical speed 
 

Critical speed is a significant threat to CCPPs, 
causing vibration, system inefficiency, and 
potential failure. Operating machinery above 
critical speeds can lead to component failure, 
increased maintenance costs, and reliability 
issues.  
Sinha et al. [10] identified the critical speeds 
using the Short-Time Fourier Transform (STFT) 
on vibration data from rundown and start-up 
operations. 
 
1.1.3. Rubbing 
 

Rubbing occurs when rotating components rub 
against each other, resulting in friction and wear, 
eventually damaging machine parts such as 
bearings and seals. 
 

 

Fig. 1. Damages to a gas turbine in Kirkuk power 
plant due to the occurrence of vibrations caused by (a) 
and (b) steam flow fluctuations, and (c) rubbing. 
 

 
Fig. 2. Bearing damage due to the misalignment in a 

gas turbine located in Kirkuk power plant. 

(a)                               (b)                                  (c) 
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This leads to increased vibration, wear, and the 
risk of sudden failure. Edwards et al. [11] 
investigated the rubbing effect of rotor torsional 
vibration, and the results showed the adverse 
effect on rotor systems and highlighted the need 
to consider torsion in models of the rubbing 
phenomenon. The heat generated by rubbing 
intensifies rotor dynamics and emphasizes the 
importance of minimizing spin by maintaining 
distinct natural frequencies and considering dry 
friction in the stator and rotor dynamics [12]. 
Experimental studies by Dayi et al. [13] showed 
how sudden blade loss and rubbing impacts 
affect the dynamics of the rotor system, 
especially when the angular velocities exceed 
the critical velocities. Fig. 3 demonstrates an 
image of the effects of the rubbing phenomenon 
observed in a CCPP. In addition, the wear and 
tear of the turbine caused by the fluctuations of 
the steam flow is illustrated in Fig. 4. 
 
1.1.4. Shorted turns 
 
Shorted-turn conditions in generators or motors 
lead to increased current, temperature, vibration, 
and reduced efficiency in CCPPs. Factors 
contributing to shorted-turn rotors include rotor 
unbalance, vibration induced by unbalanced 
magnetic forces, and stop-start cycles.  
Current and temperature monitoring, along with 
visual inspections and Non-Destructive Testing 
(NDT), help to detect and prevent short turns 
early. Lee et al. [14] conducted a shorted-turn 
detection test in a CCPP generator using an 
online detection device and a continuous flux 
probe for accurate and reliable results. In this 
regard, it is very important to monitor the flux 
probe signals under various load conditions to 
maximize shorted-turn sensitivity in rotor slots 
[15]. 
 
1.2. Vibration detection technologies in industry 
 

The process of measuring vibration to perform 
predictive and preventive repairs in rotating 
machines can be divided into two general parts. 
The first step is to collect raw vibration data 
using various sensors such as optical sensors, 
accelerometers, proximity probes, etc. The data 
is then analyzed using signal processing tools in 
the second step of the process. Below is a brief 
description of some well-known practical 
methods in the industry: 

 
Fig. 3. Gas turbine damage in Kirkuk power plant due 

to the occurrence of vibrations caused by the rubbing 

phenomenon. 

 

 
Fig. 4. Gas turbine damage in Kirkuk power plant due 

to the wear and tear caused by steam flow fluctuation. 

 

1.2.1. Eddy current proximity transducers 
 

Eddy current proximity transducers are used to 

monitor the displacement of rotating machines 

such as turbines and generators in power plants 

[16, 17]. A probe made of a non-magnetic metal 

and a coil made of copper wire with a ferrite core 

material constitute the transducer as shown in 

Fig. 5. The probe detects changes in the magnetic 

field caused by the proximity of the target object, 

while the coil creates an alternating magnetic 

field that induces eddy currents in an object. 

These currents generate a magnetic field that 

opposes the coil's field, and the probe detects the 

resulting changes and converts them into an 

electrical signal [18]. 

Some of the advantages of eddy current sensors 

for vibration monitoring in CCPPs are: 

• High accuracy to detect small displacement 

changes. 

• Reliability in harsh environments. 

• Suitability for high-speed machinery. 

• No moving parts, reducing the risk of failure. 
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Fig. 5. Vibration detection sensors: (a) working 

principle of an eddy current displacement sensor, and 

a comparable model (reproduced from [16]) and (b) 

principle of an accelerometer (reproduced from [17]). 
 

However, the sensor has some limitations, like: 

• Limited sensing ranges. 

• Unidirectional detection (radial). 

• The need for calibration to make correct 

measurements is time-consuming and 

requires specialized equipment [16]. 
 

1.2.2. Accelerometer sensor 
 

Accelerometers are sensors commonly used in 

power plants to monitor vibration. These 

instruments are usually small and lightweight 

and can detect vibration over a wide range of 

frequency. An accelerometer typically consists 

of a mass connected to a spring and a 

piezoelectric or capacitive element that converts 

the mass's motion into an electrical signal. The 

working principle of an accelerometer is based 

on the physical characteristics of the mass-spring 

system [17]. When a vibrating force is applied to 

the accelerometer, the mass connected to the 

spring also vibrates. Mass displacement is 

converted into an electrical signal by a 

piezoelectric element or a capacitive element 

[19]. Accelerometers are typically installed 

directly on the machine being monitored, either 

with adhesive or mechanically (Fig. 6). 

A data acquisition system then processes the 

acceleration signal, which may include signal 

conditioning, filtering, and analysis. The output 

signal of an accelerometer can be measured in 

the time or frequency domain, providing 

information about amplitude, frequency, and 

other vibration characteristics. 

 
Fig. 6. Accelerometer vibration probe [19]. 

 
Accelerometers can be used in a variety of 
vibration monitoring applications in power 
plants, including monitoring of rotating 
machinery such as turbines and generators, as 
well as structural components like pipelines and 
support structures. Accelerometers are 
strategically installed on the machine, for 
example, near the bearings or shaft, and measure 
the acceleration caused by machine vibration, 
which can indicate issues such as unbalance, 
misalignment, or bearing wear. 
Accelerometers offer advantages for vibration 
monitoring in power plants, such as: 

• High accuracy in a wide range of frequencies. 

• Ability to detect high and low levels of 
vibration. 

• Easy installation in both laboratory and field 
measurement areas. 

But it has limitations such as: 

• Limited dynamic range and sensitivity. 

• Susceptibility to interference from external 
vibrations or electromagnetic noise. 

• Requiring calibration and regular 
maintenance to ensure accuracy. 

• Unsuitability for measuring certain types of 
vibration, such as low-frequency or high-
amplitude vibrations [20]. 

 
1.2.3. Blade Tip Timing (BTT) 
 

BTT is common in the CCPPs to monitor the 
vibration of gas turbine blades. A BTT system 
usually consists of a series of sensors that are 
installed around the periphery of the turbine 
rotor and measure the passage time of the blade 
tips as they rotate past the sensors [21]. Fig. 7 
depicts a schematic of the BTT technique. 
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Fig. 7. A simple schematic of blade tip timing system 

(reproduced from [21]). 

 

Each blade has a unique vibration sign that is 

determined by the shape and stiffness of the 

blade as well as the rotational speed. Optical 

sensors installed on the stator or casing 

surrounding the rotor are commonly used in BTT 

systems. The passing blade tip interrupts the 

light beam emitted by these sensors. A 

microwave sensor-based approach for the BTT 

system was reported by Zhang et al. [22], in 

which a patch antenna probe was used to 

transmit and receive microwave signals from the 

reflective surface of the turbine blades [23]. An 

overview of the microwave tip timing system 

used to monitor the turbine blades is illustrated 

in Fig. 8. 

BTT can also be used to monitor rotor balance 

and detect any unbalance that could cause 

excessive vibration. Some of the advantages of 

BTT can be regarded as follows: 

• BTT can provide very accurate 

measurements of blade vibration. 

• They are non-intrusive and do not require 

changes to turbine blades or rotors. 

• BTT can detect both high and low vibration 

frequencies. 

• BTT can monitor blade vibration in real-time. 

However, BTT has some limitations of: 

• It can only measure the vibration of the blade 

tip and cannot provide information about the 

vibration of the rest of the blade or rotor. 

• Calibration is required for BTT systems to 

ensure accurate measurements [24]. 

 

1.2.4. Laser doppler vibrometer 

 

Laser doppler vibrometer (LDV) is a non-

contact vibration measurement technique used in 

power plants for vibration monitoring. LDV is a 

high-precision instrument capable of detecting 

extremely small vibrations with high accuracy 

[24]. An LDV system typically consists of a laser 

source, an optical beam splitter, and a 

photodetector. The laser emits a light beam, 

which is split into two parts by the optical 

splitter. One beam is aimed at the vibrating 

surface, while the other is focused on the 

reference surface. As shown in Fig. 9, the two 

beams are reflected to the photodetector, where 

they interfere, resulting in an interference 

pattern. 

The LDV operates by measuring the frequency 

shift in the interference pattern caused by surface 

vibration. The photodetector detects variations 

in the frequency of the reflected light when the 

surface vibrates. The LDV measures vibration 

amplitude and frequency and enables real-time 

monitoring of rotating machines. 

 

 
Fig. 8. Microwave tip timing system used for turbine 
blade monitoring (reproduced from [23]). 
 

Fig. 9. Simplified structure of LDV [21]. 
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The benefits of LDV include: 

• Non-contact measurement. 

• High sensitivity to small vibrations. 

• Detection of high and low frequencies. 

• Real-time monitoring of rotating machinery. 

But the limitations of this method are: 

• Limited measurement ranges. 

• High cost of purchase and maintenance. 

• A complex setup and specialized expertise 

are required to operate in some applications 

[22]. 

 

1.2.5. Strain gauge 

 

A strain gauge is a type of sensor commonly 

used in power plants to monitor vibration. It is 

based on the measurement of strains due to 

vibration or deformation caused by vibration 

[25]. The sensing element of a strain gauge is 

typically a small metal strip or wire that is 

bonded to the surface of the object being 

measured. The sensing element deforms when 

the object vibrates and causes a change in its 

electrical resistance. The Wheatstone bridge 

circuit connected to the strain gauge measures 

these changes in resistance. Strain gauges are 

commonly used in power plants to monitor the 

vibration of large structures such as buildings, 

foundations, and support structures for large 

equipment. They are installed on strategic 

locations in the structure and measure the 

changes in strain caused by the structure's 

vibration [26]. Engineers can detect changes in 

the vibrational characteristics of the structure by 

analyzing strain data over time, which can 

indicate various issues such as structural fatigue, 

foundation settling, or improper support. 

Strain gauges have several advantages when it 

comes to vibration monitoring in power plants, 

including: 

• Strain gauge sensors are extremely sensitive 

and can detect very small strain changes. 

• These sensors can detect both high and low 

vibration frequencies. 

• Since strain gauge sensors have no moving 

parts, the risk of failure or wear and tear is 

reduced. 

• Installation of these sensors is relatively 

simple and can be installed in various 

locations throughout the structure. 

However, strain gauge sensors have some 

limitations, including: 

• Changes in temperature can affect the 

accuracy of the sensor. 

• These sensors can only measure strain in their 

mounting direction. 

• Calibration of these sensors is required to 

ensure accurate measurements. 

• Strain gauge sensors have a limited sensing 

range, which usually ranges from a few 

millimeters to a few centimeters. 

The current research introduces a new approach 

by examining the effectiveness of different 

vibration data acquisition techniques in CCPPs 

for anomaly detection and classification tasks. 

Unlike previous studies that often focused on 

individual techniques, this research provides a 

comprehensive comparative analysis of five 

common techniques, including ECPT, AS, BTT, 

LDV, and SG, coupled with advanced machine 

learning models such as RF, GBM, and SVM. 

Therefore, combining different modes of 

measurement techniques and machine learning 

models for industrial data is done for the first 

time with this comprehensive scope, which is the 

innovation of this research to obtain the most 

accurate combination for use in large industries. 

 

2. Methodology 

 

Synthetic vibration data generation, data 

preparation, machine learning model training, 

and performance evaluation using several 

metrics are all detailed in this section. The goal 

is to test how well machine learning models 

work in simulating different vibration 

measurement techniques and identifying typical 

and non-standard vibration patterns. 

 

2.1. Data generation 

 

To perform these tests, synthetic vibration data 

is generated to simulate various measurement 

techniques commonly used in condition 

monitoring. For each technique, parameters such 

as frequency, amplitude, and noise level are 
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carefully selected to mimic real-world scenarios. 

A custom function is implemented to simulate 

the vibration data for each technique, ensuring 

that the generated data closely resembles the 

actual sensor readings. The physical concept 

behind the generation of synthetic vibration data 

is to create realistic simulations of the vibration 

signals that would be measured by various 

sensors in a real power plant environment. This 

allows full testing and optimization of the 

machine learning models without the constraints 

and limitations of real-world data collection. 

 

2.2. Preprocessing 

 

Before training the model, synthetic data were 

preprocessed to guarantee the quality and 

appropriateness of the analysis. This involved 

labeling the data as "normal" or "abnormal" 

based on predefined criteria. Additionally, 

outliers in the data were identified and removed 

using a clipping technique, which restricted the 

data to a specified amplitude range. The purpose 

of these preliminary procedures is to make the 

data more usable and accurate for subsequent 

modeling. 

 

2.3. Model training and testing 

 

Three distinct machine learning classifiers were 

employed in this study: random forest (RF), 

gradient boosting machine (GBM), and support 

vector machine (SVM). Each classifier was 

trained and evaluated using the pre-processed 

synthetic data for each technique. Thus, to 

ensure an impartial evaluation of the model's 

performance, the data is partitioned into two 

sets: training and testing [27-29]. For each 

model, various evaluation criteria such as 

accuracy, recall,  F1-score, receiver operating 

characteristic (ROC), and area under curve 

(AUC) were used and calculations aimed at 

determining how well it could differentiate 

between standard and non-standard vibration 

patterns. In general, a schematic diagram of the 

work steps in each model is given in Fig. 10. In 

addition, the working steps of different machine 

learning algorithms, including RF, GBM, and 

SVM are as follows: 

 

 
Fig. 10. A visual schematic of the working steps in 

the machine learning models used in this research. 

 

Algorithm for RF: 

Input (synthetic data parameters); 

Output (evaluation results for random forest; 

1. Precondition: import necessary libraries 

including numpy, matplotlib. pyplot; 

2. Define a function generate_vibration_data; 

3. Loop through technique_parameters and 

generate synthetic vibration data; 

4. Preprocessing (label and clean); 

5. Label the synthetic data as "normal" and 

"abnormal"; 

6. Define a function train_and_evaluate_model 

(x, y) to train and evaluate the random forest; 

7. Split the data into training and testing sets; 

8. Initialize and train the random forest classifier 

model; 

9. Make predictions on the test set and evaluate 

the model; 

10. Print the evaluation results for each 

technique; 

11. Functions; 

12. Generate_vibration_data; 

13. Train_and_evaluate_model (x, y); 

14. Return random forest score; 

 

Algorithm for GBM: 

Input (synthetic data parameters); 

Output (evaluation results for gradient boosting 

machine); 

1. Process; 

2. Import libraries; 

3. Generate synthetic data; 

4. Preprocess data (label and clean); 

5. Train and evaluate GBM models; 

6. Print evaluation results for GBM; 

7. Visualize GBM performance comparison; 

8. Functions; 
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9. Generate_vibration_data (technique, 

frequency, amplitude, noise_level); 

10. Train_and_evaluate_model_with_gbm (x, 

y); 

11. Return; 

12. Evaluation results for GBM; 

13. Visualization of GBM performance 

comparison; 

 

Algorithm for SVM: 

Input (synthetic data parameters); 

Output (evaluation results for support vector 

machine); 

1. Procedure; 

2. Import libraries; 

3. Generate synthetic data; 

4. Preprocess data (label and clean); 

5. Train and evaluate SVM models; 

6. Print evaluation results for SVM; 

7. Visualize SVM performance comparison; 

8. Functions; 

9. Generate_vibration_data (technique, 

frequency, amplitude, noise_level); 

10. Train_and_evaluate_model_with_svm (x, 

y); 

11. Return; 

12. Evaluation results for SVM; 

13. Visualization of SVM performance 

comparison 

 

2.4. Performance comparison of different 

algorithms 
 

In this section, the evaluation results obtained 

from the trained models are compared to identify 

the most suitable classifier for condition 

monitoring applications. Bar graphs are used to 

visualize the performance measures of the 

different techniques for each classifier, which 

allows a comprehensive comparison of their 

performance. Key insights and observations 

derived from the performance comparison are 

analyzed into the strengths and limitations of 

each model. 

 

2.5. Sensitivity analysis 

 

In the synthetic vibration data generation process 

outlined above, various technical parameters are 

crucial to accurately simulate real-world 

conditions and facilitate effective machine 

learning analysis. For instance, in representing 

the behavior of an accelerometer sensor, a 

frequency of 25600 Hz, an amplitude of 2, and a 

noise level of 3 are considered. These values are 

chosen based on typical operating frequencies, 

expected signal strength, and the ambient noise 

level typically encountered in the sensor 

readings. Similarly, for the BTT technique, 

parameters such as a frequency of 100 Hz, an 

amplitude of 2, and a noise level of 0.3 are used, 

reflecting the unique characteristics of this 

vibration measurement method. Such careful 

selection and calibration of technique parameters 

ensure that the synthetic data accurately mimics 

real-world scenarios and enables robust machine 

learning model training and testing [30-32]. 

The reason for using machine learning 

algorithms such as RF, GBM, and SVM is to 

analyze synthetic vibration data generated to 

simulate various vibration measurement 

techniques used in power plant condition 

monitoring. These algorithms are usually 

employed to identify typical and non-standard 

vibration patterns, evaluate the performance of 

different vibration measurement techniques, and 

distinguish between standard and non-standard 

vibration patterns. 

 

3. Results and discussion 

 

In this section, the efficiency of the 

aforementioned sensors in detecting vibrations 

in a rotating system is presented. Each sensor is 

modeled using an equivalent circuit. The output 

of these models is fed into a machine-learning 

algorithm. The rotating system is modeled with 

different vibration modes. Also, vibrational 

modes are applied randomly. Additionally, a 

noise source was added along with the vibration 

modes. The power of the noise source is varied 

across various vibration modes. Finally, a 

machine learning algorithm was used to process 

the output of each sensor in different vibration 

modes. The algorithm can predict system 

vibrations using different aforementioned 

sensors. Each sensor node is verified for 

accuracy in detecting vibration modes. Vibration 

modes such as axial, longitudinal, short-circuit, 

strain-based, etc. are modeled using various 
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waveforms collected from an industrial data 

acquisition system. The vibration data measured 

using different techniques are shown in Fig. 11. 

This image only presents the collected vibration 

data, which indicates that by using different 

techniques, vibration data were collected within 

a certain range and acceptable changes, and 

further, it is the nature of the learning machine 

and also the training process that has a 

significant impact on the accuracy of the 

evaluation. Also, the following section presents 

a summary of the simulation results obtained 

using the machine learning algorithms. 

A comparison of five techniques of ECPT, AS, 

BTT, LDV, and SG is demonstrated in Fig. 12. 

The eddy current proximity transducers 

technique exhibited the lowest performance in 

all metrics with accuracy, recall, F1-score, ROC, 

and AUC of approximately 0.12. However, there 

is a significant performance improvement to 

progress through the techniques. The 

accelerometer sensor showed moderate gains in 

all metrics, with values ranging from 0.47 to 

0.48. 

 

 
Fig. 11. Vibration data measured using different 

techniques. 
 

 
Fig. 12. Comparison plot of all five vibration 

measurement techniques. 

Moving further, the blade tip timing technique 

showed a slight improvement, achieving scores 

of around 0.53 to 0.54 across all metrics. The 

laser doppler vibrometer demonstrated further 

enhancement, exceeding 0.55 for accuracy, 

recall, and F1-score. Finally, the strain gauge 

technique showed similar performance metrics 

to the accelerometer sensor with slightly higher 

scores ranging from 0.49 to 0.50. Overall, this 

comparison emphasizes the gradual increase in 

performance from the ECPT to the LDV, 

indicating that the latter may be the most 

effective technique among the evaluated options 

for the specified task. 

Over time, many measurement techniques 

become more accurate. Factors contributing to 

this trend include rising demand for more 

accurate measurements, new technologies 

becoming more available, and increasing 

accuracy of instruments. Therefore, recent 

achievements show that the accuracy of the 

methods mentioned above has increased over the 

years. For instance, the accuracy of the LDV 

technique has increased from about 0.4 to about 

0.9, while the accuracy of the ECPT technique 

has increased from about 0.2 to about 0.8. 

Because of this, engineers can create learning 

machines that are more efficient and reliable 

than ever before. Also, here are some specific 

ways that improved precision is making a 

difference in daily: new and more accurate 

sensors increase engine performance and fuel 

efficiency in the automotive industry. The 

medical industry uses more precise sensors to 

detect diseases such as cancer and heart disease, 

leading to more accurate diagnoses. 

Finally, Tables 1-3 present the comparison 

between the RF, SVM, and GBM machine 

learning algorithms and distinguish the best 

algorithm that has high accuracy. 

The comparison results among various 

techniques and models indicate different levels 

of performance across different evaluation 

criteria. For instance, when considering the 

gradient boosting machine model, the 

accelerometer sensor technique exhibited the 

highest accuracy of 0.52, and an ROC AUC of 

0.53, indicating relatively better overall 

performance compared to other techniques. In 

contrast, the strain gauge technique showed the 
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lowest performance metrics across all evaluated 

models, with accuracy, recall, F1-score, and 

ROC AUC at 0.44. Notably, the eddy current 

proximity transducers technique achieved 

perfect scores across all metrics when utilizing 

the random forest model, indicating exceptional 

performance with accuracy, recall, F1-score, and 

ROC AUC at 1.00.  
 

Table 1. Overall performance of the vibration 

measurement techniques coupled with the RF as 

machine learning algorithm. 

Technique Accuracy Recall 
F1-

score 

ROC 

AUC 

Eddy current 

proximity 

transducers 

1.00 1.00 1.00 1.00 

Accelerometer 

sensor 
0.49 0.49 0.49 0.49 

Blade Tip Timing 

(BTT) 
0.52 0.52 0.52 0.51 

Laser Doppler 

Vibrometer (LDV) 
0.52 0.52 0.52 0.52 

Strain gauge 0.49 0.49 0.49 0.49 

 

Table 2. Overall performance of the vibration 

measurement techniques coupled with the SVM as 

machine learning algorithm. 

Technique Accuracy Recall 
F1-

score 

ROC 

AUC 

Eddy current 

proximity 

transducers 

0.48 0.48 0.48 0.48 

Accelerometer 

sensor 
0.49 0.49 0.49 0.49 

Blade Tip Timing 

(BTT) 
0.48 0.48 0.31 0.50 

Laser Doppler 

Vibrometer (LDV) 
0.44 0.44 0.44 0.44 

Strain gauge 0.48 0.48 0.31 0.50 

 

Table 3. Overall performance of the vibration 

measurement techniques coupled with the GBM as 

machine learning algorithm. 

Technique Accuracy Recall 
F1-

score 

ROC 

AUC 

Eddy current 

proximity 

transducers 

0.46 0.46 0.46 0.46 

Accelerometer 

sensor 
0.52 0.52 0.50 0.53 

Blade Tip Timing 

(BTT) 
0.49 0.49 0.49 0.50 

Laser Doppler 

Vibrometer (LDV) 
0.48 0.48 0.49 0.49 

Strain gauge 0.44 0.44 0.44 0.44 

Overall, these results highlight the importance of 

selecting both technique and model employed in 

achieving optimal performance in vibration data 

analysis tasks. 

 

4. Conclusions 

 

In the present study, the authors tried to conduct 

a thorough analysis of vibration measurement 

techniques in combined cycle power plants, 

utilizing synthetic data and machine learning 

models like RF, GBM, and SVM. It is 

noteworthy that the ECPT combined with RF 

achieves high performance, consistently 

scoring 1.0 across various metrics, while the 

LDV also shows strong results of over 0.55. 

Progressively, from ECPT to LDV, 

performance improves, with the AC 

increasing from 0.47 to 0.48 and the BTT 

technique enhancing from 0.53 to 0.54. 

However, the SG technique performed 

similarly to the AS with slightly higher 

scores ranging from 0.49 to 0.51. The SVM 

model with the AS excels and scores 0.49 for 

accuracy, recall, and F1-score, while the 

LDV technique exhibits the weakest 

performance with a score of 0.44. Overall, 

the LDV emerges as the most effective 

technique for vibration anomaly detection, 

with the RF model consistently 

outperforming other classifiers. 
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