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1 Introduction

Perfect state transfer (PST) is a quantum phenomenon in which a quantum state can be
transferred from one place to another without losing information. Let Γ be an undirected
simple graph whose vertex set is denoted by V(Γ) and A= A(Γ) be the adjacency matrix of Γ.
For a real number t, the transfer matrix of Γ is defined as the following n × n matrix:

H(t) = HΓ(t) = exp(−itA) =
+∞

∑
s=0

(−itA)s

s!
= (H(t))u,v∈V(Γ),

where i =
√
−1 and n = |V(Γ)| is the number of vertices in Γ. Therefore, we have the de-

composition of the transfer matrix

H(t) = exp(−iλ1t)E1 + · · ·+ exp(−iλnt)En.
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Definition 1. Let Γ be a graph. For two distinct vertices u,v ∈ V(Γ), we say that Γ has a
perfect state transfer (PST) from u to v at the time t(> 0) if the (u,v)-entry of H(t), denoted
by H(t)u,v, has absolute value 1. We say that Γ is periodic at u with period t if H(t)u,u has
absolute value 1. If Γ is periodic with period t at every point, then Γ is said to be periodic.

The occurrence of PST in quantum communication networks was first introduced by
Bose in [10]. This idea has since gained significant research interest due to its many ap-
plications in quantum information processing, as highlighted in [1–3, 9, 13] and other related
works. He proposed the idea of using spin chains to transfer quantum states over short
distances and showed that the highest fidelity is obtained for short spin chains (number of
spins ∼ 100). In [14], Christandl and et al. indecated that perfect quantum state transfer
between antipodal points of a N-link hypercubes occurs if and only if N ≤ 3. Bašić in [8]
using the circulant graph proved that PST exists between two distinct vertices a and b in
the spin network, whenever τ ∈ R+ exist that |F(τ)a,b| = 1 where F(t) = exp(iAt) and A is
the circulant graph adjacency matrix. Saxena and et al. in [28] proved that if there is the
time τ ∈ R+, that for each vertex a of the graph, |F(τ)a,a| = 1 if and only if all eigenval-
ues of the graph are integers. In the integral circulant graph ICGn(D) with set of vertices
Zn = {0,1, . . . ,n − 1}, Two vertices a and b are adjacent whenever gcd(a − b,n) ∈ D which
D =

{
d
∣∣ d | n,1 ≤ d ≤ n

}
. Godsil in [19, 20], investigated the necessary conditions for the

occurrence of PST and its applications in cryptographic systems. In [19], he studied the re-
sults of PST according to algebraic graph theory with the help of properties of the function
exp(itA) where A is the adjacency matrix of the graph. In particular, he showed in [20] that
if PST occurs in a graph, then the square of its spectral radius is either an integer or lies in
a quadratic extension of the rationals. As a result, for any integer k, there are only finitely
many graphs with maximum valency k on which PST occurs. He also showed that if PST
happens from vertex u to vertex v, then the graphs Γ \ u and Γ \ v are cospectral and any au-
tomorphism Γ that fixes u, must fix v (and conversely). Coutinho and Godsil in [15] studied
graphs whose adjacency matrix is the sum of tensor products of 01-matrices, focusing on the
case where a graph is the tensor product of two other graphs. As a result, they constructed
many new ones that have PST. Tan and et al. in [32] presented a characterization of the oc-
currence of PST in connected simple Cayley graphs Γ = Cay(G,S), where G is an abelian
group and S is a non-empty subset of G. They showed that many previous results about
periodicity and existence of PST in circulant graphs (where the underlying group G is cyclic)
and cubelike graphs G = (F2n,+) can be obtained or extended to arbitrary abelian cases in
a unified and simpler way by using their description. Cao and et al. in [11] investigated the
existence of PST in the Cayley graph Cay(Dn,S) with non-normal S. They demonstrated that
if n is odd, then the Cayley graph Cay(Dn,S) does not possess PST and for even integers
n, it is proved that if Cay(Dn,S) has PST, then S is normal. Cao and Feng in [12], investi-
gated the existence of PST on Cayley graphs over dihedral groups. They proved that if n is
odd integer and S is a conjugation-closed subset of the dihedral group Dn, then the Cayley
graph Cay(Dn,S) does not possess PST. They also presented specific constructions for even
integers n where Cay(Dn,S) has PST. Luo and et al. in [26] studied the existence of PST on
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Cayley graphs over semi-dihedral groups which are non-abelian groups. Using the represen-
tations of semi-dihedral groups, they provided some necessary and sufficient conditions for
Cayley graphs over semi-dihedral groups admitting PST. Applying those conditions, they
provided examples of Cayley graphs over semi-dihedral groups that exhibit PST. Addition-
ally, they proposed results regarding whether certain new Cayley graphs over non-abelian
groups possess PST. Arezoomand and et al. in [7] established a characterization of Cayley
graphs over dicyclic groups T4n that possess PST. As a consequence of their main result, they
investigated the existence of PST on a quasiabelin Cayley graph Cay(T4n,S). In the same
year, in [5], he gave a characterization of Cayley graphs over groups with an abelian sub-
group of index 2 having PST, which improves upon earlier results regarding Cayley graphs
over abelian groups, dihedral groups, dicyclic group and determined Cayley graphs over
generalized dihedral groups and generalized dicyclic groups having PST. Wang and et al.
in [33], established the necessary and sufficient condition for a bi-Cayley graph having per-
fect state transfer over any given finite abelian group. As a result of this work, numerous
known and new findings regarding Cayley graphs with PST over abelian groups, general-
ized dihedral groups, semi-dihedral groups, and generalized Quaternion groups were ob-
tained as corollaries. Notably, they presented an example of a connected non-normal Cayley
graph over a dihedral group that exhibits PST between two distinct vertices, which was pre-
viously thought impossible. In this paper, we explore the existence of PST on Cayley graph
over U6n group.

The rest of the paper is organized as follows. In Section 2, we present some comments on
notations used in this paper. In Lemma 2.4, we first give a description of the representations
of U6n. Next, in Proposition 2.2 and Corollary 2.3, we investigate a general method for com-
puting the spectra and its corresponding eigenvectors of Cayley graphs over finite groups.
We then apply this method to compute the eigenvectors of U6n. Finally, the existence of PST
on the Cayley graph Cay(U6n,S) is studied in Section 3.

2 Preliminaries

In this section, we will review some standard facts and notation used throughout this
paper. Our notation for representations of finite groups is based on [22].

2.1 The representations of U6n and spectra of Cay(U6n,S)

Let G be a finite group, C the field of complex numbers, and V a C-vector space with
dimension n < ∞ over C. A C-representation of G is a group homomorphism ξ : G → GL(V)

for non-zero vector space V. The dimension of V is called the degree of ξ. If β a C-basis for V,
then [ξ]β a matrix C-representation of G into the multiplicative group of non-singular n × n
matrices over C.
We say that if ϱ : G → GL(n,C) is a representation of the group G, then the vector space V
by definition of the multiplication vg = v(gϱ) for every v ∈ V and g ∈ G, such that vg lies
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in V, it becomes a G-module over the complex numbers C. An CG-module V is said to be
irreducible if it is non-zero and it has no CG-submodule except {0} and V. A representation
ϱ is irreducible if the corresponding CG-module V is irreducible. If V isreducible then ϱ is
reducible, it means a representation of the form

g 7→
(

A(g) B(g)
0 C(g)

)
,

where A(g) ∈ Mn1(C), B(g) ∈ Mn1×n2(C),C(g) ∈ Mn2(C), and where n1,n2 ∈ N are inde-
pendent of g ∈ G. If V1 and V2 are isomorphic, then there is an isomorphism T : V1 → V2

satisfying [ξ]β1(g) = T−1[ζ]β2(g)T, where [ξ]β1 a C-representation of G on V1 and [ζ]β2 a C-
representation of G on V2. So ξ and ζ be equivalent representations of the group G over C.
Every C-representation ϱ of G gives rise to a character χ : G → C, which is defined as the
function χ(g) = tr(ϱ(g)), where tr(ϱ(g)) denotes the trace of the matrix C-representation ϱ

of G on V. We say that χ is an irreducible character of G if χ is the character of an irreducible
representation.
The conjugate-transpose or adjoint of A is the matrix A∗ = AT. A matrix A ∈ GLn(C) is
unitary if and only if A−1 = A∗. The unitary n × n matrices form a subgroup Un(C) of
GLn(C). A representation ϱ : G → GLn(C) is said to be unitary if ϱ(g) ∈ U(n) for all g ∈ G.
By [29, Proposition 3.2.4], every complex representation ϱ : G → GLn(C) is equivalent to a
unitary representation.

A circulant matrix is a type of square matrix that follows a very distinct pattern: each row
is the same as the previous row, only rotated one unit to the right. That is, each row is a circu-
lar variation of the first row. In this paper which we showe by C(c0, c1, · · · , cn). Additionally,
we note that if each row of the square matrix is obtained by one left-shifting of the previous
row, an anti-circulant matrix.
The eigenvalues of a graph Γ are defined to be the eigenvalues of its adjacency matrix A(Γ).
The scalar λ ∈ C is said to be an eigenvalue of A, if there exists a non-zero vector x ∈ Cn such
that Ax=λx. Therefore x is the eigenvector corresponding to the eigenvalue of λ. The set of
all eigenvalues of Γ is called the spectrum of Γ. Since A(Γ) is a real symmetric matrix, the
eigenvalues of Γ, denoted as λi (i = 1,2, ...,n), are real numbers.
let a and b be elements of G. We say that a is conjugate to b in G, if there exists an element
g ∈ G such that g−1ag = b. The set of all elements in G that are conjugate to a is denoted as
aG and is defined as {g−1ag : g ∈ G}. This set is called the conjugacy class of a in G. If a and
b are two conjugate elements of group G, then for all characters χ of G, we have χ(a) = χ(b).

Assume that n ≥ 1 is an integer. Define the U6n group by ⟨a,b | a2n = b3 = 1, a−1ba = b−1⟩.
It should be noted that group U6n = {ak, akb, akb2 | 0 ≤ k ≤ 2n − 1} has 3n conjugacy classes
as the following:

{a2j},{a2jb, a2jb2},{a2j+1, a2j+1b, a2j+1b2} (0 ≤ j ≤ n − 1).
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Lemma 2.1. [24] Let n ≥ 1, ε = e2πi/2n = cos(π/n) + i sin(π/n) be a 2n-th root of unity which is
neither 1 nor −1. The irreducible representations and characters of U6n is listed in the Tables 1. and
2.

Table 1. Irreducible representation of U6n, ω = e2πi/3

a2j a2j+1 a2jb
φk(0 ≤ k ≤ 2n − 1) ε2kj εk(2j+1) ε2kj

γl(0 ≤ l ≤ n − 1)
(

ε2l j 0
0 ε2l j

) (
0 εl(2j+1)

εl(2j+1) 0

) (
ε2l jω 0

0 ε2l jω2

)

Table 2. Character Table of U6n.

a2j a2j+1 a2jb

χk(0 ≤ k ≤ 2n − 1) ε2kj εk(2j+1) ε2kj

ψl(0 ≤ l ≤ n − 1) 2ε2l j 0 −ε2l j

In general, using the subsequent result, one can compute spectra and eigenspaces of Cay-
ley graphs over finite groups. Given an irreducible representation or a character ψ of a group
G and a subset S of G, we denote ∑s∈S ψ(s) by ψ(S). Let S be a symmetric subset of a finite
group G, this means that S = S−1. We assume that the identity element of G is not belonged
to S, i.e. 1G ̸∈ S. The Cayley graph of G with respect to S, Cay(G,S), is the graph whose
vertices are the elements of G and there exists an edge between different vertices g, h ∈ G if
gh−1 ∈ S. If S is a normal Cayley set in G, i.e. g−1Sg = S for each g ∈ G. then we call Γ

a quasiabelian Cayley graph of G with respect to S (see [31]). Note that, since S is symmet-
ric and 1G ̸∈ S, Γ = Cay(G,S) is a simple graph. The adjacency matrix of Γ is defined by
A = A(Γ) = (ag,h)g,h∈G where

ag,h =

{
1 if gh−1 ∈ E(Γ),

0 otherwise.

Remember that V(Γ) and E(Γ) stand for the set of vertices and edges of Γ, respectively. One
can refer to [23] for more properties about Cayley graphs.

Proposition 2.2. [6, Corollary 7 and Lemma 11] Let Γ = Cay(G,S) be an undirected Cayley graph
over a finite group G with irreducible unitary matrix representations ϱ(1), . . . ,ϱ(m) . Let dl be the
degree of ϱ(l). For each l ∈ {1, . . . ,m}, define a dl × dl block matrix Al := ϱ(l)(S). Let χAl(λ) and
χA(λ) be the characteristic polynomial of Al and A, the adjacency matrix of Γ, respectively. Then

(1) there exists a basis B such that [A]B = Diag(A1 ⊗ Id1 , . . . , Am ⊗ Idm).
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(2) χA(λ) = Πm
l=1χAl(λ)

dl .

(3) Let v(k) be an eigenvector of Ak, 1 ≤ k ≤ m, associated with λ. Then the following vectors are

distinct linearly independent dk eigenvectors of Γ associated with λ vj
(k) :=∑g∈G

[
v(k) · ϱ

(k)
j (g)

]
eg,

(1 ≤ j ≤ dk) where · is the usual inner product and ϱ
(k)
j (g) is a vector whose coordinates are

the coordinates of jth column of ϱ(k)(g).

Corollary 2.3. [7, Corollary 3.3] Keeping the notations of Proposition 2.2 and considering fixed
ordering g1 = 1, g2, · · · , gn of all elements of G, we have

1. Let U = (vj
(k))

T and U.U∗ = [urs]. Then

urs = [v(k).ϱ
(k)
j (gr)][v̄(k).ϱ̄

(k)
j (gs)].

2. If ϱ(k) is 1-dimensional representation of G, then λ = ϱ(k)(S) is an eigenvalue of Ak,v(k) = 1
and v1

(k) = ∑g∈G ϱ(k)(g)eg is an eigenvector of Γ associated to the eigenvalue ϱ(k)(S). Further-

more, by the above notation urs = ϱ(k)(gr)ϱ̄(k)(gs) = ϱ(k)(grgs
−1).

3. If for every g ∈ G, we have that ∑s∈S ϱ(k)(gsg−1) = ∑s∈S ϱ(k)(s), then λk =
χk(S)

dk
= ∑s∈S χ(s)

dk

is an eigenvalues of Γ with multiplicity dk
2 and standard basis e1, e2, · · · edk

are eigenvectors

of Ak associated to λk =
χk(S)

dk
. Furthermore, the eigenvectors v(k)ij =

√
dk
|G| ∑g∈G ϱ

(k)
ij (g)eg =√

dk
|G|(ϱ

(k)
ij (g1), · · · ,ϱ(k)ij (gn)), 1 ≤ i, j ≤ dk, which are associated to λk form an orthonormal

basis for the eigenspace Vλk , where ϱ
(k)
ij (g) is the ij-entry of the matrix ϱ(k)(g). Also, by the

notation of (1), we have urs=ϱ
(k)
ij (gr)ϱ̄ij

(k)(gs) = ϱ
(k)
ij (grg−1

s ).

The succeeding lemma which appears as [29, Exercise 5.12.3] is a direct consequence of the
last part of Corollary 2.3 and determines eigenvalues and eigenvectors of adjacency matrix
of a Cayley graph Γ = Cay(G,S), where S is conjugation-closed, namely gSg−1 = S for all
g ∈ G.

Lemma 2.4. [29, Exercise 5.12.3] Let G = {g1, · · · , gn} be a finite group of order n and φ(1), · · · , φ(t)

be a complete set of unitary representatives of the equivalence classes of irreducible representations of
G. Let χi be the character of φ(i) and di be the degree of φ(i). Let S ⊆ G be a symmetric set and
assume further that S is conjugation-closed. Then the eigenvalues of the adjacency matrix A of the
Cayley graph of Cay(G,S) with respect to S are λ1, · · · ,λt, where

λk =
1
dk

∑
s∈S

χk(s), 1 ≤ k ≤ t,

and that λk has multiplicity d2
k. Moreover, the vectors

v(k)ij =

√
dk
|G|
(

φ
(k)
ij (g1), · · · , φ

(k)
ij (gn)

)T, 1 ≤ i, j ≤ dk

form an orthonormal basis for the eigenspace Vλk associated with λk.
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Consider the group U6n (n ≥ 1), and the Cayley graph Γ = Cay(U6n,S), where S is a sym-
metric subset of U6n. We regard the conjugacy classes of U6n as follows:

A0 = {1U6n}, Ar = {a2r} (1 ≤ r ≤ n − 1), B = {a2sb, a2sb2 : 0 ≤ s ≤ n − 1},

C = {a2s+1, a2s+1b, a2s+1b2 : 0 ≤ s ≤ n − 1}.

Let A = (
⋃n−1

r=1 Ar), S = SA ∪ SB ∪ SC, where SX = S ∩ X for X ∈ {A, B,C}.

We suppose that |S| = s, |SA| = sa, |SB| = sb, |SC| = sc. s = sa + sb + sc.

First, we consider the one-dimensional representations of U6n. Applying Corollary 2.3 (part
1), the adjacency matrix of the Cayley graph Cay(U6n,S) has the following eigenvalues and
eigenvectors:
for 0 ≤ k ≤ 2n − 1,

λχk = ∑a2j∈S ε2kj + ∑a2jb,a2jb2∈S ε2kj + ∑a2j+1,a2j+1b,a2j+1b2∈S εk(2j+1),

vχk =
1√
6n
(
{

ε2kj}n−1
j=0 ,

{
ε2kj, ε2kj}n−1

j=0 ,
{

ε(2j+1)k, ε(2j+1)k, ε(2j+1)k
}n−1

j=0
)T.

Now suppose that γr is a two-dimensional irreducible representation of U6n for 0 ≤ l ≤ n− 1.
Then γl(S) = γl(SA) + γl(SB) + γl(SC), where

γl(SA) =

(
x 0
0 x

)
, γl(SB) =

(
−(y1 + y2) 0

0 −(y1 + y2)

)
, γr(SC) =

(
0 z − (z1 + z2)

z − (z1 + z2) 0

)
.

and
x = ∑a2j∈S ε2l j, y1 = ∑a2jb∈S ε2l j, y2 = ∑a2jb2∈S ε2l j, z = ∑a2j+1∈S ε(2j+1)l , z1 = ∑a2j+1b∈S ε(2j+1)l ,

z2 = ∑a(2j+1)b2∈S ε(2j+1)l .

Hence γl(S) =

(
x − y z − z′

z − z′ x − y

)
, where y = y1 + y2 and z′ = z1 + z2.

Therefore the eigenvalues of Γ = Cay(G,S) corresponding to the two dimensional unitary
representations γl of U6n for l = 0,1, · · · ,n− 1 are λl1 = (x − y) + (z− z′) and λl2 = (x − y)− (z−
z′). On the other hand, the eigenvectors of γl(S) corresponding to eigenvalue λ ∈ {λl1 ,λl2}
are vλl1

= (1,ℓl1) and vλl2
= (ℓl2 ,1). Now by applying Proposition 2.2, the associated eigenvec-

tors of Cay(G,S) corresponding to the eigenvalue λ∈ {λl1 ,λl2} are v(j)
λ =∑g∈G[vλ ·γl

j(g)]eg (j=
1,2), where γl

j(g) is the jth column-vector of γl(g). Therefore, we have the following eigen-
vectors:
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v(1)l1
= (
{

ε2l j
}n−1

j=0
,
{

ε2l jω
}n−1

j=0
,
{

ε2l jω2
}n−1

j=0
,
{

ε(2j+1)lℓl1

}n−1

j=0
,
{

ε(2j+1)lωℓl1

}n−1

j=0
,{

ε(2j+1)lω2ℓl1

}n−1

j=0
)T,

v(2)l1
= (
{

ε2l jℓl1

}n−1

j=0
,
{

ε2l jω2ℓl1

}n−1

j=0
,
{

ε2l jωℓl1

}n−1

j=0
,
{

ε(2j+1)l
}n−1

j=0
,
{

ε(2j+1)lω2
}n−1

j=0
,{

ε(2j+1)lω2
}n−1

j=0
)T,

v(1)l2
= (
{

ε2l jℓl2

}n−1

j=0
,
{

ε2l jωℓl2

}n−1

j=0
,
{

ε2l jω2ℓl2

}n−1

j=0
,
{

ε(2j+1)l
}n−1

j=0
,
{

ε(2j+1)lω
}n−1

j=0
,{

ε(2j+1)lω2
}n−1

j=0
)T,

v(2)l2
= (
{

ε2l j
}n−1

j=0
,
{

ε2l jω2
}n−1

j=0
,
{

ε2l jω
}n−1

j=0
,
{

ε(2j+1)lℓl2

}n−1

j=0
,
{

ε(2j+1)lω2ℓl2

}n−1

j=0
,{

ε(2j+1)lω2ℓl2

}n−1

j=0
)T.

Notice that, for any 0 ≤ j ≤ n − 1, the sets {v(1)l1
,v(2)l1

} and {v(1)l2
,v(2)l2

} are the orthogonal
bases for the eigenspaces Vλl1

and Vλl2
associated with λl1 and λl2 , respectively. Furthermore,

one can assume that ⟨v(1)l1
,v(1)l2

⟩= 0 since we have an inner product on V, and thus ℓ̄l2 =−ℓl1 .
Now let ℓl = ℓl1 and ιl = 1 + |ℓl|2. Thus we have the following eigenvectors:

v(1)l1
= 1√

3nιl
(
{

ε2l j}n−1
j=0 ,

{
ε2l jω

}n−1
j=0 ,

{
ε2l jω2}n−1

j=0 ,
{

ε(2j+1)lℓl

}n−1

j=0
, ε(2j+1)lωℓl

}n−1

j=0
,{

ε(2j+1)lω2ℓl

}n−1

j=0
)T,

v(2)l1
= 1√

3nιl
(
{

ε2l jℓl
}n−1

j=0 ,
{

ε2l jω2ℓl
}n−1

j=0 ,
{

ε2l jωℓl
}n−1

j=0 ,
{

ε(2j+1)l
}n−1

j=0
,
{

ε(2j+1)lω2
}n−1

j=0
,{

ε(2j+1)lω2
}n−1

j=0
)T,

v(1)l2
= 1√

3nιl
(
{
−ε2l j ℓ̄l

}n−1
j=0 ,

{
−ε2l jωℓ̄l

}n−1
j=0 ,

{
−ε2l jω2ℓ̄l

}n−1
j=0 ,

{
ε(2j+1)l

}n−1

j=0
,
{

ε(2j+1)lω
}n−1

j=0
,{

ε(2j+1)lω2
}n−1

j=0
)T,

v(2)l2
= 1√

3nιl
(
{

ε2l j}n−1
j=0 ,

{
ε2l jω2}n−1

j=0 ,
{

ε2l jω
}n−1

j=0 ,
{
−ε(2j+1)l ℓ̄l

}n−1

j=0
,
{
−ε(2j+1)lω2ℓ̄l

}n−1

j=0
,{

−ε(2j+1)lω2ℓ̄l

}n−1

j=0
)T.
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3 PST on Cayley Graphs

For a simple graph Γ with n vertices, Spec(Γ) denotes the set of all eigenvalues of Γ. For
any symmetric matrix A, assume that its eigenvalues are λi’s for 1 ≤ i ≤ n. There is a unitary
matrix P = (v1, · · · ,vn), where each vi is an eigenvector of λi, (1 ≤ i ≤ n). Thus we have the
following spectral decomposition of A

A = λ1E1 + · · ·+ λnEn,

where Ei = vivi
∗(1 ≤ i ≤ n) satisfies

EiEj =

{
Ei if i = j,

0 otherwise.

Let Γ be an undirected simple graph whose vertex set is denoted by V(Γ) and A = A(Γ)

be the adjacency matrix of Γ. For a real number t, the transfer matrix of Γ is defined as the
following n × n matrix:

H(t) = HΓ(t) = exp(−itA) =
+∞

∑
s=0

(−itA)s

s!
= (H(t))u,v∈V(Γ),

where i =
√
−1 and n = |V(Γ)| is the number of vertices in Γ. Therefore, we have the de-

composition of the transfer matrix

H(t) = exp(−iλ1t)E1 + · · ·+ exp(−iλnt)En.

] We also need notation of the 2-adic exponential valuation of rational numbers which is a
mapping defined by

η2 : Q → Z ∪ {∞}, η2(0) = ∞, η2(2t a
b
) = t, where a,b, t ∈ Z and 2 ∤ ab.

We assume that ∞+∞ = ∞+ t = ∞ and ∞ > t for any t ∈ Z. Then for β, β′ ∈ Q, the following
properties yield for η2:

1. η2(ββ′) = η2(β) + η2(β′),

2. η2(β + β′) ≥ min(η2(β),η2(β′)) and the equality holds if η2(β) ̸= η2(β′).

3.1 PST on Cayley Graph over U6n Group

Assume that A = A(Γ) is the adjacency matrix of the Cayley graph Cay(U6n,S). A has
the eigenvectors vk for 0 ≤ k ≤ 2n − 1 and v(i)l for 1 ≤ i ≤ 4 and 0 ≤ l ≤ n − 1, which are
introduced in Section 2 depending on the parity of n. Hence we have the following unitary
matrix:

P = (v0,v1, · · · ,v2n−1,v(1)0 ,v(2)0 ,v(3)0 ,v(4)0 , · · · ,v(1)l ,v(2)l ,v(3)l ,v(4)l ).
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The corresponding projective matrices are Ek =
1

6n

(
Ω ⊗ J3 ε−2jΩ ⊗ J3

ε2jΩ ⊗ J3 Ω ⊗ J3

)
,

where Jm is the all-one matrix of order m, and Ω is the circulant matrix with the first row
(1, ε−2j, ε−4j, · · · , ε−2j(n−1)). And

E(1)
l =

1
3n

(
Λ ε̄l ℓ̄lΛ

ε̄l ℓ̄lΛ |ℓl|2Λ

)
, E(2)

l =
1

3n

(
|ℓr|2ΛT ε−lℓlΛT

¯ε−l ℓ̄lΛT ΛT

)
,

E(3)
l =

1
3n

(
|ℓr|2Λ −ε̄l ℓ̄lΛ
−εlℓlΛ Λ

)
, E(4)

l =
1

3n

(
ΛT −ε−lℓlΛT

− ¯ε−l ℓ̄lΛT |ℓl|2ΛT

)
,

where Λ is the circulant matrix with the first row (Ω′,ω2Ω′,ωΩ′) and Ω′ is the anti-circulant
matrix the first row (1, ε−2j, ε−4j, · · · , ε−2j(n−1)).
Now we compute the (u,v)-th entry of the transfer matrix. We obtain:

1. if 0 ≤ u,v ≤ 3n − 1 or 3n ≤ u,v ≤ 6n − 1,

(H(t))u,v =
1

6n
(

2n−1

∑
k=0

1
ιl
(ε−(u−v)k)exp(−iλkt))

+
1

3n
(

n−1

∑
l=0

0≤i,j≤2

1
ιl
(ε−(u−v)lω(i+j)(1 + |ℓl |2)exp(−iλl1 t))

+
1

3n
(

n−1

∑
l=0

0≤i,j≤2

1
ιl
(ε−(u−v)lω(i+j)(1 + |ℓl |2)exp(−iλl2 t)),

(1)

2. if 0 ≤ u ≤ 3n − 1, 3n ≤ v ≤ 6n − 1,

(H(t))u,v =
1

6n
(

2n−1

∑
k=0

ε−2k.ε−(u−v)k)exp(−iλkt)

+
1

3n
(

n−1

∑
l=0

0≤i,j≤2

1
ιl
(ε̄l ℓ̄l .ε−(u−v)lωi+j + εlℓl .ε−(u−v)lωi+j)exp(−iλl1 t))

+
1

3n
(

n−1

∑
l=0

0≤i,j≤2

1
ιl
(−ε̄l ℓ̄l .ε−(u−v)lωi+j − εlℓl .ε−(u−v)lωi+j)exp(−iλl2 t)).

(2)
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3. if 3n ≤ u ≤ 6n − 1, 0 ≤ v ≤ 3n − 1, then

(H(t))u,v =
1

6n
(

2n−1

∑
k=0

ε2k.ε−(u−v)k)exp(−iλkt)

+
1

3n
(

n−1

∑
l=0

0≤i,j≤2

1
ιl
(εlℓl .ε−(u−v)lωi+j + ε̄l ℓ̄l .ε−(u−v)lωi+j)exp(−iλl1 t))

+
1

3n
(

n−1

∑
l=0

0≤i,j≤2

1
ιl
(−εlℓl .ε−(u−v)lωi+j − ε̄l ℓ̄l .ε−(u−v)lωi+j)exp(−iλl2 t)).

(3)

Applying the above arguments, we give a complete characterization of existence of PST for
quasiabelian Cayley graphs over U6n groups.

Theorem 3.1. Let Γ = Cay(U6n,S) be a quasiabelian Cayley graph with respect to S. Then Γ has 2n (not
necessarily distinct) eigenvalues which correspond to the one-dimensional representations φk (0 ≤ k ≤ 2n− 1),
respectively, with one is λ0 = |S| and the 2n − 1 other eigenvalues which are denoted by λk, and some multiple
eigenvalues corresponding to the two dimensional representations γl (0 ≤ l ≤ n − 1), which are denoted by
µl . Moreover Γ is periodic if and only if it is integral. The minimum period of the vertices is 2π/M, where
M = gcd(λ − λ0 : λ ∈ Spec(Γ) \ {λ0}). Furthermore, For each n, Γ has PST between two vertices u and v if
and only if

1. all eigenvalues of Γ are integers, namely, Γ is integral,

2. v = u + n when 0 ≤ u,v ≤ 3n − 1 or 3n ≤ u,v ≤ 6n − 1,

3. η2(λ1 − λ0), η2(λ2k′+1 − λ0) and η2(µ2l′−1 − λ0) are the same for all 1 ≤ k′ ≤ n − 1 and 1 ≤ l′ ≤ n/2,
say, α, and η2(µ2l′ − λ0) and η2(λ2k′ − λ0) are bigger than α for all 1 ≤ l′ ≤ n/2 and 1 ≤ k′ ≤ n − 1.

Proof. Applying Corollary 2.3, we have the following unitary matrix

P = (v0,v1, · · · ,v2n−1,v(1)0 ,v(2)0 ,v(3)0 ,v(4)0 , · · · ,v(1)l ,v(2)l ,v(3)l ,v(4)l ).

where vk and v(i)l are introduced in Lemma 2.4 respectively 0 ≤ k ≤ 2n − 1, 1 ≤ i ≤ 4 and 0 ≤ l ≤ n − 1.
Since S is a normal Cayley subset, we have ℓl = ℓl1 = ℓl2 = 0 and then ιl = 1. Now by applying the
Section 3.1 when ℓl = 0, we may obtain that: if 0 ≤ u,v ≤ 3n − 1 or 3n ≤ u,v ≤ 6n − 1, then

(H(t))u,v =
1

6n
(

2n−1

∑
k=0

(ε−(u−v)k)exp(−iλkt))

+
2

3n
(

n−1

∑
l=0

0≤i,j≤2

(ε−(u−v)lω(i+j))exp(−iµlt)
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Now it is immediate that;

|(H(t))u,v| ≤
1

6n
(

2n−1

∑
k=0

|ε−(u−v)k|)|exp(−iλkt)|

+
2

3n
(

n−1

∑
l=0

0≤i,j≤2

(|ε−(u−v)lω(i+j)|)|exp(−iµlt)|

=
2n
6n

+
2

3n

n−1

∑
l=0

1 = 1

Thus |(H(t))u,v| = 1 if and only if for 0 ≤ l ≤ n − 1 and 1 ≤ k ≤ 2n − 1, it holds that

exp(−iλ0t) = ε−(u−v)k exp(−iλkt) = ε−(u−v)lω(i+j) exp(−iµlt),

where i + j should be 3 or 0, otherwise ω1 + ω2 =−1. From the last two equations, since ε is the 2n-th
root of unity, we get that n divides u − v. Let t = 2πT, we have that

u − v ≡ 0 (mod n),

(λk − λ0)T − k
2
∈ Z, 1 ≤ k ≤ 2n − 1,

(µl − λ0)T − l
2
∈ Z, 0 ≤ l ≤ n − 1,

Since 0 = trA = ∑2n−1
k=0 λk + 4∑n−1

l=0 µl , we have that 6nλ0T ∈ Z, and since λ0 = |S| is a positive integer,
we may conclude that T ∈ Q. By using this fact that all the eigenvalues are algebraic number, and
since in this case they are rational, we obtain that they are integral. Thus η2(λ1 − λ0), η2(λ2k′+1 − λ0)
and η2(µ2l′−1 − λ0) for all 1 ≤ k′ ≤ n − 1 and 0 ≤ l′ ≤ n/2, are a constant, say α, and η2(µ2l′ − λ0) and
η2(λ2k′ − λ0) are bigger than α for all 1 ≤ l′ ≤ n/2 and 1 ≤ k′ ≤ n − 1.

Example 3.2. Let Γ = Cay(U6n,S), where S = {a(2j+1), a(2j+1)b, a(2j+1)b2| 0 ≤ j ≤ n − 1}. Then, in both
cases of even n and odd n, eigenvalues of Γ are

( 3n 0 −3n
1 6n−2 1

)
. Thus by Theorem 3.1, Γ is an integral graph

and periodic with minimum period 2π/3n, but it has no PST.

Example 3.3. Suppose n is an even integer and S = U6n \ {1, an} be a subset of U6n such that gSg−1 = S for
all g ∈ U6n. Let Γ = Cay(U6n,S), be the Cayley graph with connection set S. Then from the character table of
U6n, eigenvalues of Γ are λ0 = 6n − 2, λ1 = 0 and for all 1 ≤ k′ ≤ n − 1, 1 ≤ l′ ≤ n/2:

λ2k′+1 = µ2l′−1 = 0 and λ2k′ = µ2l′ = −2.

So Γ is integral. Hence it is periodic with minimum period π. Furthermore, η2(λ1 − λ0) = 1, and f or all 1≤
k′ ≤ n − 1 and 0 ≤ l′ ≤ n/2 we have:

η2(λ2k′+1 − λ0) = η2(µ2l′−1 − λ0) = 1 and η2(λ2k′ − λ0) = η2(µ2l′ − λ0) = 2.

Then by Theorem 3.1 implies that Γ has PST between two vertices u and v, where v = u + n when 0 ≤ u,v ≤
3n − 1 or 3n ≤ u,v ≤ 6n − 1.
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4 Concluding remarks

We have presented a comprehensive survey of perfect state transfer (PST) on Cayley
graphs over U6n group. Our findings have significant implications for the development and
optimization of quantum networks, as they provide graph structures that facilitate the effi-
cient transfer of quantum information. Those also have broad implications for the design
of quantum networks and suggest new avenues for quantum computing research. As more
research is conducted in this area, it is likely that more insights and advances will emerge
and advance our understanding of quantum systems and their applications in various disci-
plines. We are grateful to the reviewer for his careful reading and insightful comments that
helped us improve this paper.
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