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Abstract. Let (N, G) be a pair of non-abelian finite p-groups and K be a normal subgroup of G
such that G ∼= N × K. Moreover, let |N| = pn and |N′| = pk, where K is a d-generator group of order
pm. Then |M(N, G)| = p

1
2 (n−1)(n−2)+1+(n−1)m−s′ , where M(N, G) is the Schur multiplier of the pair

(N, G) and s′ is a non-negative integer. In this paper, the non-abelian pairs (N, G) for s′ = 0,1,2,3 are
characterized.
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1 Introduction

Schur [21] defined the Schur multiplier of a group G. The Schur multiplier of a group G is
as the abelian group M(G) = R ∩ F

′
/[R, F] in which F/R is a free presentation of G, (see [8]

for more information.) In 1956, Green [5] proved that |M(G)| ≤ p
1
2 n(n−1) for p-groups G of

order pn. Thus |M(G)| = p
1
2 n(n−1)−t(G) for some t(G) ≥ 0. In [1, 4, 6, 9, 12] all finite p-groups

are characterized when t(G) = 0,1,2, ...,7.
Niroomand [14] improved the Green’s bound and proved that for non abelian p-groups of
order pn, |M(G)| = p

1
2 (n−1)(n−2)+1−s(G), for some s(G) ≥ 0. The structure of non-abelian p-

groups for s(G) = 0,1,2,3 has been determined in [6, 14, 16, 17].
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A pair of groups (N, G) is a group G with a normal subgroup N. In 1998, Eliss [2] intro-
duced the Schur multiplier of the pair (N, G) to be the abelian group M(N, G) appears in a
natural exact sequence

H3(G)→ H3
(G

N
)
→M(N, G)→M(G)→M

(G
N
)

→ N
[N, G]

→ (G)ab →
(G

N
)ab → 1,

in which H3(−) is the third homology of a group with integer coefficients. If N = G, then
M(G, G) is the usual Schur multiplier of G.
Let (N, G) be a pair of groups such that G ∼= N × K with |N| = pn and |K| = pm. Ellis [4]
proved that

|M(N, G)| ≤ p
1
2 n(n+2m−1). (1)

In this paper it is proved that

|M(N, G)| ≤ p
1
2 (n−1)(n−2)+1+(n−1)m. (2)

So, |M(N, G)| = p
1
2 (n−1)(n−2)+1+(n−1)m−s

′
, where s

′
is a non-negative integer. The upper

bound (2) is better than the upper bound (1). Moreover, all non-abelian finite pairs (N, G) for
s
′
= 0,1,2,3 are characterized.

2 Preliminaries

In this section, some preliminary results are discussed which will be used in the main
theorem. Throughout this paper the following notations are used:
Q8: quaternion group of order 8,
D8: dihedral group of order 8,
E1: extra special p-group of order p3 and exponent p,
E2: extra special p-group of order p3 and exponent p2 (p ̸= 2),
C(m)

pn : direct product of m copies of the cyclic group of order pn,
Gab: the abelianization of group G.
M.N: the centeral product of M and N.

James [13] classified all p-groups of order pn for n ≤ 6 up to isoclinism which are denoted
by Φk. We use his notation in our paper.

Theorem 2.1. ( [6,14,16,17]) Let G be a non-abelian p-group of order pn and |M(G)|= p
1
2 (n−1)(n−2)+1−s,

then

(i) s = 0 if and only if G ∼= E1 × C(n−3)
p .
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(ii) s = 1 if and only if G ∼= D8 × C(n−3)
2 or G ∼= C(4)

p ⋊ Cp (p ̸= 2).

(iii) s = 2 if and only if
(1) G ∼= E(2)× C(n−2m−2)

p = E.Z(E)× C(n−2m−2)
p , where E is an extra special p-group and

Z(E) is a cyclic group of order pm (m ≥ 2),
(2) G ∼= E2 × C(n−3)

p ,

(3) G ∼= Q8 × C(n−3)
2 ,

(4) G ∼= H × C(n−2m−1)
p , where H is an extra special p-group of order p2m+1 (m ≥ 2),

(5) G ∼= ⟨a,b | a4 = b4 = 1, [a,b, a] = [a,b,b] = 1, [a,b] = a2b2⟩
(6) G ∼= ⟨a,b, c | a2 = b2 = c2 = 1, abc = bca = cab⟩
(7) G ∼= ⟨a,b | ap2

= 1,bp = 1, [a,b, a] = [a,b,b] = 1⟩
(8) G ∼= Cp × (C(4)

p ⋊ Cp) (p ̸= 2)
(9) G ∼= ⟨a,b | a9 = b3 = 1, [a,b, a] = 1, [a,b,b] = a6, [a,b,b,b] = 1⟩
(10) G ∼= ⟨a,b | ap = 1,bp = 1, [a,b, a] = [a,b,b, a] = [a,b,b,b] = 1⟩ (p ̸= 3)
(11) G ∼= ϕ2(211)b (This group is omitted in [16], but |M(G)|= p2 and n = 4 so s = 2, see [7])

(iv) s = 3 if and only if

(1) G ∼= Φ2(22) = ⟨α, α1,α2 | [α1,α] = αp = α2,αp2

1 = α
p
2 = 1⟩,

(2) G ∼= Φ2(2111)c = Φ2(211)c × Cp where Φ2(211)c = ⟨α, α1, α2 | [α1,α] = α2,αp2
= α

p
1 =

α
p
2 = 1⟩ ,

(3) G ∼= Φ2(2111)d = E1 × Cp2 ,

(4) G ∼= Φ3(211)a = ⟨α,α1,α2,α3 | [α1,α] = α2, [α2,α] = αp = α3,α(p)
1 = α

p
2 = α

p
3 = 1⟩,

(5) G ∼= Φ3(211)br = ⟨α,α1,α2,α3 | [α1,α] = α2, [α2,α] = αp = α3,α(p)
1 = α

p
2 = α

p
3 = 1⟩,

(6) G ∼= Φ3(15) = Φ3(14) × Cp where Φ3(14) = ⟨α,α1,α2,α3 | [αi,α] = αi+1,αp = α
(p)
i =

α
p
3 = 1 (i = 1,2)⟩

(7) G ∼= Φ7(15) = ⟨α,α1,α2,α3, β | [αi,α] = αi+1, [α1, β] = α3,αp = α
(p)
1 = α

p
i+1 = βp = 1 (i =

1,2)⟩,
(8) G ∼= Φ12(16) = E1 × E1,
(9) G ∼= Φ13(16) = ⟨α,α1,α2,α3,α4, β1, β2 | [αi,αi+1] = βi, [α2,α4] = β2,αp

i = α
p
3 = α

p
4 = β

p
i =

1 (i = 1,2)⟩,
(10) G ∼= Φ15(16) = ⟨α1,α2,α3,α4, β1, β2 | [αi,αi+1] = βi, [α3,α4] = β1, [α2,α4] = β

g
2,αp

i =

α
p
3 = α

p
4 = β

p
i = 1(i = 1,2)⟩ where g is the smallest positive integer which is a primitive root

modulo p,
(11) G ∼= (C(4)

p ⋊ Cp)× C(2)
p ,

(12) G ∼= Φ11(16) = ⟨α1, β1,α2, β2,α3, β3 | [α1,α2] = β3, [α2,α3] = β1, [α3,α1] = β2,α(p)
i =

β
p
i = 1 (i = 1,2,3)⟩,

(13) G ∼= C(4)
2 ⋊ C2,

(14) G ∼= C2 × ((C4 × C2)⋊ C2),
(15) G ∼= D16 dihedral group of order 16,
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(16) G ∼= C4 ⋊ C4.

3 Main Results

In this section, some upper bounds for the Schur multiplier of pairs of groups are obtained
that are better than the upper bound of (1). Then they are used for characterizing the pair of
non-abelian finite p-groups. The following results are used in our proofs.

Lemma 3.1. ( [14], Main Theorem) Let G be a non-abelian finite p-group of order pn. If |G′| = pk,
then we have

|M(G)| ≤ p
1
2 (n+k−2)(n−k−1)+1.

In particular, |M(G)| ≤ p
1
2 (n−1)(n−2)+1, and the equality holds in this last bound if and only if

G ∼= E1 × Z, where Z is an elementary abelian p-group.

Lemma 3.2. ( [18], Corollary 1.2) Let (N, G) be a pair of groups and K be the complement of N in
G. Then

|M(N, G)| = |M(N)||Nab ⊗ Kab|.

Lemma 3.3. ( [15], Theorem 2.2) Let G be a p-group of order pn (n ≥ 4) such that |G′| = p(n−2),
then

|M(G)| ≤


|G′|

2 p = 2

|G′| otherwise.

Proposition 3.4. Let (N, G) be a pair of groups and K be the complement of N in G. Also, let
|N| = pn, |N′| = pn−2 We have

|M(N, G)| ≤


|N′|

2 |Nab ⊗ Kab| p = 2

|N′||Nab ⊗ Kab| otherwise.

Proof. We can obtain the results using Lemmas 3.2 and 3.3.

Lemma 3.5. ( [15], Corollary 2.3) Let G be a p-group of order pn with derived subgroup of order pk.
Then

|M(G)| ≤ p
1
2 n(n−1)− 1

2 k(k+1),

equality holds if and only if G is elementary abelian or G ∼= E1.

Proposition 3.6. Let (N, G) be a pair of non-abelian finite p-groups and K be a normal subgroup of
G such that G ∼= N × K. Also, let |N| = pn, |N′| = pk, where K is a group of order pm. Then

|M(N, G)| ≤ p
1
2 n(n+2m−1)− 1

2 k(k+1+2m)

and the equality holds if and only if G ∼= E1 × C(m)
p .
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Proof. We obtain the result from Lemma 3.5 and Lemma 3.2.

|M(N, G)| = |M(N)||Nab ⊗ Kab| ≤ p
1
2 n(n−1)− 1

2 k(k+1).p(n−k)m

= p
1
2 n(n+2m−1)− 1

2 k(k+1+2m).

Proposition 3.7. Let (N, G) be a pair of non-abelian finite p-groups and K be a normal subgroup of
G such that G ∼= N × K. Also, let |N| = pn, |N′| = pk, where K is a d-generator group of order pm.
Then

|M(N, G)| ≤ p
1
2 (n+k−2)(n−k−1)+1+(n−k)d.

Proof. We have |Nab ⊗ Kab| ≤ p(n−k)d and by Lemma 3.1 |M(N)| ≤ p
1
2 (n+k−2)(n−k−1)+1. Thus,

by Lemma 3.2, we obtain

|M(N, G)| = |M(N)||Nab ⊗ Kab|

≤ p
1
2 (n+k−2)(n−k−1)+1+(n−k)d.

Theorem 3.8. Under assumption of Proposition 3.7

|M(N, G)| = p
1
2 (n−1)(n−2)+1+(n−1)m−s′ .

Moreover, we have

(i) s′ = 0 if and only if (N, G) is isomorphic to the following pair

(E1 × C(n−3)
p , E1 × C(n−3)

p × C(m)
p ).

(ii) s′ = 1 if and only if (N, G) is isomorphic the following pair

(D8 × C(n−3)
2 , D8 × C(n−3)

2 × C(m)
2 ).

(iii) s′ = 2 if and only if (N, G) is isomorphic to one of the following pairs:
(1) (E1, E1 × K) where K is a group with m = d + 1,
(2) (E(2)× C(n−6)

p , E(2)× C(n−6)
p × C(m)

p ),

(3) (E2 × C(n−3)
p , E2 × C(n−3)

p × C(m)
p ),

(4) (Q8 × C(n−3)
2 , Q8 × C(n−3)

2 × C(m)
2 ),

(5) (H × C(n−2l−2)
p , H × C(n−2l−2)

p × C(m)
p ), where H is an extra special p-group of order

p2l−1, (l ≥ 2),
(6) (⟨a,b | a4 = b4 = 1, [a,b, a] = [a,b,b] = 1, [a,b] = a2b2⟩, ⟨a,b | a4 = b4 = 1, [a,b, a] =
[a,b,b] = 1, [a,b] = a2b2⟩ × C(m)

p ),
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(7) (⟨a,b, c | a2 = b2 = c2 = 1, abc = bca = cab⟩, ⟨a,b, c | a2 = b2 = c2 = 1, abc = bca =

cab⟩ × C(m)
p ),

(8) (⟨a,b | ap2
= 1,bp = 1, [a,b, a] = [a,b,b] = 1⟩, ⟨a,b | ap2

= 1,bp = 1, [a,b, a] = [a,b,b] =
1⟩ × C(m)

p ),
(9) (ϕ2(211)b,ϕ2(211)b × Cp).

(iv) s′ = 3 if and only if (N, G) is isomorphic to one of the following pairs:
(1) (D8, D8 × K), where K is a group with m = d + 1,
(2) ((C(4)

p ⋊ Cp)× C(2)
p , (C(4)

p ⋊ Cp)× C(2)
p )

(3) (⟨a,b | a9 = b3 = 1, [a,b, a] = 1, [a,b,b] = a6, [a,b,b,b] = 1⟩, ⟨a,b | a9 = b3 = 1, [a,b, a] =
1, [a,b,b] = a6, [a,b,b,b] = 1⟩),
(4) (⟨a,b | a9 = b3 = 1, [a,b, a] = 1, [a,b,b] = a6, [a,b,b,b] = 1⟩, ⟨a,b | a9 = b3 = 1, [a,b, a] =
1, [a,b,b] = a6, [a,b,b,b] = 1⟩ × Cp),
(5) (⟨a,b | ap = 1,bp = 1, [a,b, a] = [a,b,b, a] = [a,b,b,b] = 1⟩, ⟨a,b | ap = 1,bp = 1, [a,b, a] =
[a,b,b, a] = [a,b,b,b] = 1⟩)
(6) (⟨a,b | ap = 1,bp = 1, [a,b, a] = [a,b,b, a] = [a,b,b,b] = 1⟩, ⟨a,b | ap = 1,bp = 1, [a,b, a] =
[a,b,b, a] = [a,b,b,b] = 1⟩ × Cp),

(7) (ϕ2(22),ϕ2(22)× C(m)
p ),

(8) (ϕ3(211)a,ϕ3(211)a),
(9)(ϕ3(211)br,ϕ3(211)br),
(10) (ϕ2(2111)c,ϕ2(2111)c),
(11) (ϕ2(2111)d,ϕ2(2111)d),
(12) (ϕ3(15),ϕ3(15)),
(13) (ϕ7(15),ϕ7(15)),
(14) (ϕ12(16),ϕ12(16)),
(15) (ϕ13(16),ϕ13(16)),
(16) (ϕ15(16),ϕ15(16)),
(17) (ϕ11(16),ϕ11(16)),
(18) (D16, D16),
(19) (C4 ⋊ C4,C4 ⋊ C4),
(20) (C(4)

2 ⋊ C2,C(4)
2 ⋊ C2),

(21) (C2 × ((C4 × C2)⋊ C2),C2 × ((C4 × C2)⋊ C2)).

Proof. By Lemmas 3.1 and 3.2, we obtain

p
1
2 (n−1)(n−2)+1+(n−1)m−s′ = p

1
2 (n−1)(n−2)+1−s.|Nab ⊗ Kab|

Thus,

p(n−1)m−s′ = p−s.|Nab ⊗ Kab|

244



Khamseh/ Journal of Discrete Mathematics and Its Applications 8 (2023) 239–248

and so,

p(n−1)m = ps′−s.|Nab ⊗ Kab| ≤ ps′−s.p(n−k)d

≤ ps′−s.p(n−1)m

Therefore, s′ ≥ s.
Case s′ = 0. Then s = 0, and by Theorem 2.1 N ∼= E1 × C(n−3)

p . We have |N′| = p and so,
|Nab ⊗ Kab| ≤ p(n−1).d. Now, we have

p(n−1)m ≤ p(n−1).d ≤ p(n−1)m

Thus, d = m and G ∼= E1 × C(n−3)
p × C(m)

p .

Case s′ = 1. If s = 0, then N ∼= E1 × C(n−3)
p . Let N ∼= E1 × C(n−3)

p , then

p(n−1)m = p|Nab ⊗ Kab| ≤ p.p(n−1).d = p(n−1).d+1.

Thus, (n − 1)m ≤ (n − 1).d + 1 and so, (n − 1)(m − d) ≤ 1. This implies that n = 1 or 2 and
m = d, thus |M(N)| = p1/2(n−1)(n−2) which is impossible.

If s = 1, then N ∼= D8 × C(n−3)
p or N ∼= C(4)

p ⋊ Cp (p ̸= 2). Suppose that N ∼= D8 × C(n−3)
2 ,

then |N′| = p = 2. Now, we have

p(n−1)m = ps′−s.|Nab ⊗ Kab| = |Nab ⊗ Kab|.

Hence, p(n−1)m ≤ p(n−1).d ≤ p(n−1)m, this implies that d = m and so G ∼= D8 × C(n−3)
2 × C(m)

2 .

If N ∼= C(4)
p ⋊ Cp (p ̸= 2), then |N′| = p2 and so, p(n−1)m ≤ p(n−2).d ≤ p(n−2)m, which is

impossible.
Case s′ = 2. Let s = 0 ,then N ∼= E1 × C(n−3)

p . Hence

p(n−1)m = p2.|Nab ⊗ Kab| ≤ p(n−1).d+2.

Hence, (n − 1)m ≤ (n − 1).d + 2 and so, (n − 1)(m − d) ≤ 2. Thus, n = 3 and d = m or
m = d + 1. If m = d, then |M(N)| = p1/2(n−1)(n−2)−1, which is contradiction by Theorem 2.1,
else G ∼= E1 × K, where m = d + 1.

If s = 1, then N ∼= D8 × C(n−3)
2 or N ∼= C(4)

p ⋊ Cp (p ̸= 2). Let N ∼= D8 × C(n−3)
2 , then

|N′| = 2. Also, 2(m − d) ≤ 1. Thus, m = d, K ∼= C(m)
2 , hence, |M(N)| = p1/2(n−1)(n−2)−1,

which is contradiction using Theorem 2.1
Now, assume that N ∼= C(4)

p ⋊ Cp (p ̸= 2), then |N′| = p2 and we have

p(n−1)m ≤ p.p(n−2).d ≤ p1+(n−2)m

, so, m ≤ 1 and M(N) = p1/2(n−1)(n−2)−1, which is contradiction by Theorem 2.1.
Let s = 2, then by Theorem 2.1, we have N ∼= E(2) × C(n−2m−2)

p = E.Z(E) × C(n−2m−2)
p ,

where E is an extra special p-group and Z(E) is a cyclic group of order pm (m ≥ 2)
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N ∼= E2 × C(n−3)
p , N ∼= Q8 × C(n−3)

2 ,

N ∼= H × C(n−2m−1)
p , where H is an extra special p-group of order p2m+1 (m ≥ 2),

N ∼= ⟨a,b | a4 = b4 = 1, [a,b, a] = [a,b,b] = 1, [a,b] = a2b2⟩,
N ∼= ⟨a,b, c | a2 = b2 = c2 = 1, abc = bca = cab⟩,
N ∼= ⟨a,b | ap2

= 1,bP = 1, [a,b, a] = [a,b,b] = 1⟩,
N ∼= Cp × (C(4)

p ⋊ Cp) (p ̸= 2),
N ∼= ⟨a,b | a9 = b3 = 1, [a,b, a] = 1, [a,b,b] = a6, [a,b,b,b] = 1⟩
N ∼= ⟨a,b | ap = 1,bp = 1, [a,b, a] = [a,b,b, a] = [a,b,b,b] = 1⟩
N ∼= ϕ2(211)b
Similar to the previous cases we obtain G ∼= E(2)× C(n−6)

p × C(m)
p , G ∼= E2 × C(n−3)

p × C(m)
p ,

G ∼= Q8 × C(n−3)
2 × C(m)

2 , G ∼= H × C(n−2l−2)
p × C(m)

p (l ≥ 2), G ∼= ⟨a,b | a4 = b4 = 1, [a,b, a] =

[a,b,b] = 1, [a,b] = a2b2⟩ × C(m)
p , G ∼= ⟨a,b, c | a2 = b2 = c2 = 1, abc = bca = cab⟩ × C(m)

p or

G ∼= ⟨a,b | ap2
= 1,bp = 1, [a,b, a] = [a,b,b] = 1⟩ × C(m)

p .

Case s
′
= 3. If s = 0, then N ∼= E1 × C(n−3)

p and we have

p(n−1)m = p3.|Nab ⊗ Kab| = p3.|E1 × C(n−3)
p ⊗ Kab|

≤ p3.|E1 ⊗ Kab||C(n−3)
p ⊗ Kab|

≤ p3.p2d.p(n−3).d = p3+(n−1)d.

Hence (n − 1)(m − d) ≤ 3, in this case we obtain n = 4 and m = d + 1.
If s = 1, then N ∼= D8 × C(n−3)

2 or C(4)
p ⋊ Cp, p ̸= 2. Let N ∼= D8 × C(n−3)

2 , then p(n−1)m ≤
p2.p(n−1).d, so p(n−1)m ≤ p2+(n−1)d. Therefore (m − d)≤ 1, hence m = d or m = d + 1. If m = d
then |M(N)|= p1/2(n−1)(n−2)−2, which is contradiction and there isn’t any group in this case.
Therefore G ∼= D8 × K, where K is a group with m = d + 1.

Let N ∼= C(4)
p ⋊ Cp, p ̸= 2, then |N′| = p2 and we have p(n−1)m ≤ p2.p(n−2).d, so p4m ≤

p2+3d, hence m ≤ 2. Also |M(N, G)| = p6 ≤ p3d, hence d ≥ 2 and G ∼= C(4)
p ⋊ Cp × Cp2 or

G ∼= C(4)
p ⋊ Cp × C(2)

p , p ̸= 2.
Now, suppose that s = 2, then N is isomorphism with one of 10 groups by Theorem 2.1. In

1 to 7 groups, |N′|= p, we have p(n−1)m = p.|Nab ⊗Kab| ≤ p.p(n−1)d, hence (n− 1)(m− d)≤ 1,
so n = 1 or n = 2, m = d or m = d + 1. By the definition of these groups we can not have n = 1
or n = 2, since n ̸= 2, m ̸= d + 1, therefore m = d and K ∼= C(m)

p .
In the first group d(N) = n − 2l + 1, so p(n−1)m ≤ p.p(n−2l+1)m, thus −2m − 2lm ≤ 1. By

the definition of N, l ≥ 2, therefore m = 0 and |M(N)| = p1/2(n − 1)(n − 2) − 2, which is
contradiction using Theorem 2.1. So there isn’t any pair of groups in this case.

Now suppose that s = 3, then N is an isomorphism with one of the 16 groups in the
Theorem 2.1. In this case we argue by the |N| and |N′|.

If N ∼= Φ2(22), then |N| = p4 and |N′| = p, so p3m ≤ p3d ≤ p3m. Hence d = m and G ∼=
Φ2(22)× C(m)

p .
If N ∼= Φ3(211)a or N| ∼= Φ3(211)br, |N| = p4, |N′| = p2 and d(N) = 2, hence p3m ≤ p2d ≤
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p2m, therefore m = 0 and G ∼= N.
If N ∼= Φ2(2111)c or N ∼= Φ2(2111)d, |N| = p5, |N′| = p and d(N) = 3, hence p4m ≤ p4d ≤

p4m. therefore d = m, Also on the other hand p4m ≤ p3m, so m = 0 and G ∼= N in both cases.
If N ∼= Φ3(15) or N ∼= Φ3(17), |N| = p5, |N′| = p2, and p4m ≤ p3d ≤ p3m, therefore m = 0

and G ∼= N in both cases.
In other cases when p ̸= 2 we have |N| = p6, |N′| = p2 or |N′| = p3. We can show similar to
the previous cases m = 0 and G ∼= N.

If p = 2 and N ∼= D16 or C4 ⋊ C4, then |N| = 24 and |N′| ≤ 22. Therefore p3m ≤ p2d ≤ p2m,
So m = 0 and G ∼= N. Also if N ∼= C(4)

2 ⋊ C2 or N ∼= C2 × (C4 × C2)⋊ C2, then |N| = 25 and
|N′| = 22, hence p4m ≤ p3d ≤ p3m, hence m = 0 and G ∼= N.
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