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Background and Objectives: The identification of driver genes, which initiate 
cancer in cells, holds immense significance within the field of oncology. 
Discovering these genes is crucial for identifying markers that can indicate specific 
conditions or diseases, as well as for developing novel systemic and molecular 
treatment approaches for them. Several computational methods have been 
developed to identify the genes responsible for cancer based on genomic data.   
However, many of these methods find key mutations in genomic data to predict 
which genes are responsible for cancer. These methods rely on mutation and 
genomic data, but they often exhibit a high rate of false positives in the results. In 
this study, we propose an influence maximization-based approach, called 
CinfuMax, which can predict cancer-associated genes without relying on mutation 
information. 
Methods: In this method, the concept of influence maximization and the 
independent cascade model is employed. Firstly, the gene regulatory network for 
breast, lung and colon cancers was constructed using regulatory interactions and 
gene expression data. Next, we implemented an independent cascade diffusion 
algorithm on the networks to calculate the coverage of each gene. Ultimately, 
genes with the highest coverage were identified and classified as drivers. 
Results: The proposed method's results were compared to those of 19 other 
computational and network-based methods, utilizing the F-measure and the 
number of predicted driver genes as evaluation metricsThe results clearly indicate 
that the proposed method outperforms other methods. Furthermore, CinfuMax 
successfully identifies 18, 19, and 22 individual driver genes in breast, lung, and 
colon cancers, respectively, which were not previously identified by any other 
methods. 
Conclusion: Corrected: The results indicate that independent cascading methods 
for identifying driver genes outperform linear threshold methods. Driver genes 
were also categorized based on their influence speed, and the genes with the 
highest diffusion rate in each type of cancer have been identified. The 
identification of these genes can be valuable for molecular therapies and drug 
development. 
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Introduction 
Cancer is a disease caused by oncogene activations, such 

as genetic mutations, chromosome rearrangements, or 

the deactivation of tumor suppressor genes [1], [2]. It is 

the second leading cause of death globally, with 

approximately 6.9 million people losing their lives in 2018. 
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Lung cancer (2.09 million cases), Breast cancer (2.09 

million cases), and Colon cancer (1.80 million cases) are 

among the most prevalent cancers [3]. During tumor 

progression, most of the altered genes identified are 

passenger-type, meaning they do not contribute to the 

oncogenic process. However, a small portion of the 

altered genes is believed to be driver genes that disrupt 

normal transcriptional processes and transform the cell 

from normal to cancerous. 
Cancer Driver Genes prediction Problem  

Many computational techniques had been proposed to 

discover CDGs. In those techniques, it is assumed that the 

genes that cause cancer are more susceptible to essential 

modifications in genes, such as mutations. Not all 

mutations that arise within the cancer genome led to 

cancer. Therefore, most computational methods attempt 

to distinguish driver mutations from non-driver 

mutations. Most of the methods available to identify 

CDGs depend on transcriptomic or genomic data. For 

instance, OncodriveCLUST, proposed by Tamboero et al in 

2013 [4], identifies genes that exhibit a significant 

tendency to accumulate mutations in protein sequences. 

It creates a model to classify genes by evaluating the 

encoding of silent mutations. Another computational 

method, Simon [5], aims to improve the identification of 

cancer driver genes by estimating the background 

mutation rate and considering the operational effect of 

mutations on proteins, background mutation changes in 

tumors, and the redundancy of the genetic code. One of 

the features of this method is its capability to distinguish 

between mutations that affect protein function and other 

mutations. Furthermore, it can differentiate between the 

number of background mutations in various samples and 

patients. Dendrix [6] is a computational method that 

integrates two coverage characteristics: identifying genes 

in different patient samples and exclusivity. It aims to 

distinguish driver mutations from passenger mutations 

that are infrequently observed in certain patients. The 

ActiveDriver method, developed in 2013 by Reimand et al 

[7], identifies signal sites where the mutation rate is 

significantly higher than the mutation level in the entire 

gene sequence, highlighting the importance of these sites 

in cancer biology. Another method, e-Driver [8], extracts 

the internal distribution of malignant mutations between 

functional regions of proteins to determine the mutation 

rate relative to other regions of the same protein. If the 

observations are positive, those genes could be the CDGs. 

Oncodrive-FM is another computational method based 

on mutation data [9]. One of the major challenges in 

cancer genomics lies in identifying Cancer Driver Genes 

(CDGs) and their associated pathways amidst various 

types of mutations. The method calculates a functional 

influence metric using three established methods and 

evaluates the deviation in the functional influence of 

variants found in a gene across multiple tumor samples. 

To address the limitations of traditional approaches, a 

new criterion termed FM bias is introduced, aiming to 

overcome issues related to accurately estimating the 

mutation rate and dependence on incremental changes. 

The MDPFinder method [10] uses both mutation data 

and gene expression data to identify the pathways of 

cancer mutations and genes that cause cancer. It aims to 

address the issue of identifying mutant driver paths by 

developing a maximum weight matrix [6]. To achieve this, 

it utilizes a genetic algorithm and integrates gene 

expression data and mutation data to identify cancer 

mutation pathways and the genes responsible for causing 

cancer. The DriverML method is another computational 

method [11] that utilizes machine learning and the Rao 

test to identify cancer-causing genes, relying on mutation 

data. The MutsigCV computational method also leverages 

mutation and expression data [12] to identify abnormal 

changes in genes and address the issue of heterogeneity 

in mutation processes and mutation frequency of genes. 

Additionally, iPAC is a computational method that 

systematically performs statistical tests on a list of genes 

to extract the CDGs [13], using gene expression and the 

number of copies as input data.  

Another category of methods for identifying driver 

genes involves leveraging the structure of biological 

networks alongside mutation and genomic data. For 

instance, the Netbox method [14] utilizes protein-protein 

interaction network analysis to identify frequently 

changing modules. This method involves creating a 

network of PPI interactions and signaling pathways, 

identifying network modules, and statistically evaluating 

the significance of modularity. DawnRank is another 

method that utilizes mutation data [15] to focus on each 

patient's cancer genes, aiming to discover rare and 

specific driver genes for individual patients. DawnRank 

utilizes the individual patient's specific genetic 

information to identify cancer genes. It ranks mutated 

genes in a patient based on their potential for 

transmission in the Molecular Interaction Network, with 

higher-ranking genes being more likely to be drivers. 

Memo is a systematic approach to identifying cancer 

modules based on the concept of mutually exclusive 

events [16], utilizing mutation data and network 

structure.  It searches for modules characterized by three 

key features: (1) frequent alterations of module genes in 

tumor samples, (2) involvement in known biological 

processes, and (3) mutually exclusive change events 

within the modules. Additionally, Memo conducts 

mutation enrichment analysis to examine mutational 

hotspots in genes [17], hypothesizing that genes with 

such hotspots could act as driver genes. The method 

integrates diverse data types, including multidimensional 

disease-related data, biological functional data, and 
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molecular networks. It employs two approaches: 

simulating a random walk in sequences to provide a 

quantitative measure of mutation location and clustering, 

and evaluating whether a protein domain exhibits a 

higher mutation rate than the rest of the protein. 

DriverNet is a computational framework designed to 

identify driver mutations within miRNA expression 

networks [18]. While leveraging a network structure, this 

method also relies on mutation data. It extracts the 

relationship between genome aberrations and 

transcription patterns through the gene network's 

structure. 

Another category of methods for recognizing cancer 

driver genes that has recently gained attention are 

network-based and bioinformatics methods. These 

approaches do not rely solely on mutational and genomic 

data, but also utilize biological network structures to 

identify CDGs. Notably, the iMaxDriver-N and iMaxDriver-

W methods fall within this category [19], as they identify 

driver genes using gene expression data and the structure 

of the transcriptional regulatory network, employing the 

concept of influence maximization and the linear 

threshold model. 

Previously proposed methods for identifying cancer 

driver genes (CDGs) have limitations. Computational 

methods rely on mutation data, which inherently contains 

a significant amount of noise, leading to high false 

positive results. Moreover, there is significant overlap in 

the genes identified by these computational methods. 

While previous network-based methods do not 

encounter the same issues as computational methods, 

there is room for improvement in terms of the number of 

identified CDGs and performance metrics. Addressing 

these limitations, a network-based method that does not 

rely on mutational data to identify cancer-causing genes 

was proposed in this study. This method uses the concept 

of influence maximization in the transcriptional 

regulatory network and an independent cascade model to 

prioritize genes. The data used include gene expression 

data and human regulatory interactions. In this method, 

the coverage of each gene is calculated in terms of 

diffusion power in the gene regulatory network (GRN). 

The Gene Regulatory Network consists of DNA fragments 

in a cell that interact indirectly with each other and with 

other molecular regulators, ultimately determining which 

genes in the network are transcribed into mRNA. The 

proposed method is capable of classifying genes based on 

network propagation speed, which holds significant 

potential for molecular therapy and drug development 

purposes. 

Influence Maximization Problem 

A social network is a social structure consisting of a set 

of individuals and the relationships or interactions 

between them. The rapid proliferation of the Internet has 

significantly increased the popularity of social networking 

among people. Consequently, social networks have 

emerged as a popular platform for product advertising 

and information dissemination [20]. 

Many topics are explored through the analysis of social 

networks, including models of diffusion and social 

influence. The influence maximization problem involves 

identifying the most influential nodes to achieve the 

maximum impact of diffusion in a social network, which is 

known as an NP-Hard problem.  

The purpose of influence maximization is to leverage 

the network's capacity, such as social networks, to reach 

the widest audience and maximize the spread of 

information or influence. In general, inputs related to the 

influence maximizing problem include:  

- A directed graph 𝐺 =  (𝑉, 𝐸), the network on which 

influence maximization is to be performed. 

- A set of nodes as primary active nodes.  

- A function 𝑓 ∶ 2𝑉 → 𝑅 that maps a set of nodes (𝑆) to 

their diffusion values (𝑓(𝑆)). This shows how much it 

will affect the amount of diffusion on the network if we 

choose this set of nodes as seed (S) for the propagation 

process. 

- a budget 𝑘 

The goal is to find a set of seed(S) that 

max 𝑓(𝑆)                   

|𝑆| ≤ 𝑘                       
 (1) 

Influence maximization involves identifying the 

minimum k nodes that can maximize diffusion in a social 

network, thereby enabling these nodes to exert the 

greatest impact on other nodes within the network. There 

are several models to solve the problem of influence 

maximization. One widely used method for modeling the 

diffusion process is the independent cascade model, 

which draws inspiration from particle movement models 

in physics [21]. The independent cascade model for 

influence maximization was initially studied by 

Goldenberg et al [22].  In this model, a set of nodes is 

chosen as initially active nodes (seeds).  

At each step t, an active node v attempts to activate 

one of its neighboring inactive nodes with a given 

probability 𝑝𝑣. If successful, the newly activated nodes 

become active in the next step (𝑡 +  1) and initiate a 

similar process to activate adjacent inactive nodes. Once 

a node's activation attempt succeeds or fails, it cannot 

attempt to activate the same node again. This process 

continues until it is no longer possible to activate a new 

node. 

A.  Independent Cascade Model  

Cascading models for diffusion draw inspiration from 

particle motion and probability theory [23]. These models 

were initially studied in marketing, with one of the 

simplest being the independent cascade diffusion model 
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[24]. The impact of the influence maximization problem 

largely hinges on the selection of the diffusion model, 

specifically the diffusion function 𝑓. Understanding how a 

set of nodes (S) affects the entire network remains a 

significant challenge within the influence maximization 

problem. The concept involves establishing a random 

process on the network originating from S and spreading 

like a contagion. The expected number of infected nodes 

at the end of the diffusion propagation will indicate the 

influence f(S) through the set S. Consequently, the 

influence maximization problem is defined as a random 

transmission process in the network. The independent 

cascade model is a subset of cascade propagation models. 

In this model we have a directed graph G= (V, E). For each 

edge (u,v) in this graph, the  weight 𝑝𝑢,𝑣 ∈ [0,1]  denotes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As depicted, each infected node remains active for 

a time step to infect each of its susceptible neighbors. 
Infected node u will attempt to infect its neighbor's 

susceptible node v, with a success probability of 𝑝𝑢,𝑣. Each 

attempt to activate susceptible nodes represents an 

independent random event. In cases where an infected 

node has multiple susceptible neighbors, attempts are 

made to activate them in a specified order. This process 

persists until an infected node successfully infects one of 

its neighbor's susceptible nodes. 

Formally, for a susceptible node 𝑣 in 𝑆𝑡, its probability 

of being infected at time step 𝑡 +  1 is given by (2): 

𝑝(𝑣, 𝐼𝑡) = 1 − ∏ (1 − 𝑝𝑢,𝑣)   

𝑢∈𝑃(𝑣)∩𝐼𝑡

                         (2) 

where, 

𝐼𝑡: The infected nodes set 

𝑆𝑡: The susceptible nodes set 

𝑃(𝑣) ∩ 𝐼𝑡: infected parent sets of node 𝑣 

Also,𝑃(𝑣) are the parents of node 𝑣 and are defined as 

(3): 

𝑃(𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}                     (3) 

For a  node  𝑢 ∈ (𝑃(𝑣) ∩ 𝐼𝑡),  the  probability  that  an 

the probability of diffusion for that edge. 

At each time step 𝑡 ∈ 𝑁, each node in the graph is in 

one of the following three states: 

 Infected: The node is newly infected and remains 

active for a period of time as it tries to infect its 

neighbors. 

 Susceptible: The nodes are not infected yet, but will 

probably become infected at this time step or in 

later step. 

 Inactive: These nodes were infected in the past but 

are now inactive. Infected nodes only become 

infected at a time step and then become inactive. 

Fig. 1 shows the process of propagating an 
independent cascade model for a small network with 10 
nodes and three primary active nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attempt will unsuccessful is equal to (1 − 𝑝𝑢,𝑣), and 𝑣 will 

be infected if not all attempts unsuccessful. The set of 

all nodes infected during a contagion process from S can 

define as (4): 

𝐼(𝑆) = ⋃ 𝐼𝑡

𝑡≥0

  (4) 

Finally, the penetration function 𝑓(𝑆) in the 

independent cascade model can be defined as (5): 

𝑓(𝑆) = ℤ[|𝐼(𝑆)|]  (5) 

So, in general, the IC model works as follows: 

The IC model starts with an initial set of infected nodes 

(seed). The influence process is revealed in a discrete 

process according to a random rule: 

1. When node 𝑛 becomes infected in step t, it is given 

a single chance to infect each currently Susceptible 

neighbor 𝑥; it succeeds with a probability 𝑝(𝑛, 𝑥) 

2. If 𝑥 has several newly Susceptible neighbors, their 

efforts will be sorted as desired. 

3. If n succeeds, x is infected in step t + 1. But whether 

v succeeds or not, it cannot make further effort to 

infect w in subsequent rounds. 

4.  This process runs until no more infection are 

possible. 
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Fig. 1: The IC model example in a network with 10 nodes and 11 edges. Susceptible, infected and inactive nodes at each 
time step are shown in grey, red and yellow, respectively. Nodes 1, 5 and 7 are the initial active nodes in t=0. 



CinfuMax: An Influence Maximization-Based Model for Predicting Cancer Driver Genes in Gene Regulatory Networks 

J. Electr. Comput. Eng. Innovations, 12(2): 373-386, 2024                                                                377 
 

Methodology  

In this section, we will outline the CinfuMax pipeline, 

which comprises two distinct steps: the construction of a 

gene regulatory network and the implementation of the 

independent cascade algorithm to identify driver genes 

and determine their influence rate. The driver genes 

identified through the independent cascade model will be 

clustered based on their influence rates. Finally, we 

compare the proposed method with 19 other 

computational and network-based methodss based on 

three cancer regulatory networks as benchmarks and 

several gold standard databases. 

A. Gene Regulatory Network 

Biological networks represent the numerous of 

interactions within a cell, providing insight into how 

relationships between molecules regulate normal cellular 

behavior. Recent advances in bioinformatics and 

computational biology have facilitated the study of 

complex networks of transcriptional regulatory. These 

networks describe gene expression as a function of 

regulatory inputs characterized by interactions between 

proteins and DNA [24]. A gene regulatory network (GRN) 

is a directional graph in which gene expression regulators 

bind to target gene nodes through regulatory 

interactions. Gene expression regulators, including 

transcription factors (TFs) that can act as activators and 

repressors, RNA-binding proteins, and RNA regulators, 

constitute a collection of DNA fragments in a cell [25]. 

Analyzing and understanding the regulatory relationships 

between transcriptional regulators and their purposes is 

essential for comprehending biological phenomena, from 

cell growth and division to the identification and 

treatment of diseases, including cancer. Transcriptional 

regulatory networks (TRNs) are among the most 

important types of gene regulatory networks, playing a 

crucial role in the mechanism of diseases, especially 

cancer [26]. These types of networks are formed from the 

effect of a type of gene called a transcription factor on 

other genes. In this study, a list of confirmed regulatory 

interactions between the transcription factor and genes, 

described in the next section, was used to construct the 

cancer transcriptional regulatory networks. 

B. Network Reconstruction 

To construct transcriptional regulatory networks for 

each cancer, a list of regulatory interactions and gene 

expression data was necessary. The list of approved 

regulatory interactions was downloaded from the 

RegNetwork database [27], which is freely accessible1. 

This database reports five types of regulatory interactions 

related to pre-transcription and post-transcription for 

                                                            
1 http://www.regnetworkweb.org 
2 transcription factor binding sites 
3 https://www.ncbi.nlm.nih.gov/geo/ 

humans and mice. RegNetwork integrates regulatory 

interactions collected from various databases and 

extracts potential regulators based on TFBS2. In this study, 

interactions related to miRNA genes were filtered. Table 

1 displays the information about the data used from the 

RegNetwork database.  
 

Table 1: Characteristics of data taken from the RegNetwork  
 

Number of 
elements 

Description Element 

21175 Gene regulatory network nodes Gene 

150202 Gene regulatory network edges interaction 

1456 
Transcription factors (a type 

network nodes) 
TF 

19719 
Target genes (a type network 

nodes) 
Gene 

149841 
The TF-gene regulations (a type 

network edges) 
TF-gene 

361 
The TF'-TF regulations (a type 

network edges) 
TF-TF 

 

Gene expression data was also downloaded from the 

GEO database [28], which is freely available3. This 

database provides lung (GSE3268)4, colon (GSE32323)5, 

and breast (GSE15852)6 gene expression data in the .CEL 

format.  Expression data are reported separately in this 

database for normal tissue and adjacent tumour tissue for 

each tumour. Prior to use, these files must be processed 

using the Affy package in R and the RMA method. After 

processing, synonymous genes were isolated, and 

duplicate gene values were averaged. three text files 

corresponding to the three cancer tissues were 

generated, with each row containing the gene name and 

its expression values in normal tissue and its adjacent 

cancer tissue for different patients. The gene regulatory 

network for each cancer was then constructed by 

mapping the processed gene expression data to the list of 

regulatory interactions. This involved retaining 

interactions where both the source and destination genes 

were present in the list of related expression data, and 

filtering out the rest. The number of genes and regulatory 

interactions in each network is presented in Table 2.  

 
Table 2: Number of nodes and edges in each cancer regulatory 
network 
 

Number of 
interactions 

Number of 
nodes 

Network name 

7540 2499 Breast cancer network 

8199 2782 Lung cancer network 

7540 2500 Colon cancer network 

4 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 
5 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 
6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 
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The CinfuMax Algorithm 

Influence maximization models aim to select a minimal 

seed set that activates the largest number of nodes in the 

network. Given the time-intensive nature of influence 

maximization algorithms and the specific type of 

networks studied (TRNs), we focused solely on nodes of 

the transcription factor type as being "infected." Each 

node was individually considered as infected, and the 

influence score in the network was calculated. The 

algorithm was executed 300 times on each network, and 

the resulting coverage values were averaged , serving as 

the final coverage metric for each gene. The coverage 

score indicates the potential impact of infecting a gene on 

the other susceptible genes in the network. Genes with 

higher coverage are more likely to be associated with 

cancer driver genes. To optimize the algorithm's 

iterations  for  the  best  outcome,  we  tested  iterations  

 

 

ranging from 10 to 500. In all three cancer networks, the 

optimal iteration value was obtained to be 300. 

Moreover, the proposed algorithm can determine the 

required iterations for each gene to achieve its maximum 

coverage, enabling the identification of genes with the 

potential to spread rapidly within the network. An 

overview of the proposed model is depicted in Fig. 2.  

the CinfuMax method takes a cancer regulatory 

network as input and provides the coverage value and 

influence rate for each gene as output. Within the 

independent cascade model, a key parameter is the 

sensitivity of infected nodes in the network, which is 

typically set to 0.1 in the basic IC algorithm. To assess 

sensitivity, we implemented the algorithm using 

parameter values of 0.1, 0.2, 0.3, 0.4, and 0.5. Across all 

three networks, the best performance was observed 

when the parameter was set to 0.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluated Method 

CinfuMax results were compared to 19 previous 

computational and network-based methods. The 

DriverDBv2 database was used to obtain results on the 

computational methods [29].  

 

 

 

 

 

 

 

 

 

 

It uses the Cancer Genome Atlas database, such as 

colon, lung, and breast cancers, as input for computing 

tools. TCGA is a project aimed at cataloging genetic 

mutations responsible for cancer through genome 

sequencing and bioinformatics [30]. It serves as a central 

GEO 

Database

RegNetwork

Database

(1) Gen Expression data 

gathering

(2) Regulator interactions 

data gathering

(3) Data pre-processing

(4) Data pre-processing

Input

(5) Network construction

Regulator Target Confience

ABL1

APBB1

APC

CEBPA

E2F1

...

EPHB1 High

APP High

TBL1X High

TIMP2 High

ANKRD26 High

... ...

Modified Independent 

Cascade Model

Regulator Cover Score

ABL1

APBB1

APC

CEBPA

E2F1

...

13311

13251

13373

9

13333

... (6) Cover score 
calculation

(7) Gene classification

Driver /Normal

Name Normal Toumor  .

RFC2

HSPA6

PAX8

GUCA1A

MIR5193

...

5.42688 7.03498 ...

5.26556 5.51883 ...

8.42475 8.30014 ...

3.66632 3.89054 ...

8.74796 6.89203 ...

... ... ...

(8) Influence rate 
analysis

(9) Driver clustering(10) Evaluating

 

Fig. 2: (1 and 2) The CinfuMax pipeline. (3 and4) Collection of required data (gene expression and regulatory 
interactions) and pre-processing and data preparation. (5) Constructing transcriptional regulatory network. (6) 

Running the modified IC algorithm and calculating cover scores (7) Tuning of thresholds and classification of genes 
(8) Influence rate calculating (9) driver gene clustering (10) Evaluating. 
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repository for TCGA data and is licensed by the National 

Cancer Institute Genomic Cancer Center [31]. The results 

of network-based methods were obtained from their 

respective papers. The driver genes provided in the 

Cancer Gene Census (CGC) were used as the gold standard 

for evaluating CinfuMax and previous methods. The CGC 

reports a list of cancer driver genes, and we downloaded 

the lists for colon (TCGA-COAD), lung (TCGA-LUSC), and 

breast (TCGA-BRCA) cancers from the free TCGA data 

portal 7. CGC-approved driver genes were then selected 

and used as the gold standard of evaluation. In this 

standard database, 572, 572 and 566 driver genes are 

reported for breast, colon and lung cancers, respectively. 

The confusion matrix was used to calculate the 

evaluation criteria. Its various values are described in 

Table 2. To evaluate the performance of the proposed 

method and compare it with other methods, we used 

Recall, Precision and F-measure, which are common in 

binary classification problems. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (7) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (8) 

 

Confusion matrix was used to calculate evaluation 

metrics. It shows the prediction results of a classification 

problem. The confusion matrix and its various values are 

described in Table 3. 
 

Table 3: The confusion matrix and its various parts 
 

Actual class  

Negative Positive Samples 

FP 
(False Positive) 

TP 
(True positive) 

Positive Predicated 
class 

TN 
(True Negative) 

FN 
(False Negative) 

Negative 

TP: It refers to the number of genes that have been cancer 
drivers and the algorithm has also identified them as drivers. 
FP: It refers to the number of genes that have not been 
introduced as cancer drivers in the dataset used, but the 
algorithm has mistakenly categorized them as cancer drivers. 
FN: It refers to the number of genes that have been actually 
cancer drivers but the algorithm mistakenly categorized 
them as normal. 
TN: It refers to the number of genes that have not been 
carcinogens and the algorithm has also correctly identified 
them as non-carcinogens. 

 

Results and Discussion 

In this study, cancer regulatory networks were 

constructed using gene expression data and regulatory 

interactions. Subsequently, an independent cascade 

influence algorithm was applied to the network to 

                                                            
7 https://portal.gdc.cancergov 

determine the diffusion score of each gene. To streamline 

computations and reduce execution time, we focused 

solely on individual transcription factors as infected initial 

nodes, based on the network structure. The 

implementation of the algorithm and its evaluation were 

carried out using the Python language. The output 

comprised a list of genes with their respective coverage 

scores and influence rates, organized in descending order 

of coverage score. Subsequently, based on a specified 

threshold value, genes were categorized as either "driver" 

or "normal." Fine-tuning of the threshold value was 

performed using the precision_recall_curve and metric 

packages within the Python sklearn library. The confusion 

matrix of the proposed method for all three cancer 

networks is shown in Fig. 3. 

 

  
      (a)                                        (b)                                    (c) 
 

Fig. 3: Confusion matrixs for (a) Breast cancer, (b) Lung cancer 
(c) and colon cancer networks. 

 

A. Breast Cancer Network 

The F-measure values for CinfuMax and other 

computational and network-based methods in Breast 

cancer are shown in Fig. 4. It is evident that CinfuMax 

outperforms all other computational and network-based 

methods in terms of F-measure. Additionally, as 

illustrated in Fig. 4, CinfuMax has identified 187 drivers, 

representing the highest number of drivers compared to 

the previous computational and network-based methods 

(after iPac). Although iPac has predicted more drivers, its 

F-measure is notably lower. 

 

 
Fig. 4: Performance measures of CinfuMax and other pervious 

methods proposed in breast cancer. 
 

As shown in Fig. 5, CinfuMax successfully identified 149 

genes that were also identified by other methods.  

Furthermore, CinfuMax discovered 38 unique genes that 

were not predicted by any previous computational and 

network-based methods. Additionally, we conducted a 

comparative analysis of the proposed method in terms of 
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the overlap of predicted drivers with computational and 

network methods. The Venn diagram in Fig. 6 illustrates 

that CinfuMax identified 64.9% (124) of the genes 

identified by other network-based methods, along with 

63 unique genes not predicted by any of the network-

based methods. Moreover, in comparison to 

computational methods, CinfuMax identified 93 unique 

genes that were not predicted by any previous 

computational methods. 

 
Fig. 5: The Venn diagram for predicted CDGs using CinfuMax 

and other computational and network-based methods in 
breast cancer. 

 

 
Fig. 6. The Venn diagram for predicted CDGs using CinfuMax 
and (A). Other network-based methods, (B) the union of all 

other computational methods in breast cancer 
 

B. Colon Cancer Network 

The F-measure values for CinfuMax and other 

computational and network-based methods in colon 

cancer network are shown in Fig. 6. It is evident that the 

proposed method outperforms all computational and 

network-based methods in terms of F-measure. 

Additionally, as illustrated in Fig. 7, CinfuMax has 

identified 190 drivers, representing the highest number of 

drivers compared to the previous methods (after the iPAC 

computational method). Although iPac was able to 

identify 286 drivers, its F-measure is notably low (0.088). 

We conducted a comparison between CinfuMax and 19 

previous methods with respect to the overlap of CDGs 

predicted. As shown in Fig. 8, CinfuMax successfully 

identified 158 genes that were also identified by other 

methods. Additionally, CinfuMax discovered 32 unique 

genes that were not identified by any previous 

computational and network-based methods. 

Furthermore, we evaluated the proposed method in 

terms of the degree of overlap of predicted drivers 

separately with computational and network methods. 

The Venn diagram in Fig. 9 illustrates that CinfuMax 

identified 61.2% (123) of the genes identified by other 

network-based methods, along with 67 unique genes not 

predicted by any of the network-based methods. 

Moreover, in comparison to computational methods, 

CinfuMax identified 79 unique genes that were not 

predicted by any previous computational methods. 

 

 

  
Fig. 7: Performance measures of CinfuMax and other pervious 

methods proposed in colon cancer. 

 

 
Fig. 8: The Venn diagram for predicted CDGs using CinfuMax 

and other computational and network-based methods in colon 
cancer. 

 
Fig. 9: The Venn diagram for predicted CDGs using CinfuMax 
and (A). Other network-based methods, (B) the union of all 

other computational methods in colon cancer. 
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C. Lung Cancer Network 

F-measure values for CinfuMax and other 

computational and network-based methods in Lung 

cancer are shown in Fig. 10 . It is evident that CinfuMax 

surpasses all computational methods in terms of F-

measure and has the highest value among network 

methods after iMaxDriver-W. Although its F-measure 

score is 0.03 less than that of the iMaxDriver-W method, 

it outperforms significantly in terms of the number of 

predicted drivers. As depicted in Fig. 10, CinfuMax has 

identified 182 drivers, representing the highest number of 

drivers compared to the previous computational and 

network-based methods. 
 

  
Fig. 10: Performance measures of CinfuMax and other pervious 

methods proposed in lung cancer. 
 

CinfuMax and other previous methods were compared 

based on the overlap in predicting driver genes. As shown 

in Fig. 11, CinfuMax was able to identify 149 genes 

identified by other methods. In addition, CinfuMax 

identified 33 unique genes that were not identified by any 

of the previous computational and network-based 

methods. Furthermore, we assessed the proposed 

method's overlap in predicted drivers separately with 

computational and network methods.  

As illustrated in the Venn diagram in Fig. 12, CinfuMax 

identified 58.44% (135) of genes predicted by other 

network-based methods and 47 unique genes not 

predicted by any network-based methods. Additionally, 

compared to computational methods, CinfuMax 

identified 130 unique genes not predicted by any previous 

computational methods. In addition to comparing the 

proposed method with other previous methods in terms 

of performance and number of predicted drivers, we also 

compared it with two previous methods based on linear 

threshold.  

The ROC diagram for the CinfuMax method, which is 

based on the independent cascade model, and the two 

methods iMaxDriver-N and iMaxDriver-W, which are 

based on the linear threshold model, are depicted in Fig. 

13.  

The results show that in all three cancer networks, the 

ROC diagrams are almost the same, but the independent 

cascade model is significantly better than the linear 

threshold-based methods in terms of the number of 

predicted drivers as well as the number of unique drivers 

(Fig. 14). 

 
Fig. 11: The Venn diagram for predicted CDGs using CinfuMax 
and other computational and network-based methods in lung 

cancer. 

 

 
Fig. 12: The Venn diagram for predicted CDGs using CinfuMax 

and (A). Other network-based methods, (B) the union of all 
other computational methods in lung cancer. 

 

  

 
 

Fig. 13: The ROC diagram for the CinfuMax method and other 
LT based methods. 
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Fig. 14: Compare of the driver genes predicted and unique 
drivers predicted by CinfuMax and pervious LT based method.  

 

Many researchers working in fields such as 

bioinformatics and biomathematics at some point face 

the well-known question of whether results need to be 

empirically confirmed [32]. Within the field of 

computational biology, ‘experimental validation’ refers to 

the process of replicating a scientific discovery obtained 

through computational methods by conducting 

investigations that do not heavily depend on 

computational resources. This procedure entails 

gathering additional evidence to bolster the conclusions 

drawn from the computational study. The integration of 

orthogonal sets of computational and experimental 

methods in a scientific study can enhance confidence in 

its results. However, the term ‘experimental validation’ 

may pose a hindrance to this collaborative effort [33]. As 

similar articles in this field also lack laboratory and 

experimental confirmation [5], [18], [34]-[36]. 

Prediction of Genes with The Fastest Speed of 
Influence 

In addition to evaluating the proposed model in terms 

of the number of diagnostic drivers and comparing its 

performance, we also identified the driver genes with the 

highest influence speed compared to other drivers. 

Influence speed indicates which driver has achieved the 

highest spread rate earlier in the independent cascade 

model. This aspect has not yet been explored in diffusion-

based methods for identifying cancer driver genes. 

Identifying driver genes with higher influence speed can 

be crucial for molecular therapy and targeted drug 

prescribing. The distribution diagram for iterations in all 

three tumor tissues is shown in Fig. 15. Nodes with low 

influence rates were excluded for better visualization. The 

diagram represents iteration values on the horizontal axis 

and influence values on the vertical axis, illustrating the 

nodes separately by iteration. 

 

   
(a) (b) 

 
(c) 

Fig. 15:  Distribution diagrams related to the influence speed of 
each gene according to the algorithm iteration in CinfuMax 

algorithm. (a) colon cancer, (b) breast cancer, (c) lung cancer. 
 

The cancer driver genes predicted by the CinfuMax 

method were classified into two categories based on their 

influence speed rates.  

The first category includes genes classified as drivers 

by the proposed algorithm, which achieve their diffusion 

score faster than other drivers but do not have the highest 

diffusion score. These genes are cancer drivers and infect 

their target genes faster than other drivers, but their 

infection is less than that of genes with highest diffusion 

scores. These genes can be therapeutically significant in 

the early stages of the disease and in preventing the 

spread of cancer.  

The list of these genes in the three cancerous tissues 

of the breast, lung, and colon is provided in Table 3.  For 

instance, in lung cancer, 18 genes exhibit the highest 

influence speed in the network, with 17 of these genes 

not identified by any previous computational or network-

based methods. In colon cancer, 15 genes have the 

highest penetration rate in the network, with 8 of these 

genes not identified as drivers by any previous 

computational or network-based methods. In breast 

cancer, for example, the AFF1 and ZNF384 genes, 

identified only by the CinfuMax method, are among the 

driver genes with the highest influence speed. The role of 

AFF1 in cancer metastasis has been confirmed by [32]. We 

have also depicted the EGO networks corresponding to 
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the two unique genes with the highest influence speed in 

breast cancer in Fig. 16 and Fig. 17. An ego network 

represents a set of regulatory relations from the 

perspective of a focal gene. As shown, the AFF1 driver 

gene, with the highest propagation rate, initiates 

propagation through only three genes The AFF1 Ego 

network comprises 1066 nodes and 85905 edges at a 

depth of 3, demonstrating that the spread speed of 

abnormality by a gene in the network depends on the 

structure and general position of that gene in the 

regulator network, not just its local connections. A similar 

result is observed for another gene with high influence 

speed in breast cancer, NF384. 

The second category comprises driver genes with the 

fastest influence speed and the highest diffusion score 

(top 5%).  

These genes are after the first category genes in terms 

of influence speed, but they have the most infection in the 

network.  

The list of cancer driver genes belonging to the second 

category is provided in Table 4. These genes can be given 

special attention in order to prevent metastasis and treat 

cancer.  

Some of these driver genes have not been identified in 

previous methods and have only been recognized by the 

proposed method. Information regarding these driver 

genes in the three cancer networks studied is presented 

in Table 5. 

 
Fig. 16: AFF1 ego network up to 1 depth (13 nodes, 28 edges 
and Out-degree 5). This network up to depth 3 includes 1066 

nodes and 85905 edges). 
 

 
Fig. 17: ZNF384 ego network up to 1 depth (23 nodes, 91 edges 

and Out-degree 4) This network up to depth 3 includes 
10852nodes and 86021edges. 

 
Table 3: List and number of driver genes with the highest influence speed identified by CinfuMax 

 

Tumor 
tissue 

# CDGs 
# Unique CDGs 
(Compare with 
other methods) 

# Unique CDGs 
(Compare with 
network-based 

methods) 

# Unique CDGs 
(Compare with 
computational 

methods) 

Name of unique CDGs 

Colon 15 8 13 8 
SRSF3, FUBP1, RAD51B, 
AFF4, HOXA13, PLAG1, 

TAL2, THRAP3 

Breast 15 5 11 3 
HOXC11, ELF4, RAD51B, 

FUBP1, TNFAIP3 

 
Lung 

 
18 

 
17 

 
17 

 
18 

ERCC3, RAD51B, TMF1, HCLS1, HAX1, 
HMG20B, 

PDLIM4, ZFP36, FOXP3, SNAI1, 
HMGN2, CNOT8, 

GTF3C4, ARNTL2, CTDSPL, BAZ1B, 
DOT1L, 

 

 
 

 

 

 

 

 

 

 

 

Table 4: List of genes with the highest diffusion speed and highest influence score identified by CinfuMax 
 

Tumor 
tissue 

# CDGs 

# Unique CDGs 

(Compare with 
all other 

methods) 

# Unique CDGs 

(Compare with 
network-based 

methods) 

# Unique CDGs 

(Compare with 
computational methods) 

Name of 
unique 
CDGs 

Colon 38 0 1 12 SMARCB1 

Lung 35 0 0 31 - 

Breast 42 1 1 17 TAL1 
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Table 5: Name of genes with the highest diffusion speed and highest influence score identified by CinfuMax 
 

Tumor tissue Cancer driver genes 

Breast 
ESR1, FOXO4, FLI1, STAT3, NCOA1, TP53, DAXX, NCOR2, TAL1, RUNX1T1, ERG, KLF6, CTCF, LEF1, NCOR1, 

RARA, GATA1, MAX, MYOD1, RB1, FOXO1, TCF12, ARNT, HMGA1, MYB, SMAD3, NFE2L2, BCL6, WT1, 
CREB1, JUN, NFKB2, HMGA2, PML, EP300, SMAD4, ATF1, BRCA1, STAT6, SMARCA4, PAX5, AR 

Colon 
FOXO1, ABL1, CREB1, SMAD2, SMAD3, SMAD4, MITF, RB1, CTNNB1, ATF1, JUN, REL, PATZ1, CREBBP, 
ZBTB16, MAF, MYOD1, BRCA1, ESR1, TP53, DDX5, TCF7L2, CTCF, MAX, HNF1A, GATA2, STAT5B, CUX1, 

ARNT, NCOR2, SMARCB1, LMO2, CDX2, PAX5, STAT3, EP300, PPARG, CEBPA 

Lung 

EP300, CEBPA, REL, CREB1, HNF1A, FOXO4, PPARG, MYOD1, ABL1, GATA2, JUN, MYB, FOXO1, CREBBP, 
BCOR, GATA3, STAT5B, RB1, STAT3, CTCF, AR,  NFKB2, PML, SMAD2, ZBTB16, RARA, ARNT, LMO2, BCL6, 

NCOR2, TCF7L2, MYC, SMARCA4, ATF1, MAX, LEF1, GATA1, TP53, CUX1, TAL1, BRCA1, NCOA2, 
SMARCB1, SMAD4, STAT6, TRRAP, SMAD3, ESR1, CTNNB1 

 

Conclusion and Future Work  

A method based on influence maximization was 

introduced to identify cancer driver genes in human gene 

regulatory networks, utilizing the independent cascade 

diffusion model. The independent cascade is one of the 

popular models in the problem of maximizing influence. 

This method is also able to classify the identified driver 

genes based on the influence speed. In this method, 

regulatory networks associated with breast, lung, and 

colon cancers are initially constructed using gene 

expression data and regulatory interactions. 

Subsequently, the modified independent cascade 

algorithm is independently executed on each cancer 

network. Genes are then sorted in descending order of 

influence scores. Based on a predefined threshold value, 

the genes are classified into two categories: driver and 

normal. Moreover, cancer drivers are further categorized 

into two classes based on their influence speed. The 

results showed that the CinfuMax has better performance 

in terms of F-measure and number of predicted drivers 

than other computational and network-based methods. 

Additionally, CinfuMax successfully identifies a 

considerable number of unique drivers that were not 

previously predicted by other computational and 

network-based methods.  Therefore, it can be utilized as 

a complementary tool alongside other computational 

approaches. The proposed method exhibits superior 

performance compared to iMaxDriver methods, which 

are based on the linear threshold model. This result shows 

the use of independent cascade model is more 

appropriate than linear threshold model in the gene 

regulatory network to identify driver genes. One of the 

limitations of influence maximization models is the 

computational time and the selection of the initial active 

set (seed). To address this, an effective technique was 

proposed in this study to reduce execution times. The 

running time of the proposed algorithm was 35 minutes 

on a computer equipped with an Intel CORE i7 

microprocessor and 8 GB of RAM, which is reasonable for 

influence maximization algorithms. However, future 

research could focus on providing methods to further 

reduce the execution time of the algorithm and ensuring 

the proper selection of seed nodes. Furthermore, it is 

noted that driver genes have not been previously 

classified based on influence speed in diffusion-based 

methods. Prioritizing genes based on infection and 

influence speed can be crucial for therapeutic purposes 

and the development of targeted drugs. 
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IM Influence Maximization 

IC Independent Cascade 

LT Linear Threshold 
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TF Transcription Factor 

TRN Transcriptional Regulatory Network 

DNA Deoxyribonucleic Acid 

RNA Ribonucleic acid 

TP True Positive 

FP False Positive 

FN False Negative 

TN True Negative 
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