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Background and Objectives: In recent years, various metaheuristic algorithms 
have gained popularity due to their effectiveness in solving complex optimization 
problems across diverse domains. These algorithms are now being utilized for an 
ever-increasing number of real-world applications. However, two important 
factors that significantly impact the performance of metaheuristic algorithms are 
understanding their behavior and fine-tuning their parameters. Deep 
understanding of an algorithm behavior assists in improving efficiency, while 
meticulous parameter calibration enhances optimization capability. 
Methods: In this study, a response surface methodology-based approach is 
proposed to analyze the behavior of optimization algorithms. This approach 
constructs a comprehensive model to determine parameter importance and 
interaction effects. Although applied to the Gravitational Search Algorithm, this 
methodology can serve as a generally applicable strategy to gain insights into any 
metaheuristic algorithm's functionality through quantitative and visual analysis. 
Results: Evaluation using 23 test functions exhibited that the technique identifies 
ideal parameter values and their comparative importance and interplays, enabling 
superior comprehension. 
Conclusion: The proposed framework utilizes informative modeling and multi-
faceted analysis to elucidate algorithm mechanics for more targeted calibration, 
thereby enhancing optimization performance. 
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Introduction 
Metaheuristic approaches help in solving optimization 

problems; therefore, optimizing their performance is 

crucial, given their extensive use in a wide array of 

scientific and engineering problems. Different variants of 

these approaches have been proposed in recent years [1]-

[4]; however, the primary challenge persists in ensuring 

the efficiency and stability of these algorithms. 
 The performance of these algorithms is heavily 

dependent on finding the right set of parameter values. 

However, navigating the high-dimensional space of 

possible parameter combinations can be computationally 

prohibitive. Parameters can be tuned using two different 

strategies: offline parameter initialization and online 

parameter tuning. In offline methods, parameters are 

initialized and fixed before the execution of the algorithm 

whereas online strategies dynamically and adaptively 

tune parameters during running time [5], [6]. On the 

other hand, online approaches are very complicated and 

time consuming, also their usage is not possible in all 

scenarios.  

A simple method in offline category is the Design of 
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Experiments (DOE) method that provides a systematic 

framework for analyzing parameter effects and 

interactions. It can be very useful for gaining deeper 

insight into optimization algorithms and improving their 

performance. DOE establishes a structured approach for 

determining the relative importance of parameters, 

unveiling complex interactions, and finding optimal 

values. By strategically selecting experimental designs, 

informative models can be constructed to clarify the 

behavior of algorithms with minimal runs [7]. 

Two recently proposed methods [8], [9] employed a 

two-stage algorithm based on DOE to optimize the 

objective function and maximize the efficiency of the 

problem. Gunawan and Lau [10] presented an 

experimental sequential approach to determine the 

important parameters and fine-tune their values in two 

stages. The proposed framework relies on design of 

experiments (DOE) methods, where it employs factorial 

design in the first phase to screen parameter effects and 

extract key parameters. In second phase, it estimates the 

range of these parameters using the surface coverage 

method. 

Response surface methodology (RSM) have gained 

significant traction across various scientific fields in recent 

times. [11] applies multi-objective heuristic optimization 

to generate ensemble classifiers and then utilizes factorial 

design and response surface methodology to study 

interactions between algorithm factors and performance, 

characterizing ensemble reliability. Actually, this paper 

has focused on the stability analysis of the multi-objective 

optimization-based classifier. The authors in present [12] 

an integrated approach combining Taguchi experimental 

design, response surface modeling, and multi-objective 

optimization to balance energy and time in machining. 

Key parameters are identified then surfaces constructed 

to characterize interactions, enabling navigation of 

tradeoffs between efficiency and rate through Pareto-

based techniques. 

GSA (Gravitational Search Algorithm) [13],  inspired by 

the Newtonian gravity and the laws of motion, stands out 

as a powerful metaheuristic algorithm. This algorithm has 

shown satisfactory results in solving not only benchmark 

optimization problems but also in tackling diverse real-

world problems. While some variants of this algorithm 

have been proposed in single objective, binary, and 

multimodal domains, there remains considerable 

potential for future exploration. 

Particularly, the fine-tuning of the GSA algorithm has 

not been explored through offline strategies until our 

previous research [14]. Previously, initial parameter 

values were chosen based on the recognition of the 

problem space and trial-and-error mechanisms. In the 

mentioned study [14], a simple and systematic approach 

is introduced to fine-tune the parameters of the GSA 

algorithm using Taguchi method, which is one of existing 

DOE methods [15], [16]. To the best of our knowledge, 

there is no publication addressing the parameters’ 

importance and the effects of their interactions. 

Therefore, contributions and achievements of this 

research are as follows: 

1- Determining the importance and effect of each 

metaheuristic algorithms’ parameter on the 

outcome using a systematic and analytical 

approach. 

2- Analyzing the interaction effects between 

parameters. 
3- Fine-tuning the parameters as a secondary 

objective. 

Examining the behavior of the GSA can be generalized 

through testing across various problems. To achieve this, 

23 benchmark test functions were carefully selected, and 

a comprehensive set of quantitative and visual analyses 

were conducted. The insights gained from these analyses 

offer valuable guidance for researchers aiming to 

enhance the performance of the GSA algorithm. 

The remaining sections of this paper are structured as 

follows: Section 2 introduces basic concepts, including 

GSA and RSM (Response Surface Methodology). Section 3 

describes the process of the proposed approach. A 

comprehensive analysis of 23 test functions and a 

detailed description of GSA's behavior are presented in 

section 4. The final section provides conclusions and 

outlines future directions for research. 

Related Work 

Previous works can be categorized into two groups. 

The first category aims at fine-tuning the parameters, 

while the second category focuses on understanding the 

parameters and investigating their effects.  

In the first category, parameters have been tuned 

using Design of Experiments (DOE) methods [17]-[20].  

Adenso-Diaz and Laguna [21] have presented a 

framework called CALIBRA, which uses Taguchi method 

and a local search procedure to find appropriate 

parameter settings. However, this approach is limited to 

handling only five parameters and focuses solely on the 

main effects, neglecting interaction effects between 

them. Hutter et al. [22] employed Sequential Parameter 

Optimization (SPO) algorithm and DOE techniques to 

construct a model for optimization problems, exploring 

the problem space in order to tune the parameters. 

Akbaripour and Masehian [23] introduced an approach to 

find the best initial values for optimization algorithms 

using DOE, Signal to Noise (S/N) ratio, Shannon entropy, 

and VIKRO methods. This paper considered both the 

quality of the solution and the running time of algorithm. 

Gunawan and Lau [10] proposed a two phase 

sequential experimental method to determine important 

parameters and fine-tune them. They used a framework 

based on DoE, employing the Factorial method to assess 
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the parameters’ importance and extract effective 

parameters in the first step. In the second step, they used 

Response Surface Model (RSM) [19] to estimate the 

promising initial value range for the important 

parameters. In a recent work by Pereira et al. [24], the 

Lichtenberg algorithm, a metaheuristic algorithm, was 

tuned and accelerated using RSM methodology and chaos 

theory. Comparisons on benchmark functions revealed 

that their proposed chaotic Lichtenberg algorithm 

achieved superior accuracy, lower cost, and stability 

compared to genetic algorithms and other bio-inspired 

metaheuristics. This demonstrates that carefully tuning 

parameters and integrating acceleration techniques can 

substantially enhance metaheuristic performance. 

The limited research in the second category has 

specifically explored the effects of parameters using 

statistical methods. Some of these studies, as a secondary 

purpose, have delved into the effects of one or two 

parameters. For example, Kapoor et al. [25] has evaluated 

the effect of the mutation operator of the genetic 

algorithm (GA) and its importance on both simple and 

complicated problems. Haines et al. [26], proposed an 

approach to determine the relative importance of GA 

parameters using Fractional factorial as a DOE method. 

After running the experiments, the optimal (best) 

parameter values are provided, and the statistical 

significance for each parameter is calculated to determine 

and rank its importance. Arenas et al. [27] has selected 

four parameters of the genetic considered different 

values for them, and designed several experiments 

covering all combinations of parameter values. The 

proposed approach did not use any DOE methods, making 

it less suitable, especially when the number of parameters 

and their values are increased. This paper utilized analysis 

of variance table (ANOVA) to determine the importance 

of the selected parameters.  

Background 

A.  Gravitational Search Algorithm (GSA) 

One of the most fundamental laws in physics is 

Newton's Law of Gravity, which states: ‘‘every particle in 

the universe attracts every other particle with a force that 

is directly proportional to the product of their masses and 

inversely proportional to the square of the distance 

between them.’’. Based on this law, the Gravitational 

Search Algorithm (GSA), as a meta-heuristic optimization 

algorithm, is formulated [13]. This algorithm is applicable 

to many optimization problems [28]-[31], and the 

obtained results confirm its performance.  
Agents are considered as objects, and their fitness is 

measured based on their masses. According to the force 

of gravity, all agents attract each other, resulting in a 

global movement of all objects towards agents with 

heavier masses. The heavier masses signify the good 

solutions to the problem. 

The GSA algorithm can be described as follows: 

Consider a system with 𝑁 masses (agents), in which the 

position of the 
thi  mass is defined as follows: 

1
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i i i i
X x x x  for i , ,...,N              (1) 

where 𝑥𝑖
𝑑 presents the position of ith agent in the dth 

dimension where 𝑛 is dimension of the search space. It's 

important to note that the positions of the masses 

correspond to the solutions of the problem. The mass of 

each agent is calculated after computing the current 

fitness of the population as follows:  
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where 𝑓𝑖𝑡
𝑖
(𝑡) represents the fitness value of the agent 𝑖 

in tth iteration and 𝑤𝑜𝑟𝑠𝑡(𝑡) and 𝑏𝑒𝑠𝑡(𝑡) are defined as 

follows (for a maximization problem): 
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At a specific time "𝑡", the force acting on mass " 𝑖 " 

from mass " 𝑗 " is defined as follows: 
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To calculate the distance between ith and jth agent, 

“Rpower” plays an important role, which was set to one 

in the original version. To compute the acceleration of an 

agent, the total forces from a set of heavier masses that 

apply to it should be considered based on law of gravity 

(13), followed by the calculation of the agent’s 

acceleration using the law of motion (14).  
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Afterward, the next velocity of an agent is calculated 

as a fraction of its current velocity added to its 

acceleration (15). Then, its next position could be 

calculated using (16). 
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where 𝑟𝑎𝑛𝑑𝑖 and 𝑟𝑎𝑛𝑑𝑗 are two uniformly distributed 

random numbers in the interval [0, 1], and 𝑒 is a small 

constant. 𝐺(𝑡) is the gravitational constant at time 𝑡, 

which is a decreasing function of time; it will take an initial 

value 𝐺0, and it will be reduced over time. “kbest” is a 

function of time, initialized with 𝐾0 at the beginning and 

is decreased with time, and 𝑅𝑖𝑗(𝑡) is the Euclidean 

distance between two agents 𝑖 and 𝑗: 

     
2
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(11) 

Fig. 1 shows the steps of GSA. 

 

 

B.  Identifying GSA Parameters  
The gravitational constant plays a crucial role in 

maintaining an appropriate balance between exploration 

and exploitation. Large values of G represent high power 

attraction between the masses that causes more 

movement and complexity. Over time, G should be 

decreased in order to find the optima around a good 

solution. Therefore, the value of G significantly influences 

the algorithm's performance and should be carefully 

controlled.  According to (12), G is dependent on G0 and 

alpha. 

 
(12) 

Kbest is used to control the active agents. In the early 

iterations, almost all agents attract others to prevent GSA 

from getting trapped in local optima. This behavior 

guarantees the exploration in the search process of GSA. 

In the next iterations, the value of Kbest should be 

decreased to emphasize on exploitation instead of 

exploration and improve the convergence rate. It is 

noteworthy that in the final iteration, only one agent 

attracts the others. 
As mentioned in our previous research [14], a large 

value for Kbest decreases the convergence rate and 

provides the algorithm with a chance to explore the 

search space more thoroughly, preventing it from getting 

trapped in local optima. Nevertheless, with an increase in 

Kbest, the computational time and complexity also 

increase. Therefore, (10) is designed to control the value 

of Kbest during the progress of the algorithm. 

𝐾𝑏𝑒𝑠𝑡 = 𝛽 ∗ (
(1 − 𝑝)

𝑇
∗ 𝑡 + 1), (13) 

where t is the current iteration, T is the maximum number 

of iterations, and p is the fraction of total agents in the 

last iteration. In this equation 0.2<β≤1, whereas in the 

original version of GSA the value of β is equal to one. 

When the value of β is 0.5, only half of the agents that are 

applied in the original GSA will be considered. This 

reduction decreases the complexity of GSA. Excessively 

low beta values reduced randomness and exploration 

causing premature convergence to poor local optima. 

Excessively high values introduced randomness that 

hindered convergence, with searches failing to refine and 

exploit detected promising areas. An intermediate 

balanced beta enables sufficient diversification to escape 

local traps yet allows adequate intensification when 

promising regions are uncovered to drive solutions 

towards global optimality. 

C.  Response Surface Methodology (RSM) 
In experiments and simulations, many influential 

factors exist, and their influences should be examined. 

Moreover, each factor can be initialized with a different 

variety of values. Therefore, deliberate factor 

investigation and initialization is very expensive and time 

consuming. However, it becomes even more complex and 

challenging when the number of factors and their possible 

values is increase. In recent years, some automated 

approaches have been proposed, such as Design of 

Experiments (DOE), which is an approach for 

systematizing the process of designing experiments [16]. 
To Design experiments using DOE, three elements 

should be addressed: the factors to be tested, the levels 

of those factors, and the plan of the experiments. Factors 

represent the parameters of the problem, and levels are 

different values for them. The plan of the experiments is 

a  series  of  tests or runs, selected in a way that the effect 

of different levels of each factor on the response will be 

T

t

eGtG
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Evaluate the fitness for each agent 

Update  ,   and  of  the 

population. 

No 

Generate initial population 

Calculate   and for each agent 

Return best solution 

Yes 

Meeting end 
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Update velocity and position 

Fig.  1:  Flowchart of GSA. 
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investigated [19]. 

Factorial design [16] and Taguchi design [32] are two 

well-known approaches of DOE. The factorial design 

method tests all possible factor-level combinations, but it 

becomes inefficient in terms of time and cost when many 

factors and levels exist in the problem. On the other hand, 

the Taguchi method designs a small number of 

experiments, which is not proficient in analyzing the 

factors’ effect. 

Response Surface Methodology (RSM) is a model-

based approach of DOE. RSM constructs a surface model 

from the designed experiments to extrapolate previously-

unseen regions of the factor space and analyze the 

relations between input factors and responses [19]. Fig. 2 

illustrates the process of RSM. 

Fig. 2: The RSM method. 

Some important advantages of RSM supporting its 

usage are: 

1- Simplifying the problem by providing the surface 

model. 

2- Determining the sensitivity of each factor. 

3- Analyzing continuous variables. 

Despite these advantages, RSM has a prediction error, 

as depicted in Fig. 3. 
 

 

Fig. 3: Original response vs. RSM optimum response. 

Two designs based on RSM are presented: central 

composite design (CCD) and Box-Behnken design (BBD). 

CCD is routable and popular, providing three to five levels 

for each factor. In BBD, factors can have only three levels 

and the provided model is not always routable. After 

designing and running the experiments, all the results are 

used to construct the statistical model.  

Fig. 4 shows the designed experiments by CCD. There 

are three factors, x1, x2 and x3, each of them can be 

initiated with 5 levels, 1, -1, 0, α, -α. CCD includes three 

groups of experiments: 

1- Factorial points: all levels of factors are 1 or -1. 

2- Axial points: the value of one factor is α or -α, and 

other factors are initiated whit 0. 

3- Central points: the values of all factors are zero. 

Additional center points are considered to construct 

an appropriate surface model. 

 
Fig. 4: Designed experiments by CCD. 

The current level’s values are called coded values, 

which can be replaced with real values of factors in the 

problem space. Alpha is distance of each axial point from 

the center in a central composite design.  

RSM is supported by popular statistical tools such as 

SAS and Minitab. These tools analyze the results and 

provide plots that are very proficient in determining the 

impact of each factor on response. 

Proposed Method 

This section describes the proposed approach, 

employing Design of Experiments (DOE) to evaluate the 

parameters’ importance of GSA and understand their 

interaction effects. The objective is to comprehend the 

behavior of GSA. 

Initially, Key parameters of GSA (as factors) and 

different ranges of their values (as levels) are identified. 

The parameters we chose to focus on - population size 

(N), power of the gravitational constant (Rpower), alpha 

(α), initial gravitational constant (G0), and beta (β) - 

directly control the major components of how GSA 

operates. More specifically: 

- Population size (N) determines the number of agent 

solutions in each iteration of the algorithm. This impacts 

the exploration of the search space, with larger N 

enabling sampling from more diverse areas. 

- Rpower controls the rate of decay of the gravitational 

constant over iterations. This decay rate affects the 

exploration-exploitation tradeoff, with higher Rpower 

providing more thorough exploration initially.  

- Alpha (α) controls the sharing of information 

between agents, with higher alpha meaning that poorer 

solutions receive stronger gravitational forces from better 

solutions. This guides the search direction. 
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- G0 sets the starting gravitational constant, 

determining the initial search scope and exploration 

range. Larger G0 leads to wider exploration early on. 

- Beta (β) controls the stochastic contribution for 

moving agents. This introduces randomness to avoid local 

optima traps.  

In this way, N, Rpower, α, G0, and β together 

determine the exploration-exploitation tradeoff, sharing 

of information, escape from local optima, and other core 

components of GSA operation. We selected these 

parameters specifically because they offer 

comprehensive control over the search behavior, 

convergence, and solution quality obtained by the 

algorithm. Adjusting these parameters provides insight 

into improving GSA's usage across problem domains. 

 Subsequently, experiments are designed. The next 

step involves the selection of an optimization problem 

and conducting experiments to generate results. The final 

step includes constructing a model to analyze the 

parameters’ importance and their interactions. All of the 

abovementioned steps are thoroughly described in the 

following subsections.  
A comprehensive analysis of an algorithm’s behavior is 

only possible when its performance is observed across a 

diverse set of optimization problems. To achieve this goal, 

23 standard functions were meticulously chosen, and the 

described proposed method was applied to each. The 

following section provides a summary of GSA's behavior 

based on the comprehensive analysis conducted. 

A.  Factor Identification and Level Selection 

Studying GSA, independent parameters are extracted 

and listed in Table 1. Along parameter selection, 

determining their range value is important. Proper 

identification of parameter ranges leads to a more 

comprehensive statistical model and, consequently, 

better results. Each parameter’s value range is chosen 

and presented in Table 1 based to a literature review, 

algorithm’s behavior, and the role of each parameter. 

Hereafter, parameters and their value ranges will be 

referred to as Factor and Level, respectively, following the 

Design of Experiments (DoE) literature. 

 
Table 1: Selected Factors and corresponding Levels for GSA 
parameters 
 

Factor name 
Level 

1 
Level 

2 
Level 

3 
Level 

4 
Level 

5 

N (Population Size) 20 30 40 50 60 

Rpower 0.25 0.5 0.75 1 1.25 

α (Alpha) 10 20 30 40 50 

G0 10 40 70 100 130 

β (Beta) 0.2 0.4 0.6 0.8 1 

B.  Design of Experiments Using RSM  

RSM optimization navigates to optimal areas rapidly 

through sequential experimentation leveraging model 

predictions. This facilitates optimization with reduced 

sampling requirements versus. Additionally, RSM 

visualizations unlock intuitive comprehension of 

performance drivers, guiding reasoning about parameter 

tuning. The interpolated response surfaces expose 

sensitivity not discernible from individual DOE samples. In 

summary, RSM facilitates optimized enhancement of GSA 

through revealing performance interactions plus 

efficiently focusing sampling to navigate towards 

improved solutions. The combination of modeling, 

visualization, and sequential experimentation in RSM 

surpasses fixed sampling techniques like DOE by enabling 

more insightful navigation of high-dimensional spaces.  

Designing appropriate experiments is crucial for 

creating an accurate analytical model. Considering the 

mentioned advantages of Response Surface Methodology 

(RSM) and the objectives of this research, RSM has been 

chosen to design experiments. Since Central Composite 

Design (CCD) offers five levels for each factor, it can 

explore more situations compared to Box-Behnken 

Design (BBD). Therefore, CCD design has been selected. 

Configuring CCD parameters, Alpha is set to 2; 

therefore, five levels’ values will be adjusted to -2, -1, 0, 

1, and 2. In this situation, 52 experiments are designed. 

Having more replicas for each experiment in CCD 

enhances the model's accuracy, leading to better analysis. 

Considering the stochastic nature of the gravitational 

algorithm, 15 replicas for each experiment are taken into 

account. 

Considering the number of experiments and replicas, a 

total of 780 experiments are designed, which are wisely 

selected by the model. All Steps were conducted in 

Minitab and Table 2 represents the first ten of these 

designed experiments.  
 

Table 2: Initial ten experiments designed by RSM 
 

EXP 
number 

N Rpower A G0 B 

1 30 0.75 40 100 0.8 

2 40 1 30 70 0.2 

3 40 1.5 30 70 0.6 

4 40 1 30 70 0.6 

5 50 0.75 40 100 0.4 

6 50 1.25 20 100 0.8 

7 40 1 30 70 0.6 

8 30 1.25 40 40 0.4 

9 40 1 30 10 0.6 

10 40 1 30 70 0.6 
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C.  Selection of Optimization Problems and Experiment 
Execution  

In the initial step, an optimization problem needs to be 

chosen. In this paper, the Ackley function is chosen from 

benchmark functions outlined in Appendix 1 of [13]. 

Denoted as F10, the Ackley function represents one of the 

multimodal functions and is illustrated in Fig. 5. 

 
Fig. 5: The Ackley Function plot. 

In the next step, parameters of GSA need to be 

initialized according to Table 2. In addition, the number of 

iterations of GSA will be set to 500.  

During the execution phase, all 780 designed 

experiments are executed in Matlab, and the obtained 

results are subsequently imported back into Minitab.  

D.  Experimental Analysis of the Selected Function 

This section outlines the study and analysis of the 

parameters’ effect on the Ackley function.  

    I)  Optimal Parameter Setting  

A straightforward analysis involves identifying the 

optimal values for the parameters, a task facilitated by 

examining the results of experiments. From the outcomes 

of the 780 experiments conducted on the Ackley function, 

it was determined that experiment no. 141 yielded the 

best (optimal) solution. The parameter values for this 

particular experiment are presented in Table 3. The initial 

outcome from applying the proposed method involves 

fine-tuning the gravitational search algorithm's 

parameters, resulting in improved performance 

responses on the test functions. 
 

Table 3: Response Surface Methodology (RSM) results for the 
Ackley function 
 

  Tuned GSA 
with RSM 

GSA[13] 

Result  4.44×10-15 6.9×10-6 
Parameters Population size 50 50 

Rpower 0.75 1 
Alpha 40 20 
G0 100 100 
Beta 0.8 - 

Experiment 
number 

 141 - 

    II)  Parameter Importance Analysis 

In this paper, a two-way ANOVA is employed to 

determine the statistical significance of each main effect 

and interaction effect. The p-value serves as an indicator 

of whether a factor has a significant impact on the 

response. If the p-value is less than 0.001, the factor is 

considered effective; otherwise, it is deemed not 

effective. 

Assessing the effect size of a significant factor is of 

great importance. In statistics, an effect size serves as a 

quantitative measure of the strength of a phenomenon 

[33]. Relative Importance and Absolute Importance 

measures are employed for this purpose [26]. Absolute 

importance of a parameter quantifies the difference 

between the highest and lowest responses achieved 

through the tuning of that parameter.  

Initially, the average of responses ( ijy ) resulting from 

adjusting xi in level Li is calculated according to (14). For 
problem modeling, assume set S consists of all 
combinations of factors based on the RSM model; 

therefore,  |ij i jS x s x l   . 

ij
dd s

ij

ij

y
y

s





 

(14) 

Absolute Importance and Relative Importance are 

calculated based on (15) and (16), respectively. 

   max mini ij ijE y y 
 

                                  (15) 

100. /i iRE E y
 

                                  (16) 

In these equations, y  is calculated according to (17): 

1

n

dd
y

y
n




 

(17) 

Finally, the Absolute Importance, Relative Importance, 

and p-values of the parameters of the Ackley function are 

presented in Table 4. 

Table 4: Absolute Importance, Relative Importance, and p-
values of the Ackley function 

Factor P-value iE  iRE  rate 

population 

size 
0.000 3.29 139.35 5 

𝑅𝑝𝑜𝑤𝑒𝑟 0.000 14.01 592.97 1 

𝛼 0.000 4.34 183.69 4 

𝐺0 0.000 11.08 469.17 2 

𝛽 0.000 3.91 165.70 3 
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In Table 4, the P-value column reveals that all five 

factors significantly impact the GSA results. A comparison 

between Ei and REi makes it clear that Rpower is the most 

effective factor, with G0 i closely following as the second 

most impactful factor with a slight difference. This 

analysis, applied to problems similar to the Ackley 

function, helps identify the focal factors that contribute 

to more effective results.  

In addition to these findings, Fig. 6 illustrates the main 

effect graph of the Ackley function generated in Minitab. 

The graph reveals the following observations: 

 Effect size of a factor on response. A factor is more 

effective if it induces significant changes in the 

response. For instance, Rpower led to a wide range of 

responses, establishing it as the most influential 

factor, while G0 holds the second position. 

 Identifying the optimal value for each parameter and 

observing the behavior of the function around it. The 

optimal value for Rpower is 0.8, and for G0, it is 100, 

leading to improved responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The direction of parameters changes. Rpower and G0 

exhibit changes in the same direction, resembling a 

quadratic curve. Consequently, determining values for 

these parameters requires more sensitivity. On the 

other hand, Population and alpha follow linear 

detrimental and incremental trends, making tuning 

for these parameters simpler. 

    III)  Analysis of Interaction Effects  

Analyzing the interplay between parameters, referred 

to as the interaction effect, is valuable. When the impact 

of one factor is contingent on the level of another factor, 

an interaction plot can provide insights. This graph 

illustrates possible interactions, which consists of the 

average of responses. The graph is constructed by fixing 

the first parameter and plotting the changes in the second 

parameter against the response. This process is then 

repeated for different levels of the first parameter. The 

interaction plot for each pair of parameters and their 

effects on the response of the Ackley function is 

illustrated in Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: main effect plot for the Ackley function. 

 

Fig. 7: Interaction plot of each parameter’s pair and their effect on the Ackley function. 
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Deviation from parallel mode and the extent of this 

deviation respectively indicate interaction effects and the 

degree of this interaction. The second column of Fig. 7 

indicates that Rpower exhibits interaction effects with all 

other factors, although the magnitude of this interaction 

is not significant. Additionally, the G0 and Beta pair 

(G0*Beta) also shows a slight interaction at their ends. 

The Population factor shows no sign of interaction with 

other factors. 

Moreover, the P-value measure of paired factors is 

utilized to determine whether the interaction effects are 

significant or not. This P-value is extracted from ANOVA, 

confirming the analysis of the aforementioned plot. For 

instance, ANOVA reported the interaction between 

Rpower and Alpha (Rpower*Alpha) is significant at the 

0.001 level. 

Other types of plots, specifically contour and surface 

plots, prove valuable in analyzing parameters' 

interactions. Fig. 8 and Fig. 9 illustrate these plots for the 

Rpower and G0 parameter pair in the context of the 

Ackley function. According to these plots, the worst 

response is obtained when Rpower is set to the maximum 

and G0 is set to the minimum. The best response occurs 

under conditions where Rpower is low and G0 is high. 

 

 
Fig. 8: Counter plot of G0 and Rpower parameter pair for the 

Ackley function. 

 

 
Fig. 9: Surface plot of G0 and Rpower parameter pair for the 

Ackley function. 

Analyzing the Behavior of Gravitational Search 
Algorithm (GSA) 

As previously mentioned, to enhance our 
understanding of the behavior of GSA, we will examine its 
performance across 23 standard test functions detailed in 
Appendix 1 of [13]. These benchmark objective functions 
serve as the performance evaluation suite for analyzing 
the gravitational search algorithm. These specific 
functions were chosen because they were originally 
introduced and utilized by the authors who developed the 
gravitational search algorithm (GSA) in their seminal 
paper [13], [34]. Additionally, these benchmark functions 
offer a diverse set of complex multi-modal landscapes 
possessing varied characteristics. These benchmark 
functions have been widely adopted to characterize, 
validate, and compare the performance of GSA across 
subsequent research. All these functions are selected 
from minimization problems, where n represents the 
number of dimensions, 

optf is the minimum response, and 

S is a subset of n . 
These test functions are categorized into three main 

categories. The first category comprises the unimodal test 
functions (F1 through F7), each featuring a single local and 
global optimum. The second category encompasses high-
dimensional multimodal functions, F8 through F13, while 
the third category consists of low-dimensional 
multimodal functions, F14 through F23. Multimodal 
functions exhibit multiple local optima but only one global 
optimum. As the number of dimensions increases, the 
number of local optima solutions also rises. Successfully 
navigating through local optima to reach the global 
optimum is crucial in these problems.  

The process previously applied to the Ackley function 
will now be extended to all the test functions mentioned.  
Consequently, 23 models will be provided. The impact of 
parameter tuning on the performance of the GSA will be 
investigated in the following subsections. This will be 
followed by a discussion on each parameter's importance, 
main effect, and interaction effect. Finally, a 
summarization will rank the levels of parameters, and the 
optimal value for each factor will be proposed. 

A.  Presentation of Optimal Solutions  

The optimal solution for each function along with the 
appropriate parameter values are presented in Table 5. 
The second column of this table (“GSA”) displays the 
solutions obtained from the original GSA [13], averaged 
over 15 runs. The third column (“Best Tuned GSA with 
RSM”) showcases the best solution among all 780 
experiments designed by RSM, with the experiment 
number identified in the "Expnum" column. The columns 
labeled “Parameters” showcase the values of parameters 
associated with the experiment, reflecting the parameter 
values of the best (optimal) solution. The fourth column 
presents the average of 15 rounds for this experiment, 
allowing for comparability with the results of the original 
GSA. 
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Overall, the performance of the GSA algorithm has 

significantly improved across various functions; for 

instance, F6 has shown noticeable enhancements. As with 

other metaheuristic approaches, the fine-tuning of 

parameters plays a crucial role in optimizing the 

algorithm's performance. 
B.  Parameter Ranking 

In this section, the analysis of results obtained from 23 

standard functions is presented, focusing on determining 

and rating effective parameters based on their effect size 

for each function. Finally, an assessment of the 

importance of each parameter is conducted across all 23 

test functions. 

Effective parameters are identified from the ANOVA 

table and presented in Table 6 which includes five rows 

for main parameters, ten rows for two-way interactions 

between parameters, and 23 columns for test functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters with a p-value less than 0.001 are 

considered to have a significant effect, and these 

significant parameters are highlighted in the table. 

Table 6, reveals that the most effective parameters are 

Rpower and G0 sequentially. Additionally, when 

investigating interaction effects, Rpower plays a 

meaningful role in combination with other parameters, 

while population has an effective role in only a few 

functions. 

Although the importance of parameters is well 

represented in Table 6, a quantitative technique is 

needed for a more thorough analysis. Therefore, Table 7 

rates the importance of parameters based on their 

significant contribution to how many functions. Although 

the importance of parameters is well represented in Table 

6, a quantitative technique is needed for a more thorough 

analysis. 

Table 5: Results for 23 test functions, comparing original GSA with the proposed method 
 

Test 
Function 

GSA 
Best Tuned 
GSA with 

RSM 

Mean 
Tuned GSA 
with RSM 

Expnum 

Parameters 

Population 
size 

Rpower Alpha G0 Beta 

F1 7.3×10-11 1.04E-43 3.21e-24 295 40 0.5 30 70 0.6 

F2 4.03×10-5 2.29E-21 1.08e-12 338 50 0.75 40 40 0.8 

F3 0.16×10+3 21.61158 52.71 634 40 1 10 70 0.6 

F4 3.7×10-6 3.40E-11 7.25e-11 40 50 0.75 20 100 0.8 

F5 25.16 18.93211 24.42 326 20 1 30 70 0.6 

F6 8.3×10-11 0 1.027e-33 5 50 0.75 40 100 0.4 

F7 0.018 0.011099 0.037 707 50 1.25 20 100 0.8 

F8 -2.8×10+3 -4522.85 -2969.49 112 40 1 10 70 0.6 

F9 15.32 3.979836 10.28 646 40 1 30 10 0.6 

F10 6.9×10-6 4.44E-15 1.178e-14 141 50 0.75 40 100 0.8 

F11 0.29 0.021534 1.500 438 50 0.75 20 100 0.8 

F12 0.01 1.57E-32 0.020 754 50 0.75 40 100 0.4 

F13 3.2×10-32 1.64E-89 2.659e-32 437 50 0.75 20 40 0.4 

F14 3.70 0.998004 2.805 368 50 0.75 20 100 0.4 

F15 8.0×10-3 0.000581 0.0021 646 40 1 30 10 0.6 

F16 -1.0316 -1.03163 -1.031 1 30 0.75 40 100 0.8 

F17 0.3979 0.397887 0.397 1 30 0.75 40 100 0.8 

F18 3.0 3.0 2.999 216 50 0.75 20 100 0.8 

F19 -3.7357 -3.86278 -3.862 9 40 1 30 10 0.6 

F20 -2.0569 -3.322 -3.200 272 50 0.75 40 100 0.8 

F21 -6.0748 -10.1532 -8.161 4 40 1 30 70 0.6 

F22 -9.3399 -10.4029 -10.402 7 40 1 30 70 0.6 

F23 -9.4548 -10.5364 -10.536 419 40 1 50 70 0.6 
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Therefore, Table 7 rates the importance of parameters 

based on their significant contribution to how many 

functions. For instance, population demonstrated a 

significant effect in 16 test functions, effective in 69.75% 

of them. According to this table, Rpower and G0 are the 

most effective parameters, standing in first and second 

place, respectively, and population, Beta, and Alpha 

follow in subsequent positions.  

In addition to the quantitative criterion, the effect size 

of parameters is crucial. Effect size is measured with the 

absolute effect measure, calculated for each parameter in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

each test function, summarized, ranked, and presented in 

Table 7. According to this table, Rpower exhibits the 

highest variance in response values in 15 functions 

(65.22% of all functions) and is the second most impactful 

in 3 functions. In five functions, population ranks first, 

suggesting a considerable role overall. G0 secures the 

second place in 10 functions, maintaining its position 

from the previous analysis. Considering both first and 

second place analyses, it is concluded that Rpower holds 

the top spot in terms of importance, followed by G0 in the 

second place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Significance matrix for the 23 benchmark test functions 
 

 
F1 F2 F3  F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 

Population                         

Rpower1                         

Alpha                         

G0                         

Beta                         

  

Population*Rpower                         

Population*Alpha                         

Population*G0                         

Population*Beta                         

Rpower*Alpha                         

Rpower*G0                         

Rpower*Beta                         

Alpha*G0                         

Alpha*Beta                         

G0*Beta                         

 

Table 7: The number and percentage of functions (from23 test function) where each parameter showed a significant effect for on 
the optimization, ranked by effect size 

 

Factor 
significance 

(p<0.001) 
% iE

in first 

stand 

% iE
 in second 

stand 

% 
First and 

second Stand 

Rpower 19 82.61 15 65.22 3 13.04 78.26 

G0 19 82.61 3 13.04 10 43.48 56.52 

Population 16 69.57 5 21.74 5 21.74 43.48 

Beta 16 69.57 0 0.00 2 8.70 8.70 

Alpha 11 47.83 0 0.00 3 13.04 13.04 
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C.  Investigation of Parameter Levels 

Table 8 displays distribution of factor levels across test 

functions. The optimal (best) levels detected for each 

parameter based on the number of test functions. For 

instance, Level 2 (equal to 0.75) is identified as the best 

level for Rpower, with the participation of 12 test 

functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 9: Optimal levels for each parameter across 23 benchmark 

test functions 

 

Factor Optimal Level Value 

Population Level 4 50 

Rpower1 Level 2 0.75 

Alpha Level 3 ,Level 4 30 , 40 

G0 Level 4 100 

Beta Level 3 0.6 

 

Conclusion 

The performance of metaheuristic algorithms relies on 

parameter tuning. While several approaches have been 

proposed for parameter tuning, a comprehensive analysis 

of the parameters' influence on the algorithm's behavior 

is of paramount importance. The approach presented in 

this paper utilizes Response Surface Methodology (RSM) 

to systematically design experiments. The model created 

by RSM offers valuable insights through efficient 

measures and plots, enabling a deeper understanding of 

the algorithm’s behavior.  

This study focused on the Gravitational Search 

Algorithm (GSA), a valuable metaheuristic algorithm. The 

proposed approach is applied to 23 single and multimodal 

test functions, revealing the relative importance of each 

parameter and analyzing interactions between 

parameters.  

Ultimately, this study provides valuable insights for 

researchers seeking to enhance the  performance  of  not 

Similarly, the best levels for other parameters are 

determined. In summary, the optimal values for the 

population, Rpower, Alpha, G0, and Beta parameters of 

GSA are 50, 0.75, 30 (or 40), 100, and 0.6, respectively, as 

presented in Table 9. For a more in-depth analysis, 

contour, surface, and interaction plots can be generated 

and investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

only the GSA algorithm but also other metaheuristic 

algorithms using the proposed method. The approach is 

adaptable and can be applied to fine-tune parameters in 

various optimization problems. 

For future work, this approach can be extended for 

sensitivity analysis of GSA.  

This paper has focused on single and multimodal GSA; 

however, future work could extend the analysis to include 

multi-objective versions as well. Additionally, the 

methodology can be adapted for a more in-depth 

understanding and fine-tuning of other metaheuristic 

algorithms.  

Since heuristic algorithms share similarities in 

controlling exploration and exploitation of problem 

spaces, this method can be applied when a close 

resemblance exists between parameters. Additionally, 

designing experiments spanning aligned domains 

facilitates performance assessments under equivalent 

conditions. Thereby, equitable evaluations can be 

conducted for closely related algorithms. Furthermore, in 

other situations using normalized and standardized 

metrics maps measures to a common scale. This enables 

impartial contrasting through statistically analyzing 

unified data. Consequently, the methodology provides 

pathways for fair benchmarking even with inherent 

dissimilarities through mapping to a shared assessment 

platform. 
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Table 8: Distribution of Optimal Factor Levels Across Test Functions 
 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Factor N. % N. % N. % N. % N. % 

Population 1 4.35 2 8.70 9 39.13 11 47.83 0 0.00 

Rpower 1 4.35 12 52.17 9 39.13 1 4.35 0 0.00 

Alpha 2 8.70 6 26.09 7 30.43 7 30.43 1 4.35 

G0 3 13.04 2 8.70 7 30.43 11 47.83 0 0.00 

Beta 0 0.00 4 17.39 10 43.48 9 39.13 0 0.00 
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