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Background and Objectives: Metastatic castration-sensitive prostate cancer 
(mCSPC) represents a critical juncture in the management of prostate cancer, 
where the accurate prediction of the onset of castration resistance is paramount 
for guiding treatment decisions. 
Methods: In this study, we underscore the power and efficiency of auto-ML 
models, specifically the Random Forest Classifier, for their low-code, user-friendly 
nature, making them a practical choice for complex tasks, to develop a predictive 
model for the occurrence of castration resistance events (CRE  ( . Utilizing a 
comprehensive dataset from MSK (Clin Cancer Res 2020), comprising clinical, 
genetic, and molecular features, we conducted a comprehensive analysis to 
discern patterns and correlations indicative of castration resistance.  A random 
forest classifier was employed to harness the dataset's intrinsic interactions and 
construct a robust predictive model.   
Results: We used over 18 algorithms to find the best model, and our results 
showed a significant achievement, with the developed model demonstrating an 
impressive accuracy of 75% in predicting castration resistance events. 
Furthermore, the analysis highlights the importance of specific features such as 
'Fraction Genome Altered ‘and the role of prostate specific antigen (PSA( in 
castration resistance prediction. 

Conclusion: Corroborating these findings, recent studies emphasize the 
correlation between high 'Fraction Genome Altered' and resistance and the 
predictive power of elevated PSA levels in castration resistance. This highlights the 
power of machine learning in improving outcome predictions vital for prostate 
cancer treatment. This study deepens our insights into metastatic castration-
sensitive prostate cancer and provides a practical tool for clinicians to shape 
treatment strategies and potentially enhance patient results. 
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Introduction 
Prostate cancer accounts for a significant proportion of 
cancer cases, making up one in every five diagnoses. It is 
the most common cancer among men and the second 
leading cause of cancer-related deaths in men in the U.S. 
Metastatic prostate cancer, a more advanced stage, has 

shown an increasing incidence despite an overall decline 
in prostate cancer cases since 2000. Changes in prostate-
specific antigen (PSA) screening recommendations in 
2008 and 2011 have played a role in this trend. However, 
metastatic castration-sensitive prostate cancer (mCSPC) 
cases showed a significant 72% increase in 2013 
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compared to 2004.  
This rise raises concerns because mCSPC is generally 

considered incurable and has a lower survival rate than 

localized prostate cancer. Although localized prostate 

cancer has a 100% 5-year survival rate, mCSPC's prognosis 

of mCSPC is less favorable, with a 5-year survival rate of 

29.8%. Patients with de novo metastases and those 

whose cancer spreads after being initially diagnosed with 

localized disease may respond differently to treatment 

[1]-[5]. However, Prostate cancer is prevalent among men 

and a significant cause of cancer-related deaths in the 

Western world [6]. While androgen deprivation therapy 

(ADT) is commonly used to manage prostate cancer, 

approximately one-third of patients develop resistance, 

leading to castration-resistant prostate cancer (CRPC) [7]. 

Patients typically progress to CRPC within 18-48 months, 

with metastatic CRPC (mCRPC) being a major contributor 

to short median survival times [8], [9]. Docetaxel is the 

primary treatment for mCRPC, and studies have shown 

that combined treatment with prednisone significantly 

enhances quality of life and survival [10], [11]. However, 

despite its benefits, some patients become resistant to 

docetaxel therapy and discontinue treatment due to 

adverse events As docetaxel-based chemotherapy 

remains crucial for managing advanced prostate cancer, 

the ability to predict early discontinuation based on 

patient characteristics remains uncertain [12]-[15]. 

Metastatic castration-sensitive prostate cancer (mCSPC) 

is a type of prostate cancer that is initially responsive to 

androgen deprivation therapy (ADT) but eventually 

progresses to castration-resistant prostate cancer (CRPC) 

[16]. Castration resistance events (CRE) are defined as the 

development of CRPC, which is characterized by disease 

progression despite ADT [17]. CRE is a significant 

challenge in managing mCSPC, and identifying patients at 

a high risk of developing CRE is crucial for improving 

treatment outcomes. 

In recent years, several studies have utilized machine 

learning algorithms, including RFC, to predict CRE in 

mCSPC. A retrospective study by Pan et al. in 2019 

identified patients with rapid progression from hormone-

sensitive to CRPC, using machine learning techniques 

[18]. Another study by Park et al. in 2020 aimed to predict 

CRPC in patients with prostate cancer using a machine 

learning approach [19]. Saito et al. constructed a new 

prognostic prediction model for patients with prostate 

cancer based on longitudinal data obtained from 

electronic health records using machine learning 

techniques [20]. These studies demonstrate the potential 

of machine learning algorithms, such as RFC, in predicting 

CRE in mCSPC, which can aid personalized treatment 

planning and improve patient outcomes. Certainly, our 

work stands out from previous studies in several ways. In 

this study, we addressed the prediction of CRE in mCSPC 

using the RFC algorithm. We extensively utilized diverse 

data, including clinical, genetic, and molecular features, 

to decipher specific patterns and correlations indicative of 

castration resistance. We thoroughly analyzed these 

patterns using the RFC algorithm and constructed a 

predictive model for CRE occurrence. This model not only 

exhibits a significant level of accuracy in predicting CRE 

but also serves as a practical tool for clinicians to inform 

treatment strategies and optimize patient outcomes. Our 

work advances the understanding of the mCSPC and 

provides a tangible solution for enhancing clinical 

decision-making in this domain. 

The rest of the paper is organized as follows: Section 2 

presents the Materials and Methods, detailing the patient 

background and the process of building the machine 

learning model. Section 3 discusses the Random Forest 

Classifier, its performance evaluation, and the impact of 

hyperparameter tuning. Section 4 delves into the analysis 

of ROC curves and AUC values in model evaluation. 

Section 5 highlights the importance of features in the 

predictive model. Section 6 discusses the findings from 

recent studies on the role of 'Fraction Genome Altered' 

and PSA level in mCSPC patients. Section 7 explores the 

transformation of clinical practice through data-driven 

approaches for prostate cancer management. Section 8 

concludes the paper, summarizing the findings and their 

implications for the future of medical practice. Finally, 

Section 9 is devoted to the author contributions and 

compliance with Ethical Standards. 

Materials and Methods Patient Background 

The present study involves an examination of data 

from a cohort of 424 prostate cancer patients, focusing 

specifically on individuals with metastatic castration-

susceptible disease. The focus was on patients with 

metastatic castration-susceptible disease at the time of 

the gene profile sampling. Comprehensive patient 

information, specimen details, treatment approaches, 

and clinical outcomes were obtained from a specialized 

clinical research database. The data were sourced from 

pathology reports, patient-reported smoking status, and 

complete medical records. The primary treating physician 

determined the castration resistance and metastasis, 

with potential biases carefully scrutinized by the research 

team. A dedicated research radiologist evaluated disease 

extent, location, and bone involvement using bone and CT 

scans. High-volume cases met specific criteria for visceral 

metastases or at least four bone metastases, whereas 

others were classified as having low-volume disease. The 

dataset encompassed a median age of 66 years 

(interquartile range, 59–72), including patients with both 

low-volume and high-volume de novo metastatic disease. 

The samples originated from the bone (14%), liver (4%), 

lung (6%), lymph node (22%), other soft tissue (6%), and 

prostate (48%). Castration-resistance events were 
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recorded in 139 patients with metastatic castration-

susceptible disease and 184 patients without castration-

resistance events [20]. (Supplementary Table 1). 

Predicting Castration Resistance in Cancer Using 
Machine Learning 

This diagram encapsulates three-phase approach for 

predicting Castration Resistance in mCSPC patients. 

Meticulous data collection, preprocessing, model 

selection, feature importance assessment, and model 

evaluation together represent a comprehensive journey 

towards achieving accurate predictions in a clinically 

significant context (Fig.  1).  

In phase a), initially, a dataset containing information 

from 424 patients with mCSPC was collected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Data Preprocessing to Modeling: Building a 
Machine Learning Model  

In this data preprocessing and modeling journey, a 

series of distinct stages was employed to prepare the data 

and construct a machine learning model. These stages 

encompass various transformations, addressing missing 

values, converting categorical variables, combining 

categorical information into target categories, and 

removing outliers. Commencing with raw data, which 

comprises unprocessed information, the process unfolds 

step-by-step. The Label Encoder is first utilized to convert 

categorical variables into numerical values. 

Subsequently, these data were fed into a machine 

learning model, after which the best model was selected 

from among more than 30 different models, and a 

Random Forest classifier proved to be the most effective. 

Subsequently, during the ensuing phase, the model was 

fine-tuned using an optimization algorithm. The ultimate 

goal of this model was to predict the occurrence or 

absence of Castration Resistance based on 34 different 

patient features. 

In phase b), important features are selected from 

among the various features during this stage 

In phase c), The final model, configured according to 

these features, was evaluated. Ultimately, it was able to 

predict the occurrence of Castration Resistance with an 

accuracy of 75%, based on the importance of the features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The subsequent steps involve the application of 
SimpleImputer to handle missing values and iteratively 
refine results. The OrdinalEncoder and OneHotEncoder 
were then employed to convert categorical variables into 
ordinal or binary numerical values. The TargetEncoder 
stage leverages information from categorical variables as 
target categories to enhance the model performance. 
Subsequently, the RemoveOutliers stage eliminates 
outlier data points to improve the model performance. 
Finally, CleanColumn Names were employed for 
appropriate and standardized variable naming. Following 
this sequential order, the RandomForestClassifier 
algorithm was employed to create a machine-learning 

 
Fig. 1: Visualizing the journey. 
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model tailored to the decision-making task. In this study, 
we utilized the Pycaret library, a powerful tool for 
automating machine learning workflows.  

 
Table 1: Evaluation of the performance of various machine 
learning models 
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The Random Forest Classifier 

Machine learning algorithms have transcended the 

boundaries of engineering and optimization, permeating 

numerous other fields with their transformative 

capabilities [21]-[23].The Random Forest classifier has 

significantly affected the field of machine learning, 

particularly in predictive data mining. This ensemble 

learning technique uses labeled data samples to classify 

entities into distinct categories, train a model on one 

dataset, and evaluate its performance on an independent 

test dataset. It employs decision trees, which are 

fundamental tools in supervised learning, and enhances 

its performance by utilizing random sampling of data to 

create bootstrap samples and stochastic selection of 

input features for constructing individual decision trees. 

The power of the Random Forest technique lies in the 

combined strength of its decision-tree classifiers and their 

interaction, which significantly improves the classifier's 

ability to generalize beyond the training data. 

Comparative studies show that Random Forest accuracy 

rivals that of other ensemble techniques such as bagging 

and boosting. Its advantages include efficient operation 

on large databases, handling of multiple input variables 

without variable deletion, unbiased estimation of 

generalization error, effective handling of missing data, 

and robustness in maintaining accuracy even with 

significant data gaps. Additionally, its inherent parallel 

nature allows seamless implementation with cutting-

edge technologies, such as multithreading, multicore 

processors, and parallel architectures [24]-[26]. 

This flowchart outlines the comprehensive pipeline for 

building, training, and evaluating machine learning 

models using a structured dataset. This process 

encompasses multiple stages, each contributing to the 

creation of an effective predictive model. 

The objective of this study was to compare and 

evaluate the performance of various machine learning 

models for predicting a significant target variable. We 

used more than 18 algorithms to find the best model, and 

the best results are presented in the (Table 1). Interesting 

results were obtained, highlighting the crucial importance 

of selecting an appropriate model for prediction because 

of the valuable insights derived from this process. This is 

particularly vital for the design and implementation of 

data-driven decision-making systems (Fig.  2). 

After carefully analyzing the results, the "Random 

Forest Classifier" was chosen as the preferred model due 

to its high accuracy (0.7374), substantial area under the 

ROC curve (AUC) value (0.8093), and commendable recall 

(0.8058). This model demonstrated exceptional 

predictive performance by finding a balance between the 

accuracy and recall. The F1 score (0.7738) also indicated 

its ability to effectively harmonize precision and recall. 

Moreover, when considering other evaluation metrics 

such as the Kappa coefficient and Matthews Correlation 

Coefficient (MCC), the "Random Forest Classifier" showed 

significant values of 0.4584 and 0.4682, respectively. 

These results reinforced the selection of the "Random 

Forest classifier as the top-performing model for 

predicting the target variable. Furthermore, a 

comprehensive analysis highlighted that the "Light 

Gradient Boosting Machine" is an appealing choice. It 

exhibited a similar accuracy to the first model (0.7374), a 

reasonable AUC value (0.79), and acceptable recall 

(0.7692). Its F1 score (0.7651) indicated a well-balanced 

blend of precision and recall. Among the other models 

considered, the "Gradient Boosting Classifier" achieved 
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notable results with an average accuracy (0.7348), 

satisfactory AUC value (0.7888), and recall (0.7853). This 

model demonstrated sensible equilibrium between 

accuracy and recall, as evidenced by its F1 score of 0.766. 

In conclusion, this analysis underscores the importance of 

selecting the correct model based on the significance of 

the evaluation metrics and the specific requirements of 

the problem at hand.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impact of Hyperparameter Tuning on Random 
Forest Classifier 

Hyperparameter tuning plays a pivotal role in 
optimizing the performance of machine-learning models, 
enabling them to reach their full predictive potential. The 
Random Forest Classifier, a versatile ensemble learning 
algorithm, demonstrates the substantial influence of 
hyperparameter tuning on performance [27]-[31] . This 
study examines the impact of hyperparameter tuning on 
the performance of the Random Forest Classifier, drawing 
insights from the provided table that showcases various 
evaluation metrics (Supplementary Table 2). 

The results showed varying performance across 

different splits. Accuracy ranged from 0.6471 to 0.8209, 

correctly categorizing the samples.  

The "Random Forest Classifier" has been 

recommended as the top choice in this study for 

predicting the target variable, primarily due to its superior 

accuracy and overall performance (Table 1).  

The table displays the performance metrics for the 

different machine-learning models used for classification. 

The metrics included Accuracy, Area under the Curve 

(AUC), Recall, Precision, F1 Score, Kappa, Matthews 

Correlation Coefficient (MCC), and Training Time (TT). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AUC values ranged from 0.7065 to 0.8757, indicating 

accurate class differentiation. Recall ranged from 0.6316 

to 0.9231, highlighting the model's ability to identify 

positives. Precision, 0.6744–0.8250, managed the false 

positives well. F1 score, 0.6857–0.8571; balanced 

precision and recall. Kappa ranged from 0.2655 to 0.6322, 

suggesting good agreement, and MCC, 0.2675 to 0.6334, 

measured the prediction correlation. The average and 

standard deviation values summarize the performance 

metrics across the folds. The mean accuracy, AUC, recall, 

precision, F1 score, Kappa, and MCC were approximately 

0.7377, 0.7936, 0.7649, 0.7712, 0.7642, 0.4663, and 

0.4722, respectively. The standard deviations indicate the 

variations. In conclusion, this analysis highlighted the 

model's predictive probability across splits despite 

 
Fig. 2:  flowchart of model. 
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performance differences. Assessing key metrics revealed 

the model strengths and weaknesses, aiding real-world 

decision-making. 

Analyzing the ROC Curves and AUC Values in 

Model Evaluation 

Various metrics were used to assess the quality of the 

classification model. In this section, we analyze the ROC 

curves and Area Under the Curve (AUC) metric. The 

classification model in this study was trained to 

differentiate between two primary categories. The 

evaluation results (Fig.  3) of the test data are as follows. 

 

 
Fig. 3: ROC curves for random forest classifier. 

 

The figure shows ROC curves for two classification 

models, class 0 and class 1, showing a balanced 

relationship between the True Positive Rate and False 

Positive Rate, indicating the effectiveness of the model in 

distinguishing between classes. A curve above this line 

indicates superior classification performance and 

informed decision making. 

ROC curves serve as a powerful tool for evaluating a 

model's ability to distinguish between categories. Figure 

4.1 displays the ROC curves for each class. As evident from 

the curves, the AUC for class 0 was 0.79, and that for class 

1 was 0.79. These values indicate the capability of the 

model to discriminate between the two primary classes. 

Micro-average and macro-average metrics were 

employed to assess the overall model performance. Here, 

the micro-average AUC calculates the mean of the true 

positive and false positive rates across all classes, 

providing a comprehensive assessment of the model's 

performance. This value was equal to 0.80, signifying the 

general ability of the model to distinguish between all 

classes. Based on the evaluation results, we conclude that 

the classification model exhibits high accuracy and 

proficiency in identifying different categories. The 

consistent AUC values across different classes, along with 

the micro-average and macro-average AUC values of 0.80, 

demonstrate the stability and reliability of the model's 

performance against test data. 

Random Forest Classifier Performance Evaluation 

The Random Forest classifier exhibited a satisfactory 

performance in the classification task. With an accuracy 

of 0.7529, the model showed the percentage of correctly 

classified instances out of the total. The Area Under the 

Curve (AUC) value of 0.7855 indicated the model's ability 

to discriminate between positive and negative classes, 

suggesting a promising overall discriminative capability 

(Table 2).  

 
Table 2: Evaluating random forest classifier performance 

 

The table displays the performance metrics for the 

different machine-learning models used for classification. 

The metrics included Accuracy, Area under the Curve 

(AUC), Recall, Precision, F1 Score, Kappa, Matthews 

Correlation Coefficient (MCC), and Training Time (TT). 

The confusion matrix provides a detailed overview of a 

machine-learning model's predictions versus actual 

outcomes, enabling a thorough evaluation of its 

performance. This matrix, with metrics such as accuracy 

and precision, highlights strengths and weaknesses, 

thereby guiding improvements for better predictions. 

The confusion matrix provides further insight into the 

performance of the model (Fig.  4). 
 

 
Fig. 4: Random Forest classifier confusion matrix. 

  
The model achieved a recall score of 0.7292, reflecting 

its sensitivity for correctly identifying positive instances. 

At the same time, the precision score of 0.8140 highlights 

its ability to correctly identify positive instances from 

those that are predicted as positive. This balance between 

recall and precision is captured by the F1 score of 0.7692, 

which provides a harmonic mean and demonstrates the 

balanced performance of the model in handling both true 

positives and false negatives. A Kappa value of 0.5051 

evaluates the model's agreement beyond chance with the 

actual outcomes, while a Matthews Correlation 

Model Accuracy AUC Recall Prec F1 Kappa MCC 

Random 
Forest  

0.75 0.78 0.72 0.81 0.76 0.50 0.50 
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Coefficient (MCC) of 0.5087 considers true positive, true 

negative, false positive, and false negative rates to 

provide a comprehensive classification measure. 

In conclusion, the Random Forest classifier presents 

commendable accuracy and a balanced trade-off 

between precision and recall. The AUC value highlights 

the ability to discriminate between classes. However, 

further refinement could potentially enhance the 

predictive capacity and agreement with observed 

outcomes. This evaluation collectively provides valuable 

insights into the strengths and areas of the RF classifier 

for potential improvements in its classification 

capabilities.  

The prediction result has been specified in the 

(Supplementary predict.csv) file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates the results of the feature 

importance analysis on a tuned Random Forest classifier. 

This shows the varying impact of different features on the 

model's predictions, with higher importance scores 

indicating stronger influences. This insight emphasizes 

the significance of feature selection and tuning for 

optimizing the performance of the classifier. 

Starting with the list of selected features, the 'Fraction 

Genome Altered' was introduced as the most critical 

feature. This feature indicates the proportion of the 

genome that has experienced alterations, and can serve 

as a representative of genomic fluctuations within the 

samples. 

Next, the 'Time from Sample to Castration Resistance' 

is identified as another highly significant feature in this 

analysis.  

In the file, the outcome of the prediction was specified 

using two elements: 'prediction_score' and 

'prediction_label.' The term 'prediction_score' represents 

a numerical value that indicates the level of confidence or 

probability associated with the prediction. On the other 

hand, 'prediction_label' probably represents the assigned 

category or label that describes the prediction result. 

Together, these two pieces of information provide 

insights into the interpretation of the prediction." 

Importance Feature  

In descending order, the following features were 

ranked as the most important in our analysis. The 

significance and role of each of these features in the 

context of the subject are discussed below (Fig.  5).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The time taken for cancer to progress from the initial 

treatment to castration resistance offers essential 

insights into disease advancement and treatment 

responsiveness. 

Following that, the 'MSI Score' is highlighted as a 

feature of great importance. This score reflects genetic 

instability in the tumor DNA, and an elevated MSI score 

might indicate a greater potential for responding to 

treatment through immunotherapy. 

Prostate-specific Antigen (PSA) is deemed highly 

relevant as a biomarker for prostate cancer. Changes in 

PSA levels can provide vital information on disease 

progression. 

Survival Status as Age at Sample Collection is another 

critical factor for predicting survival and understanding 

the impact of patient age on it. Understanding the 

 
 

Fig. 5: feature importance plot. 
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influence of age on survival is crucial for determining 

disease prognosis. 

Subsequently, Tumor Purity was mentioned as a 

determining feature of tumor cellularity within tissue 

samples. This metric can impact the accuracy of genetic 

analyses and treatment decisions. 

The 'TMB (Nonsynonymous) Mutation Count' is 

highlighted as another significant feature in the order of 

importance. The number of non-synonymous mutations 

in the tumor genome indicates the extent of new genetic 

changes, potentially correlating with the immune therapy 

response. 

Following that, the 'Mutation Count' signifies the 

overall population of mutations within the tumor genome 

and provides insights into genomic complexity. 

This hierarchical analysis of the importance of selected 

features allows us to better understand the roles and 

impacts of each feature in predicting disease progression, 

patient prognosis, and treatment response. These 

selections can enhance the depth of the analysis and yield 

more comprehensive insights into the subject matter. All 

features are shown in (Supplementary Fig 1). 

Discussion 

Investigating the role of fraction genome altered and 
PSA level in (mCSPC) patient: Findings from a recent 
study 

Based on the findings of this study (Singla et al., 2021), 

it can confidently be claimed that there is a strong 

correlation between the level of 'Fraction Genome 

Altered' and the occurrence of resistance. This study 

emphasizes that individuals with high genomic alterations 

during the initial treatment of prostate cancer are likely 

to face increased resistance to treatment and advanced 

castration. A precise analysis of the data from The Cancer 

Genome Atlas database clearly indicated that individuals 

with a higher number of altered genome regions were 

significantly associated with disease progression. This 

could serve as a robust indicator for predicting resistance 

and disease progression in prostate cancer. According to 

these investigations, it can be concluded that 'Fraction 

Genome Altered' could potentially serve as an indicator 

to identify individuals at higher risk of resistance to 

castration in prostate cancer. This unequivocally confirms 

that the results of this study will aid in enhancing 

diagnostic accuracy and suitable treatment planning for 

individuals with this type of cancer [32].  Based on 

research conducted by Nakanishi, Shotaro et al in 2021, 

the findings from this study revealed a strong correlation 

between PSA levels and castration resistance in patients 

with prostate cancer. This study emphasizes that an 

increase in PSA levels within three months of initiating 

treatment can serve as an independent indicator for 

progression towards castration-resistant prostate cancer 

and survival in patients diagnosed with metastatic 

hormone-sensitive prostate cancer. This research has 

clearly indicated that if the PSA level exceeds one percent 

of the pre-treatment value within the first three months 

of treatment, it can effectively predict the progression 

towards castration resistance and overall survival of 

patients.  

The use of PSA levels as a significant factor in data 

analysis and treatment prediction for patients with 

prostate cancer has been substantiated. Furthermore, 

this study underscores that a more detailed examination 

of PSA levels within a specific time frame after treatment 

initiation can be a potent predictive tool for treatment 

outcomes. This study plays a pivotal role in enhancing 

diagnostic accuracy and refining treatment strategies for 

patients with prostate cancer [33]. 

Transforming clinical practice: Data-driven approaches 
for prostate cancer management 

The study reveals the potential of machine learning 

algorithms in predicting castration resistance in 

metastatic castration-sensitive prostate cancer (mCSPC). 

By identifying predictive markers, the model can guide 

treatment strategies tailored to each patient's unique 

profile. The Random Forest Classifier achieved an 

impressive 75% accuracy in predicting Castration 

Resistance Event occurrence, demonstrating the 

potential of machine learning techniques in prostate 

cancer treatment. The study emphasizes the role of 

machine learning algorithms in enhancing personalized 

medicine. The synergy of clinical, genetic, and molecular 

features within the dataset has revealed patterns and 

correlations crucial in predicting castration resistance. 

However, further refinement and optimization are 

needed to enhance the predictive capacity and accuracy 

of the model. The interdisciplinary nature of the approach 

has broader implications for clinical practice, as the 

convergence of computer engineering, data analysis, and 

medical expertise could reshape clinical decisions. The 

study highlights the transformative potential of data-

driven approaches in cancer research and personalized 

medicine, with the integration of advanced algorithms 

and interdisciplinary collaboration promising 

improvements in patient lives and shaping the future of 

medical practice. 

Conclusion 

In our extensive study aiming to predict Castration 

Resistance in Prostate Cancer using the Random Forest 

Classifier, we embarked on a meticulous exploration that 

involved evaluating over 18 algorithms to unearth the 

best predictive model. Our exhaustive efforts culminated 

in a significant achievement, with the developed model 

showcasing an impressive accuracy rate of 75% in 

predicting castration resistance events. The model's 

robust performance metrics, such as the AUC value of 

0.7855 and a balanced F1 score of 0.7692, underscore its 
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competence in accurately categorizing cases while 

maintaining precision and recall equilibrium. Further 

bolstering its classification capabilities, the Kappa 

coefficient (0.5051) and Matthews Correlation Coefficient 

(0.5087) validate its agreement with real-world 

outcomes. Additionally, our analysis of feature 

importance unveiled pivotal variables, with 'Fraction 

Genome Altered,' 'Time from Sample to Castration 

Resistance,' and 'MSI Score,' among others, providing 

crucial insights into disease complexity and patient 

prognosis. In conjunction with research by Singla et al. in 

2021, our findings emphasize the significance of 'Fraction 

Genome Altered' and 'Prostate-specific Antigen (PSA)' as 

potent indicators for castration resistance. These insights, 

derived from our rigorous exploration across various 

algorithms, have the potential to significantly enhance 

diagnostic accuracy and refine treatment strategies for 

individuals confronting metastatic castration-sensitive 

prostate cancer. 
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