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0.1 On Voronoi tessellations of the cosmic web and topological invariants

Back in 2017 during some talks with ALIREZA we had wandered about the usage of the
eccentric connectivity index in the classification of the structures of the Cosmic Web (CW),
the enormous graph of galaxies filling the universe. Almost by chance an example of an
interesting usage of that invariant in classifying CW sub-structures (filaments, voids, clusters,
etc). This discovery remained since then unexploited, and time to time - till Xmas last year -
we have said”...we need to find an expert of cosmic topology to interact with or at least the
access to a CW database for exercising on larger portions of the cosmic mesh and better check
this resul”. We’re all missing him. Surely ALIREZA sees the sky secrets more closely now.

The use of topological tools such as graph topological invariants is used, since many
years, for the classification of the various structures forming the Cosmic Web (CW). The
observed large-scale distribution of galaxies presents in fact remarkable building elements,
such as clusters of galaxies, filaments, sheets, walls and large voids. Original considerations
on topological distance-based indices and the topological classifications of CW structural
features are provided in the following paragraphs.

Topological modeling describes a physical system like a graph made by n-nodes and e-
edges (only simple graphs are considered herewith), then takes a distance-based topological
invariant ξ computed on Gn , treats ξ like a normal potential energy and finally minimizes
it determining in this way the most stable configurations of the topological networks Gn.
According to this basic topological approach:

Invariants like ξ naturally describe long-range interaction potentials, belonging to the
class of all-neighbors-interactions.

A few descriptors ξ are considered in this note. Distance dij between two nodes i and j
belonging to Gn equals to the number of bonds in the shortest path connecting that pair of
vertices; dij = k, iff atom j appears in the k-coordination shell of i, and vice-versa; dij = dji and
dii = 0 for every pair i,j. Indicating with M the length of the longest distance - the integer M
corresponds to graph diameter- and with bik the number of k-neighbors of atom i, the effects
of the long-range connectivity properties of the whole lattice Gn on node i is summarized by
topological invariant wi:

wi =
1
2 ∑

k
kbik,

with k = 1,2, . . ., M, where n = ∑k bik + 1. Node degree is bi1 . Symbol w (or w ) indicates
the smallest (the largest) wi. Nodes with wi = w (or wi = w ) are the so-called minimal (or
maximal) vertices of Gn. Integers bik identify the Wiener-weights of vertex i (WWi). The
Wiener index W, the first topological descriptor applied to chemistry about seventy years
ago, is obtained by:

W(n) =
1
2 ∑

ij
dij = ∑

i
wi, (1)

where i, j = 1,2, . . . ,n.
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W provides the topological measure of the overall compactness of the system. For peri-
odic lattices made by N unit cells U, index (1) presents a peculiar dependence from D the
dimensionality system. With D = 1 it scales as N3, whereas the general case of a lattice made
by ND unit cells shows a typical W(N) ≈ N2D+1 dependence in the large N limit. For D=2
the lattice has Nx × Ny = N2 unit cells. If each unit cell contains α nodes, the total number of
nodes in the graph is n = αND thus one has W(n)∼= n2+1/D dependence conjectured valid so
far for all lattices (see footnote) with the really intriguing ≈ D−1 ”vanishing” of the influence
of the space dimensions for spaces with high D.

When graphs G∗
n with closed boundaries are taken into consideration, the compression

factor of the Wiener index fW = W∗/W respects the following inequality in the limit for large
n:

fW ≤ 3
4

. (2)

The universal behavior (2) is conjectured to be valid for any pair Gn andG∗
n of open/closed

graphs, irrespectively from graph complexity or dimensionality. In particular the upper limit
fW = 0.75 strictly holds for (i) any kind of D=1 lattices and (ii) any D-dimensional cubic
lattices. No other general properties regarding fW have been derived so far to confirm or
dismantle the conjecture (2).

Going back to topological modeling (TM) we introduce here the first rule: a higher re-
activity is locally assigned to nodes with maximal wi. This is our first approximation. The
following lattice descriptors:

ρ =
W
nw

, (3)

ρE =
w
w

, (4)

respect, by definition, the inequalities ρ ≥ 1 and ρE ≥ 1; ρ measures the ability of the lattice
to self-arrange around the minimal vertices, which are the most efficient nodes in term of
compactness, maximizing in such a way the overall compactness. For this reason ρ has been
called topological efficiency index [2] and, more recently, it is also used for ranking the topo-
logical roundness of the structure. For example, ideal (infinite) graphene or cubic tori have
ρ = ρE = 1. Playing an analogous role,ρE is named extreme topological efficiency index.

So infinite cubic lattices or infinite graphene layers, together with icosahedral C60 molecules,
are examples of perfectly spherical structures (topologically speaking), good to know.

Higher stability is globally assigned to structures with maximal topological roundness.
Thus systems tend to evolve to minimize ρ or ρE and this is the second approximation.

The eccentric connectivity ξi of the node i and of the graph (G) are defined as:

ξi = bi1εi, (5)

ξ(G) = ∑
i

ξi, (6)
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in which the topological eccentricity εi =max{dij} represents the maximum distance between
i and the remaining nodes. Invariant (5) is used herewith for ranking the topological local-
ization of node i according to the following criterion.

Nodes belonging to filaments, wall, clusters show different values of their eccentric con-
nectivity. And this is the third approximation.

It is worth mentioning that the three approximations exposed above are at the heart of
topological modeling methods, and they hold only when similar topological networks are
compared.

1 SUMMARY OF RESULTS

Reference lattice H

Figure 1. Graph H.

Figure 2. Graph HC, nodes 1 and 25 are bonded.
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Graph n W M Bonds w w ρ ρE ξ(G)

H 25 1211 9 34 39 64.5 1.242 1.654 500
HC 25 1136 9 35 35 64 1.298 1.829 495

Table 1. Topological invariants for H and HC.

The graph H with 25 nodes is used here as reference system. This lattice is built by assembly
nodes with maximum degree 4, see the unit cell provided in Figure 1. This lattice is supposed
to grow by 1-25 joints.

In the open H lattice all atoms are non-equivalent having different sets {bik}; in such a
lattice minimal (maximal) vertices are nodes 5 and 24 respectively. The minimal string {bk5},
k = εi = 7 results as follows: {bk5} = {4,6,5,3,2,3,1}. with a peak of 6 neighbors in the k = 2
shell population (Table 3). The plot of WW shows the following characteristics:

Figure 3. Above shape may be compared with a similar curve for minimal nodes in pristine
honeycomb lattices, starting with an obvious b1 = 3.

Figure 4. The above bk histogram represents the topological fingerprint of the ideal graphene lattice
without defects.

The diagram below represents instead the population for the maximal node i = 24. A
low coordination degree (b1 = 1) and highest eccentricity εi = M are typical signatures of this
kind of very reactive (unstable) nodes.
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In Figure 1 various (arbitrary) colors group nodes sorted by the values of their invariant
(5). The ”green” set groups nodes with the lowest eccentric connectivity values ξi mostly
have similar structural role appearing to cover filaments. Similarly, blue ones seem to define
boundaries of ticker regions, while the red circles select embedded nodes.

B 

Feymman-like Bondon  Bondonic Inner-2QuBit States  Bell States

\left|\boldsymbol{\Phi}^{-}\right\rangle 

1

The ability of the eccentric connectivity ξi to provide structural indications may be not
totally unexpected since this invariant (5) carries topological information, both local (the de-
gree) and long-distance (maximum coordination shell), that characterizes nodes in the net-
work graph.

2 Lattices with periodic condition HC

Imagine to close H graph by ”adding” an extra-bond between nodes 1 and 25 of Figure 1.
The resulting network constitutes in fact a kind of loop; this new topology HC influence the
structural role of some of its nodes, namely the bridging vertex 25, see Figure 2. Other sets
of nodes still keep an apparent structural coherence, for example vertices 21-17-22 still form
a filament and 11-9 identify the central nodes.

Nodes composing HC network are again non-equivalent showing different {bik} sets;
minimal (maximal) vertices are nodes 2 and 15 respectively, whose string {bk5} are provided
in Table 4. It is worth mentioning that topological invariants in Table 1 look quite similar just
because these graphs with N = 1, n = 25 are still quite small. By adding more unit cells the
two lattices behave quite diversely in fact. When N = 25 unit cells are assembled to form
a linear lattice D = 1 by joining nodes 1 and 25, lattices with n = 625 and the following in-
variants in Table 1 are computed. The expected relations in the large-n limit like MC ≈ M/2,
W ≈ 1.33WC and W ≈ ρWC are realized. The last one, that involves ρ, reflects another con-
jecture:

fW = ρ−1, (7)
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Graph n W M Bonds w w ρ ρE ξ(G)

H 625 13255275199 874 15819 31312.5 1.341 1.979 262122
HC 625 10003625102 875 15815 16436.5 1.012 1.031 176900

Table 2. Topological invariants for H and HC.

for compression factor fW valid for all graphs so far.
Minimal (maximal) nodes in HC (namely 2 and 15) vary from the previous open case with

the relative WW showing however the usual differences in shapes being one more compact
(shoulder-like) and the other more spread along the shells, respectively bk2 = {4,5,6,7,2},
k = 1,2, ..5 and bk15 = {2,3,4,3,2,3,4,2,1}, k = 1,2, . . . , M, with the same shapes reported for
the open graph H in previous histograms.

3 Cosmic Web networks V1 and V2

In [22] and related studies, the topology of the Megaparsec Cosmic Web (CW) is ap-
proached in terms of scale-dependent Betti numbers, a scaling technique to extract the topo-
logical information contained in or influencing in the cosmic mass distribution. Authors
recognize that Betti numbers ”do not fully quantify topology” basing the analysis for the dis-
crete galaxy distribution on the alpha shapes of the network by creating ordered sequences of
nested subsets of the Delaunay tessellation with scaling filtration parameter α. The method
is recursively applied first to the heuristic study of Voronoi clustering modeling the morpho-
logical patterns (i.e. clusters, filaments, or sheets) in the CW.

The alpha shapes method suffers, like most of the parametrized scaling technique on
a graph, of a certain level of ”arbitrariness”, causing the resulting CW morphology to be
critically dependent form the filtration parameter α and the selected filtration sequence. Here
the aim of the current section consists therefore in applying the topological invariants (1) to
(6) to the same pair of Voronoi reference structures given in Figure 2 of article [22], see Figure
3 below.

In particular we will show how the eccentric connectivity computed for each node (5)
conveys a certain level of information on CW morphology without using scale-parameters
like the Voronoi disk radius. This method aims in fact to extract the ”genuine” topological
features embedded in the galaxy CW mesh just studying the long-distance properties arising
from the connectivity of the mesh, without extra-parameters, supporting in such a specific
way all types of topological investigation. We investigate the two lattices presented in Figure
3 where small-radius and large-radius Voronoi tessellations V1 and V2 are on left and right,
respectively.

The delaunay simplices, arising from the dual representation of the union of Voronoi
disks, are also shown as by the Voronoi polygons in Figure 3 in which the classification of
node resulting from their eccentric connectivity values ξi is represented by colored circles.
This topological ranking looks quite interesting since nodes placed in given sub-structures
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H node WW bi1
εi ξi wi

v1 1 3 4 4 5 4 3 1 7 7 52,5
v24 1 2 4 2 2 4 4 3 2 1 9 9 64,5
v7 2 3 5 4 5 5 2 6 12 47
v4 2 4 5 5 2 3 3 2 7 14 47
v16 2 3 5 4 4 5 1 2 7 14 48
v23 2 3 5 4 4 5 1 2 7 14 48
v25 2 3 3 5 5 4 2 2 7 14 50
v17 2 2 3 3 3 4 5 2 2 8 16 58,5
v10 3 4 4 5 4 4 3 6 18 43,5
v13 2 3 5 2 3 3 2 3 1 2 9 18 55,5
v15 2 3 4 3 2 3 4 2 1 2 9 18 56,5
v19 3 4 3 5 6 3 3 6 18 44
v3 3 6 6 3 2 3 1 3 7 21 40
v6 3 5 5 4 4 2 1 3 7 21 41,5
v12 3 5 4 3 4 3 2 3 7 21 44,5
v18 3 2 3 4 4 4 4 3 7 21 52
v2 4 4 4 5 4 3 4 6 24 41
v8 3 4 6 3 2 2 3 1 3 8 24 46
v20 3 3 3 4 3 4 3 1 3 8 24 51
v21 3 4 2 2 4 4 3 2 3 8 24 53
v22 3 3 3 2 3 6 3 1 3 8 24 53
v5 4 6 5 3 2 3 1 4 7 28 39
v9 4 4 4 4 3 3 1 1 4 8 32 44
v11 4 6 2 3 3 2 3 1 4 8 32 45

Table 3. Topological eccentric connectivity for H sorted by ξi.

HC node WW bi1
εi ξi wi

v24 1 2 4 2 3 3 4 3 2 1 9 9 64
v7 2 4 6 6 6 2 5 10 41
v1 2 5 7 6 3 1 2 6 12 39
v4 2 4 6 7 4 1 2 6 12 41
v16 2 3 5 5 4 4 1 2 7 14 47
v23 2 3 5 5 4 4 1 2 7 14 47
v17 2 2 4 4 5 4 2 1 2 8 16 52.5
v3 3 6 7 4 3 1 3 6 18 36.5
v10 3 4 5 5 3 4 3 6 18 42.5
v13 2 3 5 2 3 3 2 3 1 2 9 18 55.5
v15 2 3 4 3 2 3 4 2 1 2 9 18 56.5
v19 3 4 4 7 5 1 3 6 18 41
v25 3 4 6 8 2 1 3 6 18 38.5
v2 4 5 6 7 2 4 5 20 35
v6 3 5 5 4 4 2 1 3 7 21 41.5
v8 3 4 6 4 3 3 1 3 7 21 42.5
v12 3 5 4 4 3 3 2 3 7 21 44
v18 3 3 4 7 4 2 1 3 7 21 44
v20 3 3 3 4 3 4 3 1 3 8 24 51
v21 3 4 2 3 3 4 3 2 3 8 24 52.5
v22 3 3 4 3 4 4 2 1 3 8 24 49.5
v5 4 6 5 3 2 3 1 4 7 28 39
v9 4 4 4 4 3 3 1 1 4 8 32 44
v11 4 6 2 3 3 2 3 1 4 8 32 45

Table 4. Topological eccentric connectivity for HC sorted by ξi.
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Figure 5. (left): graph V1, the sample cluster of galaxies whose graph depends from small Voronoi
radius. (right): similar representation for graph V2 based on larger small Voronoi disks. Both graphs
show a good fit between the set of ordered values of ξi (represented by colors) and their
morphological role. Green indicate filament nodes, blue the wall, purple the cluster ones. In open
graph like V1 topological ξi -sorting of nodes appears to work more efficiently.

show similar values. The galactic cluster in Figure 3 top corresponds, for small value of
Voronoi radius, to an open galactic structure, in which green nodes (ranked by invariant ξi
of Eq.(5)) occupy filaments, the blue ones look more localized on wall surfaces, whereas the
purple vertex is deeper embedded in the structure.

What is quite interesting is that V1 nodes may be ordered by their eccentric connectivity
ξi and grouped to respect their morphological character, see Table 5 and Figure 3 top. For
example, it is evident in Table 5 that wall nodes (blue) come after the green one representing
the 8 filament galaxies v8v19v18v20v17v21v16v22. In the same way, the core galaxy v1 arrives,
in this ξi classifications, after all the wall blue nodes. This is quite an encouraging result
-although needing further investigations- based on a single topological descriptor working
on the topology of the CW graph.

Similar morphology-related ranking is obtained when the topological invariants ξi are
computed for galaxies in V2 graph, see Figure 3 bottom and Table 6. In open graph like
V1 the proposed method for distinguishing nodes appears to work better. Future extended
investigations are needed.

We also like to evidence that, according to their wi numbers in Table 5, node v8 and v5 are
among the less stable vertices of graph V1 (in effect V8 is the maximal node of that graph) and
then are nodes that tend to reach more-stable configuration in the network by changing their
connectivity. Intriguingly enough, they are in fact the same 2 nodes getting bridged by a new
bond during the passage to increased-disk-radius Voronoi graph V2. In Table 7 this evolution
path eg V1 → V2 evolution trend, is also confirmed by the other topological indicators being
V2 more compact (having lower Wiener and eccentric connectivity indices) and topologically
more round and efficient (having lower ρ and ρE indices). Table 6 moreover points out that
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V1 node WW bi1
εi ξi wi

v8 1 2 2 2 1 1 1 1 1 1 1 1 2 3 1 1 15 15 85
v19 2 2 2 2 4 5 3 1 2 8 16 49,5
v18 2 2 2 3 3 4 4 1 2 8 16 49,5
v20 2 2 2 3 4 3 2 2 1 2 9 18 50,5
v17 2 2 3 3 3 2 2 3 1 2 9 18 50,5
v21 2 2 3 4 2 1 2 2 2 1 2 10 20 52,5
v16 2 3 3 3 2 1 1 2 3 1 2 10 20 52,5
v22 2 3 4 2 1 1 1 2 2 2 1 2 11 22 55,5
v15 3 3 3 2 1 1 1 1 2 3 1 3 11 33 55,5
v7 3 4 2 1 1 1 1 1 2 2 2 1 3 12 36 59,5
v13 3 3 2 2 1 1 1 1 1 2 3 1 3 12 36 61,5
v3 3 3 1 1 1 1 1 1 1 1 2 2 2 1 3 14 42 73,5
v5 3 3 1 1 1 1 1 1 1 1 2 2 2 1 3 14 42 73,5
v9 3 3 1 1 1 1 1 1 1 1 1 2 3 1 3 14 42 74,5
v10 3 2 2 1 1 1 1 1 1 1 1 2 3 1 3 14 42 75
v4 3 2 1 1 1 1 1 1 1 1 1 2 2 2 1 3 15 45 81,5
v14 4 3 2 1 1 1 1 1 1 2 3 1 4 12 48 60
v2 4 3 1 1 1 1 1 1 1 2 2 2 1 4 13 52 65,5
v6 4 3 1 1 1 1 1 1 1 2 2 2 1 4 13 52 65,5
v12 4 3 1 1 1 1 1 1 1 1 2 3 1 4 13 52 66,5
v11 4 2 2 1 1 1 1 1 1 1 2 3 1 4 13 52 67
v1 5 1 1 1 1 1 1 1 1 1 2 2 2 1 5 14 70 72,5

Table 5. Topological descriptors for V1 sorted by ξi.

V2 node WW bi1 εi ξi wi
v20 2 3 4 7 5 2 5 10 36,5
v21 2 3 5 5 6 2 5 10 36,5
v10 3 3 7 6 2 3 5 15 32
v8 3 5 6 4 3 3 5 15 31
v13 3 4 4 2 4 4 3 6 18 37,5
v19 3 3 5 4 4 2 3 6 18 36
v22 3 4 4 4 4 2 3 6 18 35,5
v11 4 5 3 4 5 4 5 20 32
v12 4 5 3 4 5 4 5 20 32
v9 4 3 6 6 2 4 5 20 31
v15 3 4 3 2 2 4 3 3 7 21 41,5
v18 3 3 4 3 3 3 2 3 7 21 40
v3 3 3 2 3 3 3 4 3 7 21 44
v4 3 3 4 3 3 4 1 3 7 21 39,5
v7 3 4 3 3 4 3 1 3 7 21 38,5
v5 4 6 3 3 4 1 4 6 24 31,5
v16 4 4 3 2 2 4 2 4 7 28 38,5
v17 4 5 3 2 3 3 1 4 7 28 35,5
v2 4 3 2 3 3 4 2 4 7 28 40,5
v1 5 3 3 3 3 4 5 6 30 35,5
v6 5 4 3 3 4 2 5 6 30 33
v14 6 4 2 2 4 3 6 6 36 33

Table 6. Topological descriptors for V2 sorted by ξi.

nodes v3v15v18v2 are, due to their high wi values, the most reactive sites in the structure V2

and are therefore keen to undertake connectivity changes letting V2 to evolve toward more
efficient graphs V3. Future work is required to asses this method.

The main outcome of current preliminary study performed on the two very simple galaxy
clusters V1 and V2 described above consisted in

Showing the ability of topological invariants to extract morphological information of the
nodes in a CW graph. In particular node eccentric connectivity ξi appear capable to classify
nodes on the basis of their structural role (filaments, walls, and clusters); wi ranks stability of
the nodes of the galactic mesh.

Similar analysis are applied in [19] to the study of the cosmic web, the large scale galaxy
distribution, measuring topological quantities on a network built from the Cosmological Evo-
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Graph n W M Bonds w wav ρ ρE ξ(G)

V1 22 1397 15 32 49.5 85 1.283 1.717 798
V2 22 791 7 39 31 44 1.160 1.419 473

Table 7. Topological invariants for V1 and V2.

lution Survey (COSMOS). These studies may be reinforced by adding topological invariants
ξi and wi to better allocate galaxy populations over the various CW structures (filaments,
walls, and clusters).

3.1 Mark Table and Markaracter Table

The notion of the table of marks of a finite group was first introduced by William Burn-
side, one of the pioneers of finite groups, in the second edition of his classical book, see [2].
Shinsaku Fujita on the other hand, introduced the term ”markaracter” to describe a unified
framework for understanding marks of permutation representations and characters of linear
representations on a common basis. The markaracter table, therefore, is a table that contains
information about the marks and characters of a finite group, presented consistentently.

In contrast, the table of marks, which was introduced by Burnside, only describes the
marks of a finite group’s permutation representations. Fujita’s markaracter table extends
Burnside’s table of marks to include both permutation and linear representations of a finite
group. This unified framework provides a more comprehensive understanding of the struc-
ture of finite groups and their representations, see [4, 5, 7–15, 17].

The table of marks of a finite group is a compact way to describe the subgroup lattice of
a finite group G. It characterizes the permutation representations of G by certain numbers
of fixed points and provides a detailed partially ordered set of all conjugacy classes of sub-
groups of G. The table is constructed by considering the set of all subgroups of G, denoted
as ΓG = {U : U ≤ G}, and the G-action on ΓG by conjugation. The G-orbits of subgroups in
ΓG form a partially ordered set, where the incidence relation is given by [U] ≤ [V] if U ≤ Vg

for some g ∈ G.
Let G1(= 1), G2, · · · , Gr(= G) be representatives of the conjugacy classes of subgroups of

G. Then ΓG/G = {[Gi], i = 1,2, · · · ,r}. For each subgroup U ≤ G the group G acts transitively
on the set U/G = {Ug : g ∈ G} of right cosets of U in G. Conversely every transitive G-set
X is isomorphic to a G-set U/G where U is a point stabilizer of X in G. For every g ∈ G the
G-set Ug/G is isomorphic to U/G. Thus every transitive G-set is isomorphic to Gi/G for
some i ≤ r.

Definition 1. Let G be a finite group, X be a G-set and U ≤ G. The mark βX(U) of U on X is
define as

βX(U) = |FixX(U)|,
where FixX(U) = {x ∈ X : x.u = x,∀u ∈ U} is the set of fixed points of the subgroup U in the
action of G on X.
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The table of marks M(G) is a square matrix

M(G) = (βGj/G(Gi))j,i,

where Gi and Gj run through of non-conjugated subgroups of G.
The markaracter table of G is obtained by selecting rows and columns from M(G) cor-

responding to cyclic subgroups of G. Shinsaku Fujita introduced the term ”markaracter” in
some of his seminal papers [1, 15, 17, 18, 20, 21] to refer to marks for permutation representa-
tions and characters for linear representations in a common basis.

The paper [1] describes a straightforward computational method for calculating the markar-
acter tables of finite groups. With this method, the authors were able to compute the markar-
acter table of a dihedral group of order 2n, as well as several abelian groups. The paper also
includes a GAP program that is effective for calculating markaracter tables of groups with
order d ≤ 10000. Using this program, the markaracter table of the Ih point group symmetry
was calculated.

Let G be a permutation group. The cycle index of G acting on X is the polynomial Z(G, X)

over Q in the indeterminates x1, x2, · · · xt, t = |X|, defined by

Z(G, X) =
1
|G| ∑

g∈G
Πt

i=1xci(p)
i ,

in which (c1(p), · · · , ct(p)) is the cycle type of the permutation p ∈ G. All elements of a
conjugacy class have the same cycle type, so the cycle index can be rephrased in the following
way:

Z(G, X) =
1
|G| |C| ∑

c∈C
Πt

i=1xci(gc)
i ,

where C is the set of all conjugacy classes of G with representatives gc ∈ C.
In papers [20,21], Ashrafi et al. calculated the markaracter table of generalized quaternion

groups and finite groups of order pqr, where p, q, and r are prime numbers and p ≥ q ≥
r. This work demonstrated Ashrafi’s expertise in the area of group theory and his ability
to make significant contributions to the field. His collaborations with other researchers, as
evidenced by these papers, also highlighted his commitment to working with others and
sharing knowledge.

Fullerenes are a class of carbon molecules that have a unique spherical structure, and the
fullerene C60 is a particularly well-known example. The symmetry group of C60 is a group of
transformations that preserve the structure of the molecule, such as rotations and reflections.

In [16, 18] they computed the USCI table and cycle index of some classes of fullerene
graphs. The concept of unit subduces cycle indices (USCIs) is a mathematical tool used in
the study of symmetry groups and their actions on sets of objects. USCIs are polynomial
expressions that encode the symmetry properties of a finite group and are used to calculate
the number of fixed points and cycles under group actions. More specifically, USCIs are
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derived from the cycle index polynomial of a finite group, which is a polynomial expression
that encodes the group’s permutation action on a set of labeled objects.

The cycle index polynomial can be used to count the number of permutations that leave
a set of objects invariant, as well as the number of permutations that have a given cycle
structure.

The USCIs are obtained by taking the unit subductions of the cycle index polynomial,
which involves substituting certain variables in the cycle index polynomial with unity. The
resulting polynomial expresses the number of fixed points and cycles of the group action on
subsets of the original set of objects.

The concept of USCIs is closely related to the Polya enumeration theorem, which is a
mathematical theorem used to count the number of orbits of a finite group on a set of objects.
The USCIs can be used in conjunction with the Polya enumeration theorem to systematically
count the number of isomers of chemical compounds based on their underlying symmetry
groups. The use of USCIs has important applications in the fields of chemistry and materials
science, as it provides a systematic and efficient way to predict and enumerate the structural
isomers of compounds and materials based on their underlying symmetry groups.

The main content of the paper [3] is an analysis of the cycle index of the symmetry group
of C60. The cycle index is a mathematical tool used to describe the cycle structure of a per-
mutation group, which is a group of transformations that rearrange a set of objects.

In the paper, Fripertinger derives an explicit formula for the cycle index of the symmetry
group of C60, which allows for a detailed analysis of the group’s cycle structure. This analysis
provides insights into the geometric and chemical properties of the molecule, such as its bond
lengths, bond angles, and electronic structure.

The paper also includes several examples and applications of the cycle index formula,
demonstrating its usefulness for predicting and analyzing various properties of C60 and re-
lated fullerene structures. Overall, the paper represents an important contribution to the field
of mathematical chemistry and demonstrates the power of group theory and other mathe-
matical tools for understanding the properties of complex molecular structures. Finally, in
[18] the authors generalized Fripertinger’s method to compute the three-dimensional Polya
cycle indices for the natural actions of the symmetry group on the set of vertices, edges, and
faces of the small fullerene C24 and the big fullerene C150.
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