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Abstract. Fullerenes are polyhedral molecules made of carbon atoms. These graphs have at-
tracted much attention in the chemical and the mathematical literature. In the present paper, we in-
vestigate problems concerned with the eigenvalues of fullerene graphs. We obtain new upper bounds
for the smallest eigenvalues of fullerenes using bipartite edge-frustration of their related subgraphs.
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1 Introduction

A fullerene is a three connected cubic graph with pentagonal and hexagonal faces satis-
fying in Euler’s formula. The first and the most stable fullerene, namely C60, was discovered
by Kroto et al. in 1985 [39, 40]. Euler’s theorem says that a fullerene with n vertices has
exactly 12 pentagons and n/2 − 10 hexagons, where n is a natural number equal or greater
than 20 and n ̸= 22. For more details about mathematical details of fullerene graphs, see
references [3, 5, 15, 20, 28–30, 36, 43].

Here, we recall some algebraic definitions that will be used in this paper. Throughout
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this paper, our notation is standard and mainly taken from [6, 14, 31, 35]. Let G be a simple
molecular graph, namely a graph without directed and multiple edges and without loops.
The vertex and edge-sets of G are represented by V(G) and E(G), respectively. The adjacency
matrix A(G) of graph G with vertex set V(G) = {v1,v2, . . . ,vn} is the n × n symmetric matrix[
aij
]

such that aij = 1 if vi and vj are adjacent and 0, otherwise. The characteristic polynomial
χ(G,λ) of graph G is defined as

χ(G,λ) = det(λI − A(G)).

The roots of this polynomial are eigenvalues of G and form the spectrum of G as

Spec(G) = {[λ1]
m1 , [λ2]

m2 , . . ., [λr]
mr} ,

where mi is the multiplicity of eigenvalue λi and λ1 ≥ λ2 ≥ . . . ≥ λr.

The energy of G is a graph invariant introduced by Gutman [32] as E(G) =
n

∑
i=1

|λi|, where

λi’s are all eigenvalues of G, see also [33].

2 Main Results

In this section, we introduce several kinds of infinite families of fullerene graphs and
then we investigate some properties of eigenvalues of fullerenes with a trivial cyclic 5-cutset.
Here, by applying the interlacing theorem, we find a new bound for the energy of fullerene
graphs.

Theorem 2.1. [6] Let G be a graph with eigenvalues λ1 ≥ . . . ≥ λn and H be an induced subgraph
of G with eigenvalues θ1 ≥ . . . ≥ θm. Then for i = 1,2, . . . ,m, we yield that

λi ≥ θi ≥ λn−m+i.

Theorem 2.2. Let H be an induced subgraph of fullerene F with eigenvalues θ1, . . . ,θm, the eigenval-
ues of F be λ1, . . . ,λn. Then

E (F) ≥ (3 − θ1) +
1
2
E(H) + (m − r)|θr+1|+ (n − m)λn−m+r,

where r is the number of positive eigenvalues of H and m = |V(H)|.

Proof. By using the interlacing theorem, for 1 ≤ i ≤ m, we obtain that θi ≤ λi. This yields that

E(F) =
n

∑
i=1

|λi| = 3 +
r

∑
i=2

λi +
n

∑
i=r+1

|λi| ≥ 3 +
r

∑
i=2

θi +
n

∑
i=r+1

|λi|

= (3 − θ1) +
1
2
E(H) +

n

∑
i=r+1

|λi|.
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Again, interlacing theorem implies that λn−m+r+1 ≤ θr+1. Consequently,
n

∑
i=n−m+r+1

|λi| ≥ (m − r)|λn−m+r+1| ≥ (m − r)|θr+1|.

Since,
n−m+r

∑
i=r+1

|λi| ≥ (n − m)λn−m+r, the assertion follows.

An equitable partition of a graph G is a partition of the vertex set V(G) into parts C1, ...,Cs

such that the number of neighbors lying in Cj of a vertex u in Ci is a constant bij, independent
of u. The orbits of a group action form an equitable partition, but not all equitable partitions
come from groups. For example, consider the graph G as depicted in Figure 1. One can
easily see that {{1,2,4,5,7,8},{3,6}} is an equitable partition, but clearly it is not the set
of orbits under the group action. Equitable partitions give rise to a quotient graph G/π,
which is a graph with s cells of π as its vertices and bij arcs from the ith to the jth cells, see
Figure 1. Hence, the entries of the adjacency matrix of the quotient graph G/π are given by
A(G/π) = (bij).

Figure 1. The right graph is the quotient graph of the left graph with an equitable partition
{{1,2,7,8},{3,6},{4,5}}.

Lemma 2.3. [50] If π is an equitable partition of graph G, then the characteristic polynomial of
A(G/π) divides the characteristic polynomial of A(G).

A Jacobi three-matrix is a three-diagonal matrix of order n of the following form

C̃ =


a1 b2

c2 a2 b3
. . . . . . . . .

. . . . . . bn

cn an

 ,

where bici > 0 for 2 ≤ i ≤ n. Let Pj, j = 1,2, · · · ,2r be the jth order sequential principal subma-
trix formed by the first j rows and columns of the matrix C̃ − λI and let Pj(λ) = det(Pj). Let
P0(λ) ≡ 1. It is easy to get that{

P1(λ) = a1 − λ,
Pi(λ) = (ai − λ)Pi−1(λ)− biciPi−2(λ), i = 2, · · · ,n.

(1)
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Moreover, suppose αn(λ) is the number of pairs, such that two polynomials Pi(λ) and
Pi+1(λ) have the same sign for a real number λ, where i = 0,1, · · · ,n − 1. In [50] it is shown
that if Pi(λ) = 0, then Pi−1(λ) ̸= 0.

A set of k edges whose elimination disconnects a graph into two components, each con-
taining a cycle, is called a cyclic-k-edge cutset, and it is called a trivial cyclic-k-cutset if at least
one of the resulting two components has a single k-cycle, see [41].

The last author, in a series of papers [1–4, 16–19, 23, 25–27, 37], introduced several infinite
classes of fullerenes in order to characterize the fullerene graphs with respect to their symme-
try groups. Although, the problem is still as an open problem, but it is a well-known fact that
there are only 28 finite groups that arise as symmetry group of a fullerene graph, see [14].

On the other hand, one of the most important problem in the spectral chemical graph the-
ory is to determinate the spectrum of a molecular graph or specially the spectra of fullerene
graphs. In [11] the problem is solved for non-classical fullerenes, namely fullerenes with
triangles and hexagones. For fullerenes with pentagons and hexagons, the problem is still
unsolved, and there are many results concerning fullerene eigenvalues, see [12,13,24,50,51].
In [50] some eigenvalues of fullerene Cn, where 10 | n, is determined in terms of eigenvalues
of related quotient matrix.

Carbon nanotubes are members of the fullerene family. A carbon nanotube (Tz[m,n])
consists of a sheet with m rows and n columns of hexagons. Nanotubes can be pictured as
sheets of graphite rolled up into a tube as shown in Figure 2. Combining a nanotube Tz[6,n]
with two copies of A (Figure 3.) yields the fullerene graph F12r, see Figure 4.

Figure 2. A zig-zag hexagonal sheet and a nanotube structures, in general.
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Figure 3. The cap A as a subgraph of F12r.
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Figure 4. The partition the vertex set of fullerene graph F12r.

Here, by using the method of [50], we conclude the following theorem about the eigen-
values of a fullerene with a trivial cyclic 6-cutset. The vertex set of this fullerene graph can be
composed to vertex sets V1, . . . ,Vr+1 in which |V1|= . . . = |Vr+1|= 6 and they are the vertices
of the inner and outer hexagons. Also, for i = 2, . . . r, we have |Vi| = 12. These subsets are
called the levels or the layers of this fullerene graph, see [21]. Clearly, by this way the number
of vertices of this graph is 12r and thus we denote this class of fullerenes by F12r.

Theorem 2.4. Consider the fullerene graph F12r. Then

1. 1 is one of its eigenvalues and λl+1(F)≥ 1, where the related quotient matrix is of order 2l(l ≥
3), and

2. F has 2l − 2 eigenvalues that can be grouped in pairs {−µ,µ}, where 1 < µ < 3.

Proof. An equitable partition of F12r is given in Figure 4. Let Ã1 be the quotient matrix of the
quotient graph F12r. Then

Ã1 =



2 1
1 0 2

2 0 1
1 0 2

. . .
2 0 1

1 2


.
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By using Eq. 1, we obtain

Pj(λ) = (λ2 − 5)Pj−2(λ)− 4Pj−4(λ), 4 ≤ j ≤ 2l − 1.

Now interlacing theorem yields that λl+1(F)≥ λl+1(Ã1) = 1 and thus we yield part (a). Sim-
ilar to the proof of [50, Theorem 4.1], it holds

det(Ã1 − λI) = (3 − λ)(1 − λ)(a2
1 − λ2)(a2

2 − λ2) . . . (a2
l−1 − λ2),

where ai’s are integers. This completes the proof of the second claim.

In Figures 5, 6, one can check that the first level is an equitable partition. The vertices of
the second layer is decomposed to two equitable partitions, namely the vertices which are
labeled by 2 and 3. Hence, the vertices of each level are divided to two equitable partitions
except the first and the last level. This means that the total number of such partitions is 2r,
where r + 1 is the number of layers.

Another class of fullerene graphs is the fullerene graph A20(r−1) as depicted in Figure 5.

Theorem 2.5. The spectrum of fullerene graph A20(r−1)(r is even) includes the integers {−1,1,3}.

Proof. Consider the equitable partition of A20(r−1) as given in Figure 5 and suppose Ã2 is the
quotient matrix obtained from A20(r−1). By using Eq. 1, we obtain P0(λ) ≡ 1, P1(λ) = 2 − λ,
P2(λ) = λ2 − 2λ − 1 and P3(λ) = −λ3 + 3λ2 + λ − 5. Also, for 4 ≤ i ≤ 2r − 3, we conclude{

Pi(λ) = (−λ)Pi−1(λ)− Pi−2(λ) , i is even
Pi(λ) = (−λ)Pi−1(λ)− 4Pi−2(λ) , i is odd

. (2)

Also, we have P2r(1) = P2r−1(1)− P2r−2(1), where P1(1) = 1, P2(1) =−2 and P3(1) =−2.
Let t be even and 4 ≤ t ≤ 2r − 4. Eq. 2 implies that Pt(1) = Pt+1(1) = (−2)

t
2 . So we get that

p2r−2(1) = −p2r−4(1) = −(−2)r−2 and also P2r−1(1) = −p2r−2(1)− 2p2r−3(1), which yields
that P2r−1(1) =−(−2)r−2. Then P2r(1) = 0 and so λ = 1 is an eigenvalue of Ã2. Now we prove
that -1 is also an eigenvalue of Ã2. By Eq. 1, we have P2r(−1) = 3P2r−1(−1) − P2r−2(−1),
where P2(−1) = 2 and P3(−1) =−2. By using Eq. 2, we conclude that Pt(−1) =−Pt+1(−1) =
(−1)

t
2+12

t
2 , where t is an even number and 4 ≤ t ≤ 2r − 4. So, we get

P2r−2(−1) = 2p2r−3(−1)− p2r−4(−1) = −2
t
2+1(−1)r−1 − 2

t
2 (−1)r−1

= −3(−1)r−12r−2,

and

P2r−1(−1) = p2r−2(−1)− 2p2r−3(−1) = −3(−1)r−12r−2 + 2(−1)r−12r−2

= −2r−2(−1)r−1.
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This means that P2r(−1) = 0 and so −1 is an eigenvalue of Ã2.

Ã2 =



2 1
1 0 2

1 1 1
1 0 2

2 0 1
. . .
2 0 1

1 1 1
2 0 1

1 2



.
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Figure 5. The partition of the vertex set of fullerene graph A20(r−1), r is even.

One can find that the multiplicity of both eigenvalues -1 and 1 of fullerene graph A20(r−1)(r
is even) is r − 3 and this graph has no symmetric eigenvalues except -1 and 1.

Theorem 2.6. Consider the fullerene graph B10(r+2) (r is even), as depicted in Figure 6. Then {1,3}
are eigenvalues of B10(r+2).

Proof. An equitable partition of fullerene B10(r+2)(r is even) is given in Figure 6. Let Ã3 be
the quotient matrix related to B10(r+2). Similar to the proof of last theorem, one can see that
P0(λ) ≡ 1, P1(λ) = 2 − λ, P2(λ) = λ2 − 2λ − 1 and P3(λ) = −λ3 + 3λ2 + λ − 5. Let 4 ≤ i ≤
2r − 3, by Eq. 1, we have P2r(1) = P2r−1(1) − P2r−2(1), where P1(1) = 1, P2(1) = −2 and
P3(1) =−2. On the other hand, Pt(1) = Pt+1(1) = 2(−1)

t
2 , where t is even and 4 ≤ t ≤ 2r − 4.

Hence, P2r−2(1) = −p2r−4(1) = 2(−1)r−1 and

P2r−1(1) = −p2r−2(1)− 2p2r−3(1) = −2(−1)r−1 − 4(−1)r−2

= −2(−1)r−1 + 4(−1)r−1.
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Then P2r(1) = 0, which yields that λ = 1 is an eigenvalue of Ã3.

Ã3 =



2 1 0
1 0 2
0 1 1 1
0 0 1 1 1

. . . . . . . . .
. . . . . . . . .

1 1 1 0 0
1 1 1 0

2 0 1
1 2


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Figure 6. The partition of the vertex set of fullerene graph B10(r+2), r is even.

3 Integral Fullerene Graphs

In this section, we focus on integral fullerenes, namely fullerenes whose all eigenvalues
are integer.

Proposition 3.1. Every fullerene graph has more than five distinct eigenvalues.

Proof. The smallest fullerene is C20 with diameter 5 and the other have diameter greater than
5. This completes the proof.
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The k-th spectral moment of a graph is defined as Sk = ∑n
i=1 λk

i and it is equal to the num-
ber of closed walk of length k in G. Knowing S0, · · · ,Sn−1, we can compute the eigenvalues
of G.

Lemma 3.2. [20] Let F be a fullerene on n vertices with eigenvalues λ1 ≥ · · · ≥ λn. Then S1 = 0,
S2 = 2m, S3 = 0 and S4 = 15n.

Theorem 3.3. There is no integral fullerene.

Proof. Suppose F is an integral fullerene. Then by Proposition 3.1, it must has at least six
distinct eigenvalues and by Perron-Frobenius Theorem [6] all of them are in the interval
(−3,3]. This means that Spec(F) = {[3]1, [2]m1 , [1]m2 , [0]m3 , [−1]m4 , [−2]m5}. Clearly by Lemma
3.2 and substituting these values in k-th spectral moment of F, we obtain

3 + 2m1 + m2 − m4 − 2m5 = 0,

9 + 4m1 + m2 + m4 + 4m5 = 3n,

27 + 8m1 + m2 − m4 − 8m5 = 0,

81 + 16m1 + m2 + m4 + 16m5 = 15n,

1 + m1 + m2 + m3 + m4 + m5 = n.

Solving above equations yields a contradiction which means that it has not a solution and we
are done.

4 Bipartite spanning subgraph of fullerene

The graph G is called bipartite if the vertex set V can be partitioned into two disjoint
subsets V1 and V2 such that all edges of G have one endpoint in V1 and one in V2. Bipartite
edge frustration of a graph G denoted by φ(G) is the minimum number of edges that need
to be deleted to obtain a bipartite spanning subgraph. It is easy to see that φ(G) = 0 if and
only if G is bipartite. It is a well-known fact that a graph G is bipartite if and only if G does
not have an odd cycle. By Euler’s formula, every fullerene has 12 pentagonal faces and so it
is not bipartite. Here by λn(F), we mean the smallest eigenvalue of fullerene F.

Theorem 4.1. [12] Let F be a fullerene graph on n vertices. Then

λn(F) ≤ −3 +
4
n

φ(F).

Theorem 4.2. [12] If F is a fullerene graph on n vertices, then

λn(F) ≤ −3 + 8

√
3

5n
. (3)

Theorems 4.1 and 4.2 show that λn(Fn) tends to -3 if n gets sufficiently large. In the
appendix, all eigenvalues of fullerene graphs B10(r+2) and A20(r−1) are listed, respectively.
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In Figure 7, the bipartite edge frustration of some classes of fullerene graphs are shown.
Also, by using Theorem 4.1, we give some upper bounds for the smallest eigenvalue of these
classes of fullerene graphs. In Theorems 4.3 and 4.4, we give upper bounds for the small-
est eigenvalues of fullerenes A20(r−1), B10(r+2), F12r and D10r which are better than the bound
given in Eq. 3.

Theorem 4.3. Consider the fullerene graph F ∈ {A20(r−1), B10(r+2)}. Then we have φ(F) = 12,
λn(A20(r−1)) ≤ −3 + 24

10(r−1) and λn(B10(r+2)) ≤ −3 + 48
10(r+2) .

Proof. It is clear that by removing the edges e1, . . . , e12 from F, the resulted graph has no odd
cycle and consequently is bipartite, see Figure 7. This implies that φ(F) ≤ 12. On the other
hand, it is clear that we can not remove less than 12 edges to achieve a bipartite graph and
thus φ(F) = 12 By using Theorem 4.1, we have

λn(A20(r−1)) ≤ −3 +
4

20(r − 1)
× 12 = −3 +

24
10(r − 1)

,

and

λn(B10(r+2)) ≤ −3 +
4

10(r + 2)
× 12 = −3 +

48
10(r + 2)

.

Theorem 4.4. Consider the fullerene graph F ∈ {F12r, D10r}. Then we have φ(F) = 6, λn(F12r) ≤
−3 + 2

r and λn(D10r) ≤ −3 + 24
10r .

Proof. Similar to the proof of Theorem 4.3, φ(F) = 6, see Figure 7. Theorem 4.1 shows that

λn(F12r) ≤ −3 +
4

12r
× 6 = −3 +

2
r

,

and

λn(D10r) ≤ −3 +
4

10r
× 6 = −3 +

24
10r

.
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Figure 7. Bipartite spanning subgraphs of four classes of fullerenes.
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[12] T. Dos̆lić, The smallest eigenvalue of fullerene graphs closing the Gap, MATCH Commun. Math.

Comput. Chem. 70 (2013) 73–78.
[13] P. W. Fowler, A. Ceulemans, Electron deficiency of the fullerenes, J. Phys. Chem. 99 (1995) 508–510.
[14] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995.
[15] M. Ghorbani, Remarks on markaracter table of fullerene graphs, J. Comput. Theor. Nanosci. 11

(2014) 363–379.
[16] M. Ghorbani, M. B. Ahmadi, M. Hemmasi, Computer calculation of the edge Wiener index of an

infinite family of fullerenes, Digest J. Nanomater. Biostruct. 3(4) (2009) 487–493.
[17] M. Ghorbani, A. R. Ashrafi, Counting the number of hetero fullerenes, J. Comput. Theor. Nanosci.

3 (2006) 803–810.
[18] M. Ghorbani, A. R. Ashrafi, M. Hemmasi, Eccentric connectivity polynomials of fullerenes, Opto-

electron. Adv. Mater. Rapid Commun. 3(12) (2009) 1306–1308.
[19] M. Ghorbani, A. R. Ashrafi, M. Hemmasi, Eccentric connectivity polynomial of C18n+10 fullerenes,

Bulg. Chem. Commun. 45 (2013) 5–8.
[20] M. Ghorbani, E. Bani-Asadi, Remarks on characteristic coefficients of fullerene graphs, Appl.

Math. Comput. 230 (2014) 428–435.
[21] M. Ghorbani, M. Dehmer, M. Rajabi-Parsa, A. Mowshowitz, F. Emmert-Streib, On properties of

distance-based entropies on fullerene graphs, Entropy 21 (2019) 482–499.
[22] M. Ghorbani, M. Faghani, A. R. Ashrafi, S. Heidari-Rad, A. Graovac, An upper bound for energy

of matrices associated to an infinite class of fullerenes, MATCH Commun. Math. Comput. Chem.
71 (2014) 341–354.

[23] M. Ghorbani, M. Ghazi, S. Shakeraneh, Computing omega and sadhana polynomials of an infinite
class of fullerenes F34×3n , Optoelectron. Adv. Mater. Rapid Commun. 4(6) (2010) 893–895.

[24] M. Ghorbani, S. Heidari-Rad, Study of fullerenes by their algebraic properties, Iranian J. Math.
Chem. 3 (2012) 9–24.

[25] M. Ghorbani, M. Hemmasi, The vertex PI and Szeged polynomials of an infinite family of
fullerenes, J. Comput. Theor. Nanosci. 7 (2010) 2405–2410.

[26] M. Ghorbani, M. Jalali, Omega and sadhana polynomials of an infinite family of fullerenes, Digest
J. Nanomater. Biostruct. 4(1) (2009) 177-182.

[27] M. Ghorbani, M. Jalali, Computing omega and Sadhana polynomials of C12n+4, Digest J. Nano-
mater. Biostruct. 4(3) (2009) 403–406.

[28] M. Ghorbani, E. Naserpour, Study of some nanostructures by using their Kekule structures, J.

206



Songhori et al. / Journal of Discrete Mathematics and Its Applications 7 (2022) 195–207

Comput. Theor. Nanosci. 10 (2013) 2260-2263.
[29] M. Ghorbani, M. Songhori, The enumeration of hetero-fullerenes by Polya’s theorem, Fuller. Nan-

otub. Carbon Nanostructures 21 (2013) 460–471.
[30] M. Ghorbani, M. Songhori, Polyhedral graphs via their automorphism groups, Appl. Math. Com-

put. 321 (2018) 1–10.
[31] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[32] I. Gutman, The energy of a graph: old and new results. in: A. Betten, A. Kohner, R. Laue, A.

Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 196–211.
[33] I. Gutman, B. Furtula, Survey of graph energies, Mathematics Interdisciplinary Research 2 (2017)

85–129.
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