
Journal of Discrete Mathematics and Its Applications 7 (3) (2022) 119–126

Journal of Discrete Mathematics and Its Applications

Available Online at: http://jdma.sru.ac.ir

Research Paper

A generalized version of symmetric division degree index

Najaf Amraei*

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University,

Tehran, 16785-163, I. R. Iran

Academic Editor: Modjtaba Ghorbani

Abstract. The symmetric division degree SDD-index of a simple connected graph G is defined
as the sum of terms f (du,dv) = (du/dv) + (dv/du) over all pairs of distinct adjacent vertices of G;
where du denotes the degree of a vertex u of graph G. In this paper, we introduce the general form of
symmetric division degree index by replacing the degree of vertices f (du,dv) with another symmetric
function of vertex properties. We establish some properties of the generalized symmetric division
degree index GSDD index for certain special functions and calculate the values of these new indices
for some well-known graphs.
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1 Introduction

In this paper, we consider a simple graph G = (V, E) with vertex set V(G) and edge set
E(G). An edge e ∈ E(G) with end vertices u and v is denoted by e = uv. In a graph G, the
neighborhood NG(v), or simply Nv, of a vertex v is the set of all vertices adjacent to v. The
degree of a vertex v, dv is the cardinality of Nv. We denote the smallest and largest degrees
of graph G by δ(G) and ∆(G), respectively. If ∆(G) = δ(G), then G is called a regular graph.

The distance d(u,v) between two vertices u and v in a graph G is the length of the shortest
path between them. The total distance D(u) of a vertex u in a graph G is the sum of the
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distances between u and all other vertices in G, formally, D(u) = ∑v∈V(G) d(u,v).
The sum of the degrees of all the neighbors of the vertex u in the graph G is denoted by

Sd(u) in which Sd(u) = ∑v∈Nu dv.
Topological indices, including the Randić- type indices [11], Zagreb-type indices [8], Szeged

index [8], and Wiener index and its modifications [15] are referred to as band-additive be-
cause they are presented as the sum of the contributions of the edges of the graph. These
indices are expressed in the general form ∑uv∈E(G) f (u,v), where f may be a function of the
vertex degree, the distance of a vertex from all other vertices in the graph, or other variables
associated with the vertices.

In the graph theory, an edge-transitive graph is a graph G in which, given any two edges
e and e′ of G, there is some automorphism f : G → G such that f (e) = e′. The orbit of an edge
e ∈ E(G), denoted by Ee, is defined as Ee = { f (e)| f ∈ Aut(G)}. Similarly, a vertex-transitive
graph can be defined. It is a well-known fact that all vertices in the same vertex-orbit have
the same degree.

The symmetric division degree index, denoted by SDD, was introduced by Vukičević and
Gašperov in [14]. It is defined as SDD(G) = ∑uv∈E(G) f (du,dv), where f (du,dv) = f (dv,du) =
du
dv

+ dv
du

and du denotes the degree of vertex u. For more details about this index see [1–7, 9,
10, 13] and the references cited therein. By replacing the degree of vertices with a function
of vertex properties, we introduce a general form of the SDD is called as the generalized
symmetric division degree, denoted by GSSD. The GSSD of graph G with respect to function
f is defined as follows:

GSSD f (G) = ∑
uv∈E(G)

f (u)
f (v)

+
f (v)
f (u)

, (1)

where f (u) and f (v) denote the values of function f at vertices u and v, respectively. See [12]
for degree-based functions.

2 Some properties of generalized symmetric division degree index

The GSSD index, provides a flexible and powerful tool for studying the structural proper-
ties of graphs. Its application to special functions and well-known graphs can yield valuable
insights into the behavior of the index and its relationship to other topological indices.

The new index exhibits certain general properties that can be verified for any chosen f -
function. In the following, we will obtaine some of these properties.

Theorem 2.1. Let G be a graph with m edges and let f be a real-valued function on vertices. Then

GSSD f (G) ≥ 2m.

Moreover, equality holds if and only if f (u) = f (v), for all uv ∈ E(G).
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Proof. It is straightforward to observe that for any real positive number x, x + 1
x ≥ 2. There-

fore, for any edge uv ∈ E(G), we have:

f (u)
f (v)

+
f (v)
f (u)

≥ 2.

Summing over all edges uv ∈ E(G), we obtain:

GSSD f (G) = ∑
uv∈E(G)

(
f (u)
f (v)

+
f (v)
f (u)

)
≥ 2m.

To prove the second statement, assume that GSSD f (G) = 2m. Then, for each edge uv ∈
E(G), we must have f (u)

f (v) +
f (v)
f (u) = 2. This implies that f (u) = f (v) for all uv ∈ E(G).

Conversely, suppose that f (u) = f (v) for all uv ∈ E(G). Then, for each edge uv ∈ E(G),
we have f (u)

f (v) +
f (v)
f (u) = 2. Therefore, GSSD f (G) = 2m. Hence, if f (u) = f (v) for all uv ∈ E(G),

then SD f (G) = 2m.

Finding the upper bound in the general case is not an easy task due to the unlimited
functions. But it is possible to find upper bounds for this index in special cases and for
specific functions.

Let f be a function on the vertices of a graph G, then for an edge e = xy we define the
edge f -orbit of e as E f (e) = {uv ∈ E(G)| f (u) = f (x), f (v) = f (y)}. A graph G is said to be
f -edge transitive if for any two given edges e, e′ ∈ E(G), E f (e) = E f (e′). Similarly, G can be
deemed f -vertex transitive through a parallel definition.

Theorem 2.2. Let G be a graph on n vertices, f be a function on the vertices of G, and
E f (e1), E f (e2), . . . , E f (ek) be all edge f -orbits of G and ei = uivi be an arbitrary edge of E f (ei), (1 ≤
i ≤ k). Then

GSSD f (G) =
K

∑
i=1

|E f (ei)|
f 2(ui) + f 2(vi)

f (ui) f (vi)
.

Proof. Since for two edges e = uivi and e′ = u′
iv

′
i ∈ E f (ei), we have f (ui)

f (vi)
+ f (vi)

f (ui)
=

f (u′
i)

f (v′i)
+

f (v′i)
f (u′

i)
,

so we have the desired result.

Corollary 2.3. For a function f , let G be an f -edge-transitive graph on n vertices and m edges. Then

GSSD f (G) = m
(

α2 + β2

αβ

)
,

where for the arbitrary edge e = uv, we have α = f (u) and β = f (v).

It is worth noting that in Equation (1) when f (u) = du, we obtain the same value as the
SDD index. By replacing f (u) = D(u) in place of f (u) in Equation (1), we obtain the special
case of GSDD as follow:
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GSDDD(G) = ∑
uv∈E(G)

D(u)
D(v)

+
D(v)
D(u)

.

By substituting f (u) = Sd(u) the following index concluded:

GSDDsd(G) = ∑
uv∈E(G)

sd(u)
sd(v)

+
sd(v)
sd(u)

.

In the following, we calculate the value of GSDD index of these specific functions for
some well-known graphs.

Example 2.4. Consider the complete bipartite graph Km,n, with vertices u1,u2, . . . ,um in one part and
v1,v2, . . . ,vn in another part. for any edge e = uivj ∈ E(Km,n) , we obtain

D(ui)

D(vj)
+

D(vj)

D(ui)
=

2n + m − 2
2m + n − 2

+
2m + n − 2
2n + m − 2

.

It is easy to see that Km,n is edge-transitive. So from Corollary 2.3 we have that

GSDDD(Km,n) = ∑
uv∈E(G)

D(u)
D(v)

+
D(v)
D(u)

(2)

= mn
(

2n + m − 2
2m + n − 2

+
2m + n − 2
2n + m − 2

)
(3)

=
mn(5m2 + 8mn − 12m + 5n2 − 12n + 8)

(2m + n − 2)(m + 2n − 2)
. (4)

On the other hand, for all u ∈ V(G), we have Sd(u) = mn and thus

GSDDSd(Km,n) = ∑
u∼v

(
Sd(u)
Sd(v)

+
Sd(v)
Sd(u)

)
= 2mn.

Example 2.5. Recall that the friendship graph (or windmill graph or n-fan graph) Fn is a planar
graph constructed from the union of n copies of K2 and one copy of K1 by joining the isolated vertex
to all vertices of of degree one (see Figure 1.). It may be also pictured as a collection of n triangles with
a common vertex. Let u be the central vertex of Fn, then D(u) = 2n and for the non-central vertex v
we have D(v) = 4n − 2. Hence

GSDDD(Fn) = ∑
uv∈E(Fn)

D(u)
D(v)

+
D(v)
D(u)

= 2n
(

2n
4n − 2

+
4n − 2

2n

)
+ 2n =

14n2 − 10n + 2
2n − 1

.

We have also that Sd(u) = 4n for the central vertex u, and Sd(v) = 2n + 2 for other vertices of
Fn. This mean that

GSDDSd(Fn) = ∑
uv∈E(Fn)

Sd(u)
Sd(v)

+
Sd(v)
Sd(u)

= 2n
(

4n
2n + 2

+
2n + 2

4n

)
+ 2n =

7n2 + 4n + 1
n + 1

.
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Figure 1. The friendship graph Fn with n = 8.

Example 2.6. A wheel graph Wn is a graph formed by connecting a single vertex to all vertices of a
cycle. For the central vertex u, we have that D(u) = n − 1 and for the non-central vertex v we have
that D(v) = 2n − 5. Therefore

GSDDD(Wn) = ∑
uv∈E(Wn)

D(u)
D(v)

+
D(v)
D(u)

= (n − 1)
(

n − 1
2n − 5

+
2n − 5
n − 1

)
+ 2(n − 1) =

9(n − 2)2

2n − 5
.

For the GSDDSd(Wn), the sum of the degrees of all the neighbors of the central vrtex is 3(n − 1)
and for orther vertices is n + 5. Therefore

GSDDSd(Wn) = ∑
uv∈E(Wn)

Sd(u)
Sd(v)

+
Sd(v)
Sd(u)

= (n − 1)
(

3(n − 1)
n + 5

+
n + 5

3(n − 1)

)
+ 2(n − 1)

=
4(2n + 1)2

3(n + 5)
.

Example 2.7. The double star graph Sm,n is formed by connecting the centers of two stars K1,m and
K1,n with an edge. Here, we compute the general symmetric degree distance (GSDD) of Sm,n with
respect to two different vertex functions:

For f (u) = D(u), we first note that the distance between any two vertices in Sm,n is at most 2.
We can compute D(u) for each vertex u as follows:

• For m pendant of K1,m, we have D(u) = 2m + 3n + 1.

• For n pendant of K1,n, we conclude D(v) = 3m + 2n + 1.

• For the two central vertices, we have D(u) = m + 2n + 1 and D(v) = 2m + n + 1.

It may conclude that
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GSDDD(Sm,n) = ∑
uv∈E(Sm,n)

(
D(u)
D(v)

+
D(v)
D(u)

)
= m

(
2m + 3n + 1
m + 2n + 1

+
m + 2n + 1

2m + 3n + 1

)
+ n

(
3m + 2n + 1
2m + n + 1

+
2m + n + 1

3m + 2n + 1

)
+

(
2m + n + 1
m + 2n + 1

+
m + 2n + 1
2m + n + 1

)
=

(18m + 18n + 4)(m + n + 1)
2(m + n)2 + 7(m + n) + 2

+
(2m + n + 1)(m + 2n + 1)(2m + 2n + 2)

(5(m + n) + 1)(2(m + n) + 1)
.

Similarly, for f (u) = Sd(u), we have:

GSDDSd(Sm,n) = ∑
u∼v

(
Sd(u)
Sd(v)

+
Sd(v)
Sd(u)

)
= m

(
m + 1

m + n + 1
+

m + n + 1
m + 1

)
+ n

(
n + 1

m + n + 1
+

m + n + 1
n + 1

)
+ 2.

3 Generalized symmetric division degree matrix

Following Rather et al. in [12], the general adjacency matrix (A f -matrix) associated with
the topological index of G is a real symmetric matrix, defined by

A f (G) = (a f )ij =

{
f (u,v) uv ∈ E(G)

0 otherwise
.

The set of all eigenvalues of A f (G) is known as the general adjacency spectrum (A f -spectrum)
of G and are denoted by λ1(A f (G)) ≥ λ2(A f (G)) ≥ . . . λn(A f (G)), where λ1(A f (G)) is the
general adjacency spectral radius. By Perron-Frobenius theorem it can be proved that λ1(A f (G))

is unique and its associated eigenvector has positive components.
Also, the generalized-energy of G is defined as

E f (G) =
n

∑
i=1

|λi(A f (G))|.

It is clear that if for each edge e = uv, f (u) = f (v), then A f (G) = 2A(G) and hence spec f (G) =

2spec(G).

Example 3.1. Suppose the graph G is vertex transitive.It is not difficult to prove that for any pair
of vertices u,v ∈ V(G), we have D(u) = D(v). This mean that AD(G) = 2A(G) and specD(G) =

124



Amraei/ Journal of Discrete Mathematics and Its Applications 7 (2022) 119–126

2spec(G). Also, since the graph G is k-regular, for each vertex u, Sd(u) = k2 and thus ASd(G) =

2A(G), which yields that specSd(G) = 2spec(G).

Example 3.2. Suppose G is an f -edge-transitive graph. By Corollary 2.3, we conclude that A f (G) =(
f (u)
f (v) +

f (v)
f (u)

)
A(G), for each edge e = uv. Hence λi(A f (G)) =

(
α2+1

α

)
λi(A(G)), where α = f (u)

f (v) .
So we have the following theorem without proof.

Theorem 3.3.

1. Suppose G is an f -edge-transitive graph. Then

E f (G) =
α2 + 1

α
E(G),

where α = f (u)
f (v) for an arbitrary edge e = uv ∈ E(G).

2. If G is vertex-transitive graph, then

ED(G) = 2E(G) and ESd(G) = 2E(G).

3. In general E f (G) ≥ 2E(G).

Definition 1. Suppose G is a connected graph and f is a positive real-valued function on
vertices, where ∑uv∈E(G) f (u,v) is a topological index. Then the f -laplacian matrix is defined
as L f = D f (G) − A f (G), where D f (G) is a diagonal matrix with diagonal entries (D f )i =

f (u).

The eigenvalues ofL f are called f -laplacian eigenvalues of G denoted by µ1(D f (G)) ≤
µ2(D f (G)) ≤ · · · ≤ µn(D f (G)). Regarding the ordinary laplacian energy, the f -laplacian en-
ergy is defined as

LE f (G) =
n

∑
i=1

|µi −
∑u∈V(G) f (u)

n
|.

It is clear that if f (u) = deg(u), then LE f (G) =LE(G), since ∑u∈V(G) f (u) =∑u∈V(G) deg(u) =
2m.

Example 3.4. If G is a connected graph in which f (u) = D(u), then ∑u∈V(G) f (u) =∑u∈V(G) D(u) =
2W(G), and thus

LE f (G) =
n

∑
i=1

|µi −
2W(G)

n
|.

If further G is vertex-transitive, it is not difficult to see that for each vertex u ∈ V(G), W(G) =
n
2 D(u), and hence, 2W(G)

n = D(u). Thus

LE f (G) =
n

∑
i=1

|µi − D(u)|,

for a vertex u ∈ V(G).
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