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Background and Objectives: Model predictive control (MPC) is a practical and 
attractive control methodology for the control of power electronic converters and 
electrical motor drives. MPC has a simple structure and enables the simultaneous 
consideration of different objectives and constraints. However, when applying 
MPC for multilevel inverters (MLIs), especially at higher voltage levels, the number 
of switching states dramatically increases. This issue becomes more severe when 
MLIs are used to supply electrical motor drives. 
Methods: This paper proposes three different MPC strategies that reduce the 
number of iterations and computation burden in a 3-phase 4-level flying capacitor 
inverter (FCI). Traditional MPC with a reduced number of switching conditions, 
split MPC, and hybrid MPC-PWM control are investigated in this work. 
Results: In all methods, the capacitor voltages of the FCI are balanced during 
different operational conditions. The number of iterations is reduced from 512 in 
traditional MPC to at least 192 in the split MPC. Moreover, the split MPC strategy 
eliminates the usage and optimization of weighting factors for capacitors voltage 
balance. However, in the hybrid MPC-PWM control method in comparison to 
other methods, the voltage balancing time is much lower, the phase current tracks 
the reference more accurately, the transient time is lower, and the efficiency is 
higher. In addition, the capacitors voltage ripple is negligible in the hybrid MPC-
PWM control method. 
Conclusion: Simulation results manifest the effectiveness of the suggested hybrid 
MPC-PWM methodology. Results manifest that the hybrid MPC-PWM control 
offers perfect dynamic characteristics and succeeds in maintaining the voltage 
balance during different operational conditions. 
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Introduction 
In recent years, different industries, such as electric 

transportation, have trended to increase the DC-link 

voltage to yield significant advantages [1]-[2] such as 

more machine efficiency, less charging time of batteries, 

lower cable weight, cost reduction, and lower loss [3]-[6]. 

However, by increasing the DC-link voltage, some 

drawbacks appear. In two-level inverters, increasing the 

DC-link voltage results in a higher dv/dt, reduction of the 

machine lifetime, higher electromagnetic interference 

(EMI), more eddy current loss in the cores, and more skin 

effect losses in the windings. When higher DC-link voltage 

is aimed, replacing the two-level inverter with a multilevel 

structure can reduce dv/dt and enable the usage of low-

voltage switches. In addition, MLIs benefit from various 

aspects of a system, such as less total harmonic distortion 

(THD) of current and voltage waveforms, reduced EMI, 

higher efficiency, more fault-tolerance, more reliability, 

and lower cooling system size [7]-[10]. The mentioned 

advantages make multilevel inverters attractive for high-

power applications.  

In [11], the necessity of increasing the voltage levels in 
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multilevel inverters with higher DC-link voltages is 

investigated. In this work, the efficiency has been 

optimized according to power density, and the essential 

level numbers of an 800 V DC-link flying capacitor inverter 

are specified. Results prove that for moving from 400 V to 

800 V DC-link, to achieve the same efficiency as a two-

level 400 V DC-link inverter, a minimum seven-level 

inverter is needed [11].  

In [9], a comprehensive review of MLI structures for 

traction application is reported. Neutral-point clamped 

(NPC) inverter, cascaded H-bridge (CHB) inverter, FC 

inverter, and modular multilevel converter (MMC) are the 

most utilized multilevel topologies in industrial 

applications. In [12], the appropriate control techniques 

for different multilevel structures are discussed and 

compared. Scaler control [13], Direct Torque Control 

(DTC) [14], Field Oriented Control (FOC) [15], and MPC 

[16] are well-known control strategies in AC motor drives 

with multilevel inverters.  

In recent years, MPC has become an appealing control 

strategy in electrical motor drives due to its interesting 

advantages [17]-[19]. MPC has a simple implementation 

and offers the possibility to control several objectives and 

restrictions in the cost function [21]-[27]. In new 

investigations, MPC has been utilized to control MLIs [28]-

[34]. The application of MPC for MLIs enables the 

regulation or optimization of various objectives such as 

load current [35], voltage balancing of the DC capacitors 

[36], switching frequency [37], inverter switching loss 

[38], and grid-side reactive power [35].  

The main implementation issue of MPC in an MLI is the 

high number of switching states in which the cost function 

should be calculated. This increases the computation 

burden. Therefore, recently, various methods have been 

suggested for decreasing the computation burden in MLIs 

with MPC [39]-[47]. Moreover, when implementing the 

MPC for an MLI, the mathematical computation burden 

increases even more. This, in turn, restricts the practical 

utilization of MPC for an MLI. This work suggests a new 

hybrid MPC-PWM control method for a 3-phase 4-level 

FCI. The main advantage of this method in comparison 

with the traditional finite control set MPC (FCS-MPC) is 

the reduced computation burden.   

Mathematical Model of 4-Level FCI 

Fig.1 represents the topology of the 4-level FCI. Six 

IGBT switches with anti-parallel diodes and three 

capacitors are utilized to generate four voltage levels. The 

switches are arranged in two groups, up and down. The 

up and down switches should receive complementary 

firing pulses to avoid short circuit in the input DC source. 

The capacitors are charged with a voltage ratio equal to 

,3:2:1:: 321 xxx vvv   with  cbax ,, . In a 4-level FCI, 

23=8 different switching states exist for each phase, and 

83=512 different switching conditions exist in the three-

phase 4-level FCI. Table 1 shows all feasible switching 

conditions of the single-phase 4-level FCI and the related 

voltage level. The final voltage values of the capacitors 

are: 

         (1)  3/*
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capacitors are: 
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where, jxv  is the capacitor voltage in cell  3,2,1j  in 

phase  cbax ,, . ix is the current in phase x. Moreover, 

xjS is the switching state of the j-th IGBT switch j in phase 

x (as shown in Fig. 1(a)).  
 

 

Fig. 1: Structure of 4-level FCI: a) single-phase, b) three-phase. 
 

 

According to Fig. 1(b), the voltage equation of the 

output terminal x and the FCI neutral point N can be 

expressed as:  

         (4) 
 𝑣𝑥𝑁(𝑡) = 𝑆3𝑥𝑉𝑑𝑐 − (𝑆3𝑥 − 𝑆2𝑥)𝑣2𝑥(𝑡) − (𝑆2𝑥

− 𝑆1𝑥)𝑣1𝑥(𝑡) 
while 

         (5)      𝑣𝑥𝑁 = 𝑅𝑖𝑥 + 𝐿
𝑑𝑖𝑥

𝑑𝑡
+

1

3
(𝑣𝑎𝑁 + 𝑣𝑏𝑁 + 𝑣𝑐𝑁)  

in which R and L are the load resistance and inductance, 

respectively.  

Discretization of (2)-(3) using the Euler forward 

approximation gives: 
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in which k+1 is the next sampling instant and Ts is the 

sampling time.  

Table 1: Switching states of the 4-level FCI  
 

State 
Output  

Voltage Level 
 Switching Pulse  

S1x S2x S3x 

1 0 0 0 0 

2 

3

dcV

 

0 0 1 

3 0 1 0 

4 1 0 0 

5 

3

2 dcV

 

0 1 1 

6 1 0 1 

7 1 1 0 

8 dcV
 1 1 1 

 

Model Predictive Control in 4-Level FCI 

Fig. 2 shows the block diagram for the conventional 

MPC of a 4-level FCI. Using the three-phase voltage and 

current values, the load voltage and current can be 

written as a space vector:  

         (8)  𝒗 =
𝟐

𝟑
(𝑣𝑎𝑁 + 𝒂 𝑣𝑏𝑁 + 𝒂𝟐 𝑣𝑐𝑁)      

         (9)  𝐢 =
𝟐

𝟑
(𝑖𝑎 + 𝒂 𝑖𝑏 + 𝒂𝟐 𝑖𝑐)                                                

where 𝒂 =  𝑒𝑗𝟐𝜋/𝟑 = −
1

2
+ 𝑗

√3

2
. 

The future value of the load current can be calculated 

as: 

       (10)  𝒊𝑝(𝑘 + 1) = (1 −
𝑅𝑇𝑠

𝐿
) 𝒊(𝑘) +

𝑇𝑠

𝐿
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Using Clark's transformation, α and β axis currents can be 

extracted from the three-phase currents: 

       (11)  
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where f can be the reference and predicted current 

values. 

The cost function can be defined as: 

       (13) 
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(14) 
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2
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2
                   

where λv is the weighting factor that adjusts the 

capacitors voltages and  cbax ,, . Moreover, 
*
1cv  and 

*
2cv  are the final capacitors voltages given in (1). For 

finding the minimum of the cost function g specified in 

(13), MPC examines all 512 possible switching conditions 

explicitly. The prediction of currents, capacitors’ voltages, 

and cost function are repeated frequently in each 

sampling instant.   

Implementation of the MPC strategy for a 4-level FCI 

requires a large number of computations. Consequently, 

the control algorithm will have a significant time delay in 

practice. To moderate the computational delay, the delay 

compensation strategy is applied in this work. Fig. 3 

shows the flowchart of the MPC strategy for a 4-level FCI 

with delay compensation. In this method, first, the 

present values of load current are measured and utilized 

to estimate the predicted currents at k+1 step time. The 

switching states are predicted in a shifted forward step 

time: 

(16) 
𝒊𝑝(𝑘 + 2) = (1 −

𝑅𝑇𝑠

𝐿
) 𝒊(𝑘 + 1) 

+
𝑇𝑠

𝐿
 𝒗(𝑘 + 1) 

Consequently, the cost function can be expressed as: 

        (17) 
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𝑝

(𝑘 + 2)| + |𝑖𝛽
∗ (𝑘 + 2) −

𝑖𝛽
𝑝
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Fig. 2: Block diagram of the conventional MPC of 4-level FCI. 
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Fig. 3: Flowchart of the conventional MPC of a 4-level FCI.  
 
 

Split MPC Strategy 
To decrease the computation burden in the MPC of 

multilevel inverters, a new MPC method can be utilized. 

This method is based on the redundant states in the 

switching pattern of multilevel inverters. As shown in 

Table 1, for a 4-level FCI, three redundant stages exist in 

each medium level of the output voltage. It should be 

noted that these redundant states can be applied in the 

split MPC method only if the capacitor voltages reach 

approximately their desired values.  

In the split MPC method, optimization of the objective 

function is divided into two separate stages. In the first 

stage, the tracking capability of the load currents is 

evaluated and optimized. In the second stage, the 

voltages of the capacitors are balanced.  In the next step 

of the split MPC algorithm, the cost function can be 

considered the same as gi in (14). Seeking all possible 

voltage levels of the output voltages and using (16), the 

optimum value of gi is determined, and accordingly, the 

desired output voltage levels are selected. These voltage 

values are then considered as the input of the next stage. 

In the next stage, if the desired output voltage levels are 

equal to each of the medium voltage levels, i.e., Vdc/3 or 

2Vdc/3, the related redundant states of that level will be 
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sought to balance the capacitors voltages. In the next 

stage of this method, the cost function can be considered 

the same as 
xvg  in (15), and the required voltages of the 

capacitors are calculated from (6)-(7). In this stage, each 

phase can be controlled independently to produce the 

optimal switching pulses, which balance the capacitor 

voltages. Fig. 4 represents the overall control diagram for 

the suggested split MPC of the 4-level FCI. Fig. 5 

represents the flowchart of the split MPC method for a 4-

level FCI with delay compensation.  
 

 
 

Fig. 4: The control scheme for the split MPC of a 4-level FCI. 
 

 A Hybrid PWM Linear Control with Voltage 

Balancing Based on MPC 

Fig. 6 shows the block diagram of the hybrid PWM 

(Pulse Width Modulation) control based MPC for voltage 

balancing of the 4-level FCI. In this strategy, the capacitors 

voltages cannot reach their desired values. Therefore, a 

voltage balancing algorithm is utilized based on model 

predictive control. Fig. 7 shows the voltage balancing 

algorithm for the PWM linear control of the 4-level FCI.  

Results and Discussion 

To investigate the correctness of the proposed hybrid 

MPC strategy, simulation of a 4-level FCI has been carried 

out using Matlab/Simulink controlled by MPC with a 

reduced number of switching conditions, split MPC, and 

hybrid MPC method.  

A list of parameters used in simulation is provided in 

Table 2. In the traditional MPC, the λ weighting factor is 

set at λ=0.1. 

Fig. 8 demonstrates the reference and actual current 

in the 4-level FCI by MPC with  a reduced number of 

switching conditions, split MPC, and hybrid MPC-PWM 

control, respectively. 

 

 
 

Fig. 5: Flowchart of the split MPC of 4-level FCI. 
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Fig. 6: The block diagram of the hybrid MPC-PWM control of a 4-level FCI. 

 
 

 
Fig. 7: Flowchart of the voltage balancing using the hybrid MPC-PWM method of a 4-level FCI. 

 
Table 2: Simulation parameters of the 4-level FCI 

 

Parameter Value 

Vdc 150 [V] 

C1, C2 680 [µF] 

R 10 [Ω] 

L 10 [mH] 
 

It is clear that in the hybrid MPC-PWM control method 

the phase current tracks the reference more accurately 

than in other methods. Fig. 9 shows the capacitors 

voltages in the 4-level FCI by MPC with a reduced number 

of switching conditions, split MPC, and hybrid MPC-PWM 

control, respectively. As can be seen, in all methods, the 

capacitors voltages of the 4-level FCI are balanced during 

different operational conditions. However, in the hybrid 

MPC-PWM control method, the voltage balancing time is 

much lower than in other methods and the capacitors 

voltage ripple is negligible. 
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Fig. 8: Reference and actual current in the 4-level FCI: a) MPC 

with a reduced number of switching conditions, b) Split MPC, c) 
Hybrid MPC-PWM control. 

  

Fig. 10 illustrates the three-phase currents, the line 

voltage (Vab), and the terminal voltage relative to the 

neutral point O (Vao) in the 4-level FCI by MPC with a 

reduced number of switching conditions, split MPC, and 

hybrid MPC-PWM control, respectively. It is evident that 

in the hybrid MPC-PWM control strategy, the transient 

time is lower than in other methods. Fig. 11 illustrates the 

comparison of efficiency versus switching frequency in 

the 4-level FCI by MPC with a reduced number of 

switching conditions, split MPC, and hybrid MPC-PWM 

control, respectively. For calculation of the efficiency, first 

the total loss and the input power of the FCI is computed 

in the average switching frequency. The simulations are 

performed in PLECS software. The utilized IGBTs are 

IKW40N65ET7 manufactured by Infineon.  

 
Fig. 9: Capacitors voltages in the 4-level FCI: a) MPC with a 
reduced number of switching conditions, b) Split MPC, c) 

Hybrid MPC-PWM control. 

 

The IKW40N65ET7 is a 650 V, 40 A IGBT with anti-

parallel diode. For calculating the total loss of the FCI, the 

conduction loss and switching loss are calculated for all 

the IGBTs and diodes.  

As is evident, for the switching frequencies between 3 

KHz to 5.5 KHz, the hybrid MPC-PWM control method 

results in higher efficiency than other methods. This is 

because the switching and conduction losses of the FCI 

are lower in the hybrid MPC-PWM control method.  

In Table 3, a quantitative comparison of different 

control methods for the 4-level FCI is presented for 

switching frequency around 4 KHz. 

According to the results, in the hybrid MPC-PWM 

control method, the voltage balancing time and the 
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current THD value are significantly lower than in the 

traditional MPC with a reduced number of switching 

conditions and the split MPC methods. Furthermore, the 

phase current tracking performance is more accurate in 

the hybrid MPC-PWM control method in comparison to 

other methods. The capacitors voltage ripple is low in the 

hybrid MPC-PWM and the split MPC methods. 

 

 

Fig. 10: Three-phase currents, line voltage (Vab), terminal 
voltage relative to the neutral point O (Vao) in the 4-level FCI: a) 

MPC with a reduced number of switching conditions, b) Split 
MPC, c) Hybrid MPC-PWM control. 

Conclusion 

This work suggests a new hybrid MPC-PWM control 

method for reducing the number of iterations and 

computation burden in a 3-phase 4-level FCI. In this 

strategy, the capacitors voltages of the 4-level FCI are 

balanced during different operational conditions. The 

number of iterations is decreased compared to the 

traditional MPC. Moreover, in the hybrid MPC-PWM 

control method compared to the traditional MPC with a 

reduced number of switching conditions and the split 

MPC, the voltage balancing time is much lower, the phase 

current tracks the reference more accurately, the 

transient time is lower, and the efficiency is higher. At the 

same time, the capacitors voltage ripple is low in the 

hybrid MPC-PWM control method. Simulation results 

validate that the proposed strategy achieves similar 

excellent dynamic behavior and voltage balance as the 

traditional MPC, but with a relatively reduced number of 

iterations and computation burden. 

  
Table 3: Comparison of Different Methods for the 4-level FCI 
 

Method 
MPC with 

RSC 
Split 
MPC 

Hybrid 
MPC-PWM  

Voltage  
Balancing Time 

[sec] 
0.1 0.1 0.024 

Current Tracking 
Performance 

Medium Medium Good 

Max. Current 
Overshoot [A] 

4.19 4.05 23.8 

Capacitor Voltage  
Ripple [%] 

1.8 1.1 1.2 

Current THD [%] 1.10 2.18 0.53 

Inverter Losses 
[Watt] 

35.34 34.69 35.63 

Efficiency [%] 95.15 95.10 95.15 

Average  
Switching  

Frequency [KHz] 
4.31 4.36 4.19 

Sampling Time 
[µsec] 

35 45 100 

 

 
 

Fig. 11: Comparison of efficiency versus switching frequency 
for different control methods in the 4-level FCI. 
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