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Abstract. Let Γ be a k−regular graph with the second maximum eigenvalue λ. Then Γ is said
o be Ramanujan graph if λ ≤ 2

√
k − 1. Let G be a finite group and Γ = Cay(G,S) be a Cayley graph

related to G. The aim of this paper is to investigate the Ramanujan Cayley graphs of sporadic groups.
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1 Introduction

Recently the theory of Ramanujan graphs has received more attention in the literate. It is
a well-known fact that these graphs resolve an extremal problem in communication network
theory. On the other hand, they fuse diverse branches of pure mathematics, namely, number
theory, representaion theory and algebraic geometry. The aim of the present paper is to
determine the Ramanujan Cayley graph in terms of a normal symmetric generating subset
(or NSGS for briefly) where G is a sporadic group. It should be noted that computing the
spectrum of Cayley graphs was started by a paper of Babai [3] in 1979 and recently, this
exciting research topic is received increasing attention by mathematician, see for example
[1,3,5,8,9,11,14]. Most of results of this paper are based on Theorem 2.2. In the next section,
we give the necessary definitions and some preliminary results and section three contains the
main results, namely, computing the Ramanujan Cayley graph of linear and sporadic groups.
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All graphs and groups considered in this paper are finite. Also all graphs are connected
graphs without loops and parallel edges.

2 Definitions and Preliminaries

Let Γ be a k−regular graph with the second maximum eigenvalue λ. Then Γ is a Ramanu-
jan graph if

λ ≤ 2
√

k − 1.

A symmetric subset of group G is a subset S ⊆ G, where 1 ̸∈ S and S = S−1. The Cayley
graph Γ = Cay(G,S) with respect to S is a graph whose vertex set is V(Γ) = G and two
vertices x,y ∈ V(Γ) are adjacent if and only if y = xs for an element s ∈ S. It is well-known
fact that Cay(G,S) is connected if and only if S generates the group G, see [4, 17].

A general linear group GL(V) of vector space V is the set of all A ∈ End(V) where A is
invertible. A representation of group G is a homomorphism α : G → GL(V) and the degree
of α is equal to the dimension of V. A trivial representation is a homomorphism α : G →
C∗ where α(g) = 1 for all g ∈ G. Let φ : G → GL(V) be a representation with φ(g) = φg,
the character χφ : G → C of φ is defined as χφ(g) = tr(φg). An irreducible character is the
character of an irreducible representation and the character χ is linear, if χ(1) = 1. We denote
the set of all irreducible characters of G by Irr(G). The number of irreducible characters of G
is equal to the number of conjugacy classes of G and the number of linear characters of finite
group G is |G/G

′ | where G
′

is the derivative subgroup of G.
A character table is a matrix whose rows and columns are correspond to the irreducible

characters and the conjugacy classes of G, respectively. The study of spectrum of Cayley
graphs is closely related to irreducible characters of G. If G is abelian, then the spectrum of
Γ = Cay(G,S) can easily be determined as follows.

Theorem 2.1. Let S be a symmetric subset of abelian group G where 1 ̸∈ S. Then the eigenvalues of
the adjacency matrix of Cay(G,S) are given by

λφ = ∑
s∈S

φ(s),

where φ ∈ Irr(G).

Let G be a finite group with symmetric subset S. We recall that S is a normal subset if and
only if Sg = g−1Sg = S, for all g ∈ G. The following theorem is implicitly contained in [7,13].

Theorem 2.2. [7] Let α is the characteristic function on S and Γ = Cay(G,S) be a Cayley graph on
G. Let φk (k = 1, . . . ,n) be an irreducible inequivalent representation of G. Let dk be the degree of φk
and εk denote to the eigenvalue of Γ corresponded to the linear map ∑g∈G α(g)φ(g). Then

i) the set of eigenvalues of A (adjacency matrix of Cay(G,S)) equal ∪n
k=1{εk}; and

ii) if the eigenvalue λ occurs with multiplicity mk(λ) in ∑g∈G α(g)φ(g), then the multiplicity of
λ in A is ∑n

k=1 dkmk(λ).
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If α is a class function, then

λk =
|G|
dk

⟨α, χ̄k⟩.

Corollary 2.3. Let G be a finite group with an NSGS S. Let A be the adjacency matrix of graph
Γ = Cay(G,S). Then the eigenvalues of A are given by

[λχ]
χ(1)2

, χ ∈ Irr(G),

where λχ = 1
χ(1) ∑s∈S χ(s).

Thus, in a Ramanujan Cayley graph, we have

∑
s∈S

χ(s) ≤ 2χ(1)
√
|S| − 1.

In what follows assume that

δA(B) =
{

1 A ⊆ B
0 A ̸⊆ B

.

Example 2.4. [8, 14] Consider the cyclic group Zn in two separately cases:
Case 1. n is odd, thus Ci = {xi, x−i} (1 ≤ i ≤ n−1

2 ) are normal symmetric subsets of Zn and so

S ⊆
n−1

2⋃
i=1

Ci.

For 0 ≤ j ≤ n − 1, χj(xi) = ωij are all irreducible characters of Zn, where x is a generator of Zn

and ω = e
2π
n i. Hence

λχj =

n−1
2

∑
i=1

δCi(S)(ω
ij + ω−ij).

Case 2. n is even, hence all normal symmetric subsets are

Ci = {xi, x−i} (1 ≤ i ≤ n
2
− 2) and Cn

2−1 = {xn/2}.

Therefore

S ⊆
n
2−2⋃
i=1

Ci.

Similar to the last case, we have

λχj =

n
2−2

∑
i=1

δCi(S)(ω
ij + ω−ij) + (−1)jδC n

2 −1
(S).
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Example 2.5. Consider now the dihedral group D2n with the following presentation:

D2n = ⟨a,b, an = b2 = 1,b−1ab = a−1⟩.

Here, by using Theorem 2.2, we determine the spectrum of Cay(D2n,S), where S is an NSGS. Let
us to show the conjugacy class of g ∈ G by gG. In finding the number of conjugacy classes of dihedral
group D2n, it is convenient to consider two separated cases:
Case 1. n is odd, then D2n has precisely 1

2(n + 3) conjugacy classes:

{1},{ai, a−i} (1 ≤ i ≤ (n − 1)/2),{b,ba, · · · ,ban−1}.

Hence, the normal symmetric subsets of D2n are

Ci = {ai, a−i}, (1 ≤ i ≤ n − 1
2

) and Cn+1
2

= bD2n .

This implies that S ⊆
n+1

2⋃
i=1

Ci and so by using Table 1, we have

λχ1 = nδC n+1
2
(S) + 2

n−1
2

∑
i=1

δCi(S),

λχ2 = −nδC n+1
2
(S) + 2

n−1
2

∑
i=1

δCi(S),

λψj =

n−1
2

∑
i=1

δCi(S)(ε
ij + ε−ij) (1 ≤ j ≤ n − 1

2
),

where ε = e
2π
n i.

Case 2. n is even, then D2n has precisely n
2 + 3 conjugacy classes:

{1},{a
n
2 },{ai, a−i},{ba2j},{ba2j+1}.

So, the normal symmetric subsets of D2n are:

Ci = {ai, a−i}, (1 ≤ i ≤ n
2
− 1),Cn

2
= {an/2},Cn

2+1 = bD2n and Cn
2+2 = baD2n .
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Hence, S ⊆
n
2+2⋃
i=1

Ci and by using Table 2, we have

λχ1 = δC n
2
(S) +

n
2
(δC n

2 +1
(S) + δC n

2 +2
(S)) + 2

n
2−1

∑
i=1

δCi(S),

λχ2 = δC n
2
(S)− n

2
(δC n

2 +1
(S) + δC n

2 +2
(S)) + 2

n
2−1

∑
i=1

δCi(S),

λχ3 = (−1)
n
2 δC n

2
(S) +

n
2
(δC n

2 +1
(S)− δC n

2 +2
(S)) + 2

n
2−1

∑
i=1

δCi(S)(−1)j,

λχ4 = (−1)
n
2 δC n

2
(S)− n

2
(δC n

2 +1
(S)− δC n

2 +2
(S)) + 2

n
2−1

∑
i=1

δCi(S)(−1)j,

λψj = (−1)jδC n
2
(S) +

n
2−1

∑
i=1

δCi(S)(ε
ij + ε−ij) (1 ≤ j ≤ n

2
− 1).

As a special case, the minimal SNGS of group D2n is

∆ =

{
bD2n ∪ {a, a−1} , 2|n
bD2n , 2 ̸ |n .

Hence, the spectrum of Cayley graph Γ = Cay(D2n,∆) is

• n is odd:
{[−n]1, [n]1, [0]2n−2}.

Since 0 ≤ 2
√

n − 1, in this case Cay(D2n,S) is Ramanujan.

• n is even:
{[±n/2 ± 2]1, [0]2n−4}.

Since for n ≥ 6, n
2 − 2 ≥ 2

√n
2 + 1, Cay(D2n,S) is not Ramanujan.

g 1 ar b
χ1 1 1 1
χ2 1 1 -1
ψj 2 εjr + ε−jr 0

Table 1. The character table of group D2n where n is odd and 1 ≤ r, j ≤ n−1
2 .

g 1 a
n
2 ar b ba

χ1 1 1 1 1 1
χ2 1 1 1 −1 − 1
χ3 1 (−1)

n
2 (−1)r 1 − 1

χ4 1 (−1)
n
2 (−1)r −1 1

ψj 2 2(−1)j εjr + ε−jr 0 0
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Table 2. The character table of group D2n where n is even and 1 ≤ r, j ≤ n
2 − 1.

Since all eigenvalues of Γ = Cay(D2n,S) are symmetric with respect to the origin, according to
[6, Theorem 3.2.3] Γ is bipartite.

3 Main Results

By investigating Cayley graphs, even more detailed information can be obtained. For
example, the automorphism graph of a Cayley graph whose all eigenvalues are simple is
an elementary 2−group. The aim of this section is to investigate Ramanujan Cayley graph
Cay(G,S) via the character table of G where S is an NSGS of sporadic group G.

Example 3.1. Consider the group T4n with the following presentation:

T4n = ⟨a,b|a2n = 1, an = b2,b−1ab = a−1⟩.

The conjugacy classes of T4n are

{1},{an},{ar, a−r , 1 ⩽ r ⩽ n − 1},

{ba2j,0 ⩽ j ⩽ n − 1},{ba2j+1,0 ⩽ j ⩽ n − 1}.

Let S = {a, a−1,b,b−1}.
Case 1. n is even, then all irreducible representations of T4n are as follows:

id : (a,b)→ (1,1) , φ1 : (a,b)→ (1,−1),

φ2 : (a,b)→ (−1,1) , φ3 : (a,b)→ (−1,−1)

and

ψk : (a,b)→ (

(
εk 0
0 ε−k

)
,
(

0 1
εkn 0

)
)

where ε = e
2πi
2n (0 ⩽ k ⩽ n − 1). If φ1(a, a−1,b,b−1) = (1,1,−1,−1), then we conclude thate λ1 = 0

and if φ2(a, a−1,b,b−1) = (−1,−1,1,1), then λ2 = 0. By regarding φ3 we achieve λ3 = −4. There-
for, the second maximum eigenvalue λ can be obtained from a non-linear irreducible representation.
In other words

λk = 2cos
2kπ

2n
± (1 + coskπ).

Case 2. n is odd, then all irreducible characters are

id : (a,b)→ (1,1), φ1 : (a,b)→ (−1, i),

φ2 : (a,b)→ (1,−1), φ3 : (a,b)→ (−1, i)

and

ψk : (a,b)→ (

(
εk 0
0 ε−k

)
,
(

0 1
εkn 0

)
)
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where ε = e
2πi
2n (0 ⩽ k ⩽ n − 1). For n ⩾ 6,

π

n
≤ π

6
⇒ 2cos

π

n
+ 2 ≥ 2cos

π

6
+ 2 > 2

√
3.

This means that Cay(G,S) is not Ramanujan. Hence, in this case Cay(T4n,S) is Ramanujan if
and only if n = 1,3,5. Similar to the Case 1, the Cay(G,S) is Ramanujan if and only if n = 1,3.
Hence, we can verify that Cay(T4n,S) is Ramanujan if and only if n = 1,2,3,4.

Example 3.2. Consider now the group U6n with the following presentation:

U6n = ⟨a,b|a2n = b3 = 1, a−1ba = b−1⟩

and set S = {a, a−1,b,b−1}, clearly, S is not normal. For 0 ≤ j ≤ n − 1 the conjugacy classes of U6n
are as follows:

{a2j},{a2jb, a2jb2},{a2j+1, a2j+1b, a2j+1b2}.

All irreducible representations are

ψ : (a,b)→ (0,−1),

φk : (a,b)→ (ε2k,1),0 ≤ k ≤ 2n − 1,

and

ψk : (a,b)→ (

(
0 εk

ε−k 0

)
,
(

ω 0
0 ω2

)
)

where ε = e
2πi
2n ,ω = e

2πi
3 . Hence we have

λk = ψk(a) + ψk(a−1) + ψk(b) + ψk(b−1) = ε2k + ε−2k + 2 = 2 + 2cos
2kπ

2n

and for non-linear representation we also have

∑
g∈S

ψk =

(
ω + ω2 εk + ε−k

εk + ε−k ω + ω2

)
=

(
−1 2cos kπ

n
2cos kπ

n −1

)
.

Thus

µk = −1 ± 2cos
kπ

n
.

One can see that |µk| < 2
√

3 and for n ≥ 9 and k = 1, we have

2 + 2cos
2π

n
≥ 2 + 2cos

2π

9
> 2

√
3.

On the other hand, for n ≤ 8, λ < 2
√

3 and thus Cay(U6n,S) is Ramanujan if and only if n ≤ 8.
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Example 3.3. Suppose the group V8n has the following presentation:

V8n = ⟨a,b|a2n = b4 = 1, aba = b−1, ab−1a = b⟩.

For 1 ≤ r ≤ n−1
2 and 0 ≤ s ≤ n − 1, the conjugacy classes of V8n are as follows:

{1}{b2},{a2r, a−2r},{a2rb2, a−2rb2},{a2s+1, a−2s−1b2},

{a2lb, a2lb3|0 ≤ l ≤ n − 1},{a2l+1b, a2l+1b3|0 ≤ l ≤ n − 1}.

It is clear that S = {a, a−1,b,b−1} is not normal and all irreducible representations of V8n are as
follows:

f1 : (a,b)→ (1,1) , f2 : (a,b)→ (−1,1) , f3 : (a,b)→ (−1,−1),

ψk : (a,b)→ (

(
ε2k 0
0 −ε−2k

)
,
(

0 1
−1 0

)
),0 ≤ k ≤ n − 1, ε = e

2πi
2n ,

φk : (a,b)→ (

(
εk 0
0 ε−k

)
,
(

0 1
1 0

)
),1 ≤ k ≤ n − 1

2
.

Hence,

∑
g∈S

ψk =

(
ε2k + ε−2k 0

0 −(ε2k + ε−2k)

)
.

This yields that λk = ±2cos 2kπ
n and so |λk| =< 2

√
3. On the other hand,

∑
g∈S

ψk =

(
εk + ε−k 0

0 εk + ε−k

)
implies that λk = 2cos kπ

n and thus |λk| =< 2
√

3. Therefor, Cay(V8n,S) is Ramanujan.

3.1 Linear Groups

Let V(n,F) denotes the n−dimensional vector space over a field F. A transvection is a
linear transformation T on V(n,F) with eigenvalues equal to 1 and satisfying rank(T − In) =

1, where In is the edentity transformation on V(n,F). In matrix language a transvection
Aij(α) where i ̸= j and α ∈ F, is a matrix different from the identity that it has α in the (i, j)−th
position. It turns out that all transvections are elements of SL(n,F).

Proposition 3.4. [2] For integers i , j, the set Aij = {Aij(α) | α ∈ F} forms a subgroup of SL(n,F).

The subgroups defined in this way are refer as the root subgroup of GL(n,F). By Propo-
sition 3.4, the group SL(n,F) is generated by the root subgroups Aij. In other words,

SL(n,F) = ⟨Aij : 1 ⩽ i ̸= j ⩽ n⟩.

By using Proposition 3.4 the group GL(n,F) is also generated by the set of all invertible
diagonal matrices and all transvections.

Theorem 3.5. All transvections are conjugate in GL(n,q) and if n ⩾ 3, then all transvections are
conjugate in SL(n,q).
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Conjugacy classes of SL(2,q) (q is odd)

The number of classes of SL(2,q) is q + 4 (see [2]) and two following cases hold:
Case 1. q is odd, the character table and conjugacy classes of SL(2,q) is as reported in Table 3
and Table 4.

Type Rep g No. CC |[g]|

T (1)
0

(
1 0
0 1

)
1 1

−T (1)
0

(
−1 0
0 −1

)
1 1

T (2)
01

(
1 1
0 1

)
1 q2−1

2

−T (2)
01

(
−1 0
0 −1

)
1 q2−1

2

T (2)
0ε

(
1 ε

0 1

)
1 q2−1

2

−T (2)
0ε

(
−1 −ε

0 1

)
1 q2−1

2

T (3)
k,−k

(
α 0
0 α−1

)
q−3

2 q(q + 1)

−T (4)
k

(
0 1
−1 −(r + rq)

)
q−1

2 q(q − 1)

Table 3.The conjugacy classes of SL(2,q), q is odd:

In table 3, by No. CC we mean the number of conjugacy classes of prescribed type of classes
and by Rep g we mean the representation of g.

Class T (1)
0 −T (1)

0 T (2)
01 −T (2)

01

Repg
(

1 0
0 1

) (
−1 0
0 −1

) (
1 1
0 1

) (
−1 −1
0 −1

)
|[g]| 1 1 q2−1

2
q2−1

2

λ 1 1 1 1

ψ q q 0 0

ψk,1 q + 1 (−1)k+1(q + 1) 1 1

πk q − 1 (−1)k(q − 1) −1 (−1)k+1

ξ1
q+1

2 θ
(q+1)

2
1
2(1 +

√
θq) θ

2(1 +
√

θq)

ξ2
q+1

2 θ
(q+1)

2
1
2(1 −

√
θq) θ

2(1 −
√

θq)

υ1
q−1

2 −θ
(q−1)

2
1
2(−1 +

√
θq) −θ

2 (1 +
√

θq)

υ2
q−1

2 −θ
(q−1)

2
1
2(−1 −

√
θq) −θ

2 (−1 −
√

θq)
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continued:

Class T (2)
0ε −T (2)

0ε T (3)
k,−k −T (4)

k

Repg
(

1 ε

0 1

) (
−1 −ε

0 1

) (
α 0
0 α−1

) (
0 1
−1 −(r + rq)

)
|[g]| q2−1

2
q2−1

2 q(q + 1) q(q − 1)

λ 1 1 1 1

ψ 0 0 1 −1

ψk,1 1 (−1)(k+1) ε(k−1) + ε−(k−1) 0

πk −1 (−1)k+1 0 −(rk + rkq)

ξ1
1
2(1 −

√
θq) θ

2(1 −
√

θq) (−1)k 0

ξ2
1
2(1 +

√
θq) θ

2(1 +
√

θq) (−1)k 0

υ1
1
2(−1 −

√
θq) −θ

2 (−1 −
√

θq) 0 (−1)m+1

υ2
1
2(−1 +

√
θq) −θ

2 (−1 +
√

θq) 0 (−1)m+1

.

Table 4.The character table of SL(2,q), q is odd:

Let A =

(
1 ε2t+1

0 1

)
, t ̸= 0, then for B =

(
εt 0
0 ε−t

)
we have B−1AB =

(
1 ε

0 1

)
and A ∈ T (2)

0ε .

Similarly for
(

1 ε2t

0 1

)
, we have

(
εt 0
0 ε−t

)(
1 1
0 1

)(
εt 0
0 ε−t

)−1

=

(
1 ε2t

0 1

)
.

Also all matrixes in the form
(

1 0
ε2t+1 1

)
and

(
1 0

ε2t 1

)
belong to T (2)

01 and T (2)
0ε , since

(
0 −εk

ε−k 0

)(
1 0

ε2t+1 1

)(
0 εk

−ε−k 0

)
=

(
1 ε

0 1

)
; k = (

q − 1
4

)− t(
0 −εk

ε−k 0

)(
1 0

ε2t 1

)(
0 εk

−ε−k 0

)
=

(
1 1
0 1

)
; k = (

q − 1
4

)− t
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Thus S = T (2)
01 ∪ T (2)

0ε is a genarator of G = SL(2,q). The character table of G is

Class T (1)
0 T (2)

01 T (2)
0ε

Repg
(

1 0
0 1

) (
1 1
0 1

) (
1 ε

0 1

)
|[g]| 1 q2−1

2
q2−1

2

λ 1 1 1

ψ q 0 0

ψk,1 q + 1 1 1

πk q − 1 −1 −1

ξ1
q+1

2
1
2(1 +

√
θq) 1

2(1 −
√

θq)

ξ2
q+1

2
1
2(1 −

√
θq) 1

2(1 +
√

θq)

υ1
q−1

2
1
2(−1 +

√
θq) 1

2(−1 −
√

θq)

υ2
q−1

2
1
2(−1 −

√
θq) 1

2(−1 +
√

θq)

where for q = 4n + 1 we have θ = 1 and for q = 4n + 3 we have θ = −1. Therefor all eigen-
values of Cay(G,S) are

µ1 = q2 − 1 = |S|,
µ2 = 0,

µ3 =
1

q + 1
(q2 − 1) = q − 1,

µ4 =
−1

q − 1
(q2 − 1) = −(q + 1),

µ5 =
2

q + 1
q2 − 1

2
= q − 1 = µ6,

µ7 =
−2

q − 1
q2 − 1

2
= −q − 1 = µ7.

Hence, the spectrum of Cay(SL(2,q),S) is {[0], [−q − 1], [q + 1], [q2 − 1]}. Since, λ = q + 1, we
can deduce that Cay(SL(2,q),S) is Ramanujan.
Case 2. The number of conjugacy classes of SL(2,q) where 2|q is q + 1. see [2, proposition
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4.4.7]. On the other hand, the character table of SL(2,q) is as reported in Table 5.

The conjugacy classes and character table ofSL(2,q),q is even

Class T (1)
0 T (2)

0 T (3)
k,−k T (4)

k

Repg
(

1 0
0 1

) (
1 1
0 1

) (
α 0
0 α−1

) (
0 1
1 r + rq

)
No. of CC 1 1 q−2

2
q
2

|[g]| 1 q2 − 1 q(q + 1) q(q − 1)

λ 1 1 1 1

ψ q 0 1 −1

ψk,0 q + 1 1 αk + α−k 0

πk q − 1 −1 0 −(rk + rkq)

Table 5. The character table of SL(2,q), q is even.

Let q be even. we have (
ε

q
2 0

0 ε−
q
2

)(
1 1
0 1

)(
ε

q
2 0

0 ε−
q
2

)−1

=

(
1 ε

0 1

)
and (

0 −1
1 0

)(
1 ε

0 1

)(
0 −1
1 0

)−1

=

(
1 −ε

0 1

)
=

(
1 ε

0 1

)
.

It is not difficult to see that S = T (2)
0 is a ganarator of G = SL(2,q) and eigenvalues of

Cay(G,S) are

µ1 = q2 − 1 = |S|,
µ2 = 0,

µ3 =
1

q + 1
(q2 − 1) = q − 1,

µ4 =
−1

q − 1
(q2 − 1) = −(q + 1).

Therefore λ = q + 1 and hence Cay(G,S) is Ramanujan.

3.2 Mathieu Groups

We find from GAP, the conjugacy classes of mathieu group G = M(9) are

A = {()G, (2,3,8,6)(4,7,5,9)G, (2,4,8,5)(3,9,6,7)G,

(2,7,8,9)(3,4,6,5)G, (2,8)(3,6)(4,5)(7,9)G, (1,2,8)(3,9,4)(5,7,6)G}.
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Thus, the eigenvalues of Cay(G,S), where S = aG ∪ bG, aG,bG ∈ A are

[36,−36,0,0,0,0], [36,0,−36,0,0,0],

[27,−9,−9,27,−9,0], [26,−10,−10,26,8,1],

[36,0,0,−36,0,0], [27,−9,27,−9,−9,0],

[26,−10,26,−10,8,−1], [27,27,−9,−9,−9,0],

[26,26,−10,−10,8,−1], [17,17,17,17,−1,−1].

It yields that Cay(G,S) is Ramanujan. In the special case

S = {(2,8)(3,6)(4,5)(7,9)G, (1,2,8)(3,9,4)(5,7,6)G}

and S is a set with minimum size.
The conjugacy classes of mathieu group G = M(10) are as follow,

{()G, (3,4,9,7)(5,8,6,10)G, (3,5,9,6)(4,10,7,8)G,

(3,9)(4,7)(5,6)(8,10)G, (2,3,9)(4,10,5)(6,8,7)G,

(1,2)(3,4,5,10,9,7,6,8)G, (1,2)(3,7,5,8,9,4,6,10)G,

(1,2,3,7,6)(4,8,5,9,10)G}.

The eigenvalues of Cay(G,S) for S = {aG} where aG ∈ A are

[1,1,1,1,1,1,1,1], [180,−180,−20,20,0,0,0,0],

[90,90,10,10,−18,0,0,0], [45,45,5,5,9,−9,−9,0],

[80,80,0,0,8,8,8,−10],

[90,−90,10,−10,0,−9 ∗ E(8)− 9 ∗ E(8)3,9 ∗ E(8) + 9 ∗ E(8)3,0],

[90,−90,10,−10,0,9 ∗ E(8) + 9 ∗ E(8)3,−9 ∗ E(8)− 9 ∗ E(8)3,0],

[144,144,−16,−16,0,0,0,9].

For S = {(3,9)(4,7)(5,6)(8,10)G} the eigenvalues of M(10) are, {45,45,5,5,9,−9,−9,0}
and in this case Cay(G,S) is Ramanujan. The conjugacy classes of mathieu group G = M(11)
are also as follows

A = {()G, (1,11,2,5,3,8,10,9,7,6,4)G, (1,4,6,7,9,10,8,3,5,2,11)G,

(2,5)(3,10)(4,9)(7,8)G, (2,7,5,8)(3,9,10,4)G,

(1,5,6,11,7,8,2,10)(4,9)G, (1,10,2,8,7,11,6,5)(4,9)G,

(1,11,6)(2,4,3)(5,9,10)G, (1,6,11)(2,10,4,5,3,9)(7,8)G,

(1,5,8,3,10)(2,11,7,9,6)G}.

If S = {(1,4,6,11,8,7,10,2,3,9,5)G, (1,3,4)(2,10)(5,7,11,6,9,8)G, (2,6,10,5)(7,11,9,8)G}, then
all eigenvalues of Cay(G,S) are

[3030, − 6,60,60,−90,45 ∗ E(11)2 + 45 ∗ E(11)6 + 45 ∗ E(11)7 + 45 ∗ E(11)8 + 45 ∗ E(11)10,

45 ∗ E(11) + 45 ∗ E(11)3 + 45 ∗ E(11)4 + 45 ∗ E(11)5 + 45 ∗ E(11)9,30,38,−42].
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Since 2
√

k − 1 = 2
√

3030 − 1 = 110, we have

It yields that λ = 90 and so Cay(G,S) is Ramanujan.

3.3 Suzuki Group

Following Suzuki [18], the group G is called a ZT-group if G acts on set Ω in such a way
that, (1) G is a doubly transitive group on 1+ N symbols. (2) The identity is the only element
which leaves three distinct symbols invariant, (3) G contains no normal subgroup of order
1 + N, and (4) N is even. Suzuki [18] showed that for each prime power q = 22s+1, there is a
unique ZT-group Sz(q) of order q2(q − 1)(q2 + 1) which is called later the Suzuki group. This
group is simple, when q > 2. Suppose that a is symbol on which G acts and H = Ga. By [18], it
follows from the conditions (1) and (2) that H is a Frobenius group on Ω \ {a}. Apply a well-
known result of Frobenius to deduce that H contains a regular normal subgroup Q of order
N such that every non-identity element of Q leaves only the symbol a invariant. Supoose
b ∈ Ω \ {a} and K = Hb. Suppos x ∈ NG(K) is involution. Then, it is well-known that Suzuki
groups are containing two elements y and z such that y is an involution and xyx = z−1xz,
and three cyclic subgroups A0, A1 and A2 of order q − 1, q + r − 1 and q − r + 1, respectively.
The conjugacy classes of Sz(q) are

{e},ySz(q),zSz(q), (z−1)Sz(q)bSz(q)
0 ,bSz(q)

1 ,bSz(q)
2

which are of lengths 1, (q − 1)(q2 + 1) 1
2(q − 1)(q2 + 1), 1

2(q − 1)(q2 + 1), q2(q − 1)(q + r + 1),
q2(q + r + 1)(q − r + 1), and q2(q − 1)(q − r + 1), respectively. Here, b0,b1 and b2 are non-
identity alements of Ai, i = 0,1,2, respectively. Note that there are q−r

2
q
2 − 1 and q+r

4 conju-

gacy classes of types bSz(q)
0 ,bSz(q)

1 and bSz(q)
2 , respectively. Consider the Suzuki group Sz(q)

whit q = 22s+1,r = 2s+1 and s ≥ 1. The conjugacy class S = ySz(q) and the normal sub-
set T = zSz(q) ∪ (z−1)Sz(q) are minimal NSGS and second minimal NSGS of Sz(q), respec-
tively. Moreover, |S| = (q − 1)(q2 + 1), |T| = q(q − 1)(q2 + 1) and the simple eigenvalues of
Cay(Sz(q),S) and Cay(Sz(q), T) are |S| and |T|, respectively. The Cayley graph Cay(Sz(q),S)
has eigenvalues:

0,−(q2 + 1), (q − 1),
(1 + q2)(r − 1)

q − r + 1
,
−(1 + q2)(r + 1)

q + r + 1
.

Thus |1 + q2| ̸< 2
√
|S| − 1 and Cay(Sz(q),S) is not Ramanujan graph. The Cayley graph

Cay(Sz(q), T) has eigenvalues:

0,q(q − 1),
−q(q2 + 1)
q − r + 1

,
−q(1 + q2)

q + r + 1
.
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in this case Cay(Sz(q),S) is Ramanujan.
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[4] G. Chapuy, V. Féray, A note on a Cayley graph of Sn, arXiv: Combinatorics (2012)

https://api.semanticscholar.org/CorpusID:117829392.
[5] B. F. Chen, E. Ghorbani, K. B. Wong, On the eigenvalues of certain Cayley graphs and arrange-

ment graphs, Linear Algebra Appl. 444 (2014) 246–253.
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