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ABSTRACT

The aim of thiswork isto investigate the variational discretization and mixed finite element methods for optimal
control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are
approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted.
Optimal error estimates in L? are established for the state and the control variable. As a result, it can be proved
that the discrete solutions possess the convergence property of orderh. Finally, a numerical example is
presented which confirms the theoretical results.
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INTRODUCTION

The finite element method of optimal control problems plays an important role in numerical methods
[1-2]. Systematic introduction of the finite element method for optimal control problems can be found
in[3].

In many control problems, the objective functional contains gradients of the state variables. Thus the
accuracy of the gradient is important in numerica approximation of the state equations. In finite
element method, mixed finite element methods are widely used to approximate flux variables,
although there is only very limited research work on analyzing such elements for optimal control
problems. More recently, some preliminary work have been done on a posteriori error estimates, error
estimates of mixed finite element methods for optimal control problems [4-7]. In [8], the author
presents the variational discretization concept for optimal control problems with control constraints.
However, it doesn't seem to be straightforward to extend these existing techniques to the semilinear
parabolic optimal control problems.
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In [9], the mixed finite element methods were used to discrete nonlinear eliptic optimal control
problems and derive an L? priori error estimates. An L? and L<> priori error estimates for linear
parabolic optimal control problems have been obtained when the space discretization of the dtate
variable is done using usual mixed finite elements, the time discretization is based on different
methods, and the control is approximated by piecewise constant elements in [10]. In this paper
variational discretization and semi-discrete mixed finite element methods studied for semilinear
parabolic optimal control problems with integral constraint. The state and co-state are approximated
by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. An
L* optimal error estimate for the state and control variable is structured and is proved that al the
discrete variables possess the convergence property of order h.

The following general semilinear parabolic optimal control problemis considered:

min [ (0.(0) + .00 + J)]

ueKcU
¥ (X ) +divp(x t) +#(y(x 1)) = f (x ) +uUxt), xe
POt =—AX)IWX 1), xeQ)
y(xt) =0, xeo0Q,ted, X0 =Vy,(X, xeQ)
where the bounded open set O « R? isaconvex polygon with the boundary6Q, J =[O0, T], p, ¥
are the state variables, u is the control variable. It is assumed that f e L2(J;L*(Q)), O;, J,, and
j aredifferentiableon L*(Q)?, L*(Q), L*(Q), respectively.
For any r >0 the function ¢(y)eW?(-r,r),¢(y)el®() for any yeH(Q , and ¢ (y)>0.
Furthermore, it is assumed that coefficient matrix A(x) = (aij (x))ZX2 e L(Q,R??)isasymmetric 2x 2
matrix and thereis a constant ¢ > 0 satisfying for any vector X « R?,
XTAX ¢l X |2 -
Here, the admissible set of the control variable K is defined by:
K =l 2(J;L%(Q) : [udx >0}
The plan of this paper is as follows. In section I, the variational discretization and mixed finite
element methods are structured for optimal control problems governed by semilinear parabolic
equations with integral constraint. In section Ill, a priori error estimates for the variationa

discretization and mixed finite element approximation is derived for the optimal control problems. A
numerical exampleis presented in section 1V.

VARIATIONAL DISCRETIZATION AND MIXED METHODS
The variational discretization and mixed finite element discretization of semilinear parabolic optimal

control problems with integral constraint are described below. Let W = L*(Q) and:
V = H(div; Q) ={V e L>(Q)?,divV e L>(Q)}
endowed with the norm given by:
_ _2 o2 2
s gy =l + v ol ]
The original optimal control problem is recast as the following weak form: find (p, y,u) € V xW x K
such that:
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min {E(gl(ﬁ) +0,(y) + i(U))dt}

ueKcU

(A"PY) (v, diw) =0 WeV,
(%, W +(divew +(AY).W =(f +uw), WweW,
YX0=Y5(9, wxeQ

It is well known that the above optimal control problem has a solution (P, y,u), and that a triplet
(P, y,u) is the solution of the above optimal control problem if and only if there is a co-state

(6,2) €V xW such that (P, Y,d,zu) satisfiesthe following optimality conditions (1):

(AP, V) —(y,divw) =0, wWeV,

(Yo, W) +(divp,w) +(4(y),W) = (f +u,wW), VweWw,
Y(X0) = Y,(X), vxeQ,

(A"G,V) - (z divw) =(g,(P).V), WeV,

(z, W) +(divg,wW) +(@ (V)zW) = (g,(Y),W), YweW,
z(x,T)=0, VXeQ,
LT(z+j'(u),G—u)Udt20, ViieK,

where(-,-), istheinner product of U . For simplicity, the product (-,),, will be denoted as (-,-) .
Let I, be regular triangulation of €. These are assumed to satisfy the angle condition which means
that there is a positive constant C independent of h such that for al T €T, C*h? <|T |<KCh?,

where | T | istheareaof T and h; isthediameter of T . Let h=max(h,).
Let V, xW, cV xW denote the Raviart-Thomas spaces of the lowest order associated with the
triangulation T, of Q. B, denotes the space of polynomials of total degree maximally k. If T isa
triangle then:
V(T)={ve P}(T)+x-P,(T)}.

V. ={v, eV:VTel,,v, eV(T)},

W, ={w, eW:VTel,,w, |, R(T)}
By the definition of finite element subspace, the mixed finite element approximation of optimal

control problemisasfollows:
compute (p,,y,,u,) eV, xW, x K suchthat:

min ][ (0,(9,)+ 9: () + i)t

(Aﬁlp)']’vh)_(yh’diwh) =0, Wi, E\7h’
(Yoo V) +(iVD,, W) +H(A(Yn) W) = (F +u,, W), Ty, eW,
Y(x0) =Y,(X, vxeQ2

where y§ (X) €W, isan approximation of ,.
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It iswell known that the above optimal control problem has a solution (B, Y,,U,,), and that atriplet
(Py, Yy, U,) is the solution of the above optimal control problem if and only if there is a co-state

(G, 2,) €V, xW suchthat (P, Y, G, Z,,U, ) satisfies the following optimality conditions (2) :

(A", V)W, diw)=Q W, eV,

Voo W) +HAIR,, W) +HAW,) W) =(F+u,,wy), Wy, WY,
Y (X0=¥(%, e}

(A'G,,%) (2, div,)=(a(B) M), W, eV,

(Zo W) HAING,, W)+ (V)70 W) =( () W), Wy, VY,
z,(xT)=Q WeQd

[ G+i'w)d—u) de=q W, <K,

For ¢ e W, , it shall be written:
HD KO =0 D - D=0 (DD +9 (@D (0,

where:
@)= ¢ (@+tio-p)t,

¢ (0)=[ (1-0¢ (p+t(p—p))ct
are bounded functionson .

A PRIORI ERROR ESTIMATES
For any control functionu € K , the discrete state solution (P, (1), y,, (1), G, (U), z, (1))

associated with U satisfies (3):
(A7 B, (U),V,) — (v, (@), divV,) =0,
(Vi (@), W, ) + (div py (U), W, ) + (B(Y, (U)), W) = (F + U, W),
Yn (U)(%,0) = y, (%),
(A™G, (U),V,) — (2,(0), divV,) = (9, (P, (@), V),
— (2, (@), W,) + (div G, (U), W, ) + (¢ (Y, (0)) 2, (T), W, ) = (95 (Y, (@), W),
Z, (G)(X,T) =0,

for any V, eV, w, €W, .

Lemmal Thereisapositive constant C independent of h such that:
1B— B W Il 25120 1Y = Yo W) [l 5,12, < CD
116G (W) 2 5.2y 12— 2@ ] 5200y <CD
By applying the intermediate errors, the errors can be decomposed as.
& = Py (U) = Py, =Y, ()= Y,
&, =0, (u)-q,, r, =2z,(u)-2z,.
From (2) and (3):
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(Ae,,V,)—(r,,divv,) =0,
(ry, W,) + (dive, w,) + (@ (Y, (W), w,) = (U—u,,w,),
(A™20,9,) = (1, div v, ) = (93 (B (@) — 1 (Bn). Vi),
(Fp s W, ) + (dive,, W) + (@ (Y, (W), + @ (Y, W)z, W) = (9, (Y, (@) = 95(V,), W)
By Lemma 2.1 in[11], the following error estimates can be established.
Lemma2 Thereisapositive constant C independent of h such that:

1B = B ez IO = Yo 2y SOU-W),
16,0 =G gy 1200~ 2y SOU-W).
Let (P(u),y(u)) and (P,(u;),y,(u,)) be the solutions of (1) and (2), respectively. Let
J()) :U — R beaG-differential convex functional which satisfies the following form:
J(u) =9,(p)+ g, (y)+ j(u),
Jn(uy) =9.(Py) + g,(yn)+ j(uy) -
It can be shown that:
(3 (u),v) =(j (u)+2V),
(3 (U.V) = (j (U) + 2, (), V),
(Jh'(uh)’v):(jl(uh)_'_zh!v)'
Then the results are obtained:
Theorem 1 Let (P,y,G,zu)e(VxW)>xK and (B,.V,.0.2,,U;) €V, xW,)2xK be
solutionsof (1) and (2) , respectively. Itisassumedthat z+ j (u) e H'(Q). Then:

"u_uh ”LZ(J;LZ(Q))S Ch’
” p_ ph ”LZ(J;LZ(Q)) + ” y_ yh |||_2(‘:|;|_2(Q))S Ch’
” q - qh ”LZ(J;LZ(Q)) + ” Z— Zh "LZ(J;LZ(Q»S Ch'

NUMERICAL EXAMPLE
In this section, the priori error estimates are to be validated for the error in the control, state, and co-

state. The discretization was aready simplified: the control function u is not discretized, whereas the
state (P, y) and the co-state (G, z) were approximations by the RTO mixed finite element functions

[I'lhze]r'numerical example is the following optimal control problem:
min [T 415- Py I +31y-y, IF +2lu?)
y, +divp+y’ = +u, xeQ,
pP=—W, xeQ)
yxt)=0xeddted, Yx0=0 XeQ)
—7 +diNg+3y°z=y-Y,, xeQ)
q=—Vz—-p+p,, Xe€)

Axt)=0xeddted, AxT)=Q xeQ
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The admissible set of the control variableis:
K=lel?3;L%@): [uz0of

Let:
u = max (z,0) — z,
= y, +divp+y®-u
Ya = y+2z-3y°z
y = sinzx, Sinzx, sin zt
z = sinzx, Sinzx, sin zt
q = Py =(00)
5 - _(nc.osmgsnzzngnyzt}
71 SIN 71X, COS7X, Sin it

The same mesh partition for the state and the control are adopted such that At =h in the test. The
solutions are computed on a series of uniform meshes. Fig. (1) shows surfaces of the approximation

solution u,, at t=0.25. The errors obtained on the variational discretization and mixed finite element

approximation for state functions and control function are presented in Table (1). Furthermore, the
convergence orders are shown by slopes in Fig. (2). This is consistent with the results previoudy
proved.

Table 1. The numerical errors for state and control functions.

Errors
h
u p y g z
1/16 2.64e-02 6.15e-01 3.18e-02 2.63e-02 3.18e-02
1/32 1.32e-02 3.05e-01 1.56e-02 1.31e-02 1.56e-02
1/64 6.62e-03 1.53e-01 7.75e-03 6.61e-03 7.75e-03
1/128 3.31e-03 7.51e-02 3.88e-03 3.30e-03 3.87e-03




JCARME

Variational Discretization and ... Vol. 1, No. 1, Sept. 2011

ety
i
e
\\&\\\\ i

\\\\\\\\\\\\\\\‘}\\\ W
Wb

N \\\\\\\\“\“‘\}}\\ {
A }

0
(e

ik

il !
i ‘
A ““,o,;,l,,,’lllllllllll i
N
W ‘\‘o"tzl‘,z‘llllllllll LT

RN
WSy

Fig. 1. Theprofile of the control solutionat t = 0.25.
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Fig. 2. The convergence orders on triangle mesh grids.

35



JCARME Zuliang Lu Val. 1, No. 1, Sept. 2011

CONCLUSIONS

In this paper, a priori error estimates is investigated for variational discretization and mixed finite
element methods of the semilinear parabolic optimal control problems with integral constraint. The
state and the co-state are approximated by the mixed finite element spaces and the control is not
discreted.

ACKNOWLEDGMENT

This work is supported by the Foundation for National Science Foundation of China and Hunan
Provincial Innovation Foundation For Postgraduate CX2009B119.

The authors express their thanks to the referees for their helpful suggestions, which led to
improvements of this research.

REFERENCES

[1] F. S Fak, “Approximation of a class of optimal control problems with order of convergence
estimates”, J. Math. Anal. Appl., Vol. 44, pp. 28-47, (1973).

[2] T. Geveci, “In the approximation of the solution of an optimal control problem governed by an
éliptic equations”, RA.I.R.O. Numer. Anal., Vol. 13, pp. 313-328, (1979).

[3] W.B. Liuand N. N. Yan, “Adaptive finite element methods for optimal control governed by
PDEs”, Science Press, Beijing, (2008).

[4] Y. Chen, "A posteriori error estimates for mixed finite element solutions of convex optimal
control problems," J. Comp. Appl. Math., Vol. 211, pp. 76-89, (2008).

[5] Z.LuandY.Chen, “A posteriori error estimates of triangular mixed finite el ement methods for
semi-linear optimal control problems”, Adv. Appl. Math. Mech., Vol. 1, pp. 242-256, (2009).

[6] Z.LuandY. Chen, “L” -error estimates of triangular mixed finite element methods for optimal
control problem govern by semilinear €liptic equation”, Numer. Anal. Appl., Vol. 12, pp. 74-86,
(2009).

[7] Y.Chenand Z. Lu, “Error estimates of fully discrete mixed finite element methods for
semilinear quadratic parabolic optimal control problems”, Comput. Methods Appl.
Mech. Eng., Vol. 199, pp. 1415-1423, (2010).

[8] M. Hinze, “A variationa discretization concept in control constrained optimization: the linear
guadratic case”, J. Comput. Optim. Appl., Voal. 30, pp. 45-63, (2010).

[9] Z.Lu,Y.ChenandH. Zhang, “A priori error anaysis of mixed methods for nonlinear quadratic
optimal control problem”, Lobachevskii J. Math., Vol. 29, pp. 164-174, (2007).

[10] Y. Chen and Z. Lu, “Error estimates for parabolic optimal control problem by fully discrete
mixed finite element methods”, Finite Elem. Anal. Des., Val. 46, pp. 957-965, (2010).

[11] Y. Chen, L. Da and Z. Lu, “Superconvergence of rectangular mixed finite element methods for
constrained optimal control problem”, Adv. Appl. Math. Mech, Val. 2, pp.56-75, (2010).

[12] Y. Chen and W. B. Liu, “Error estimates and superconvergence of mixed finite elements for
quadratic optimal control,” Internat. J. Numer. Anal. Modeling, Vol. 3, pp. 311-321, (2006).

36



