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ABSTRACT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal
control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are
approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted.
Optimal error estimates in L2 are established for the state and the control variable. As a result, it can be proved
that the discrete solutions possess the convergence property of order h . Finally, a numerical example is
presented which confirms the theoretical results.
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INTRODUCTION
The finite element method of optimal control problems plays an important role in numerical methods
[1-2]. Systematic introduction of the finite element method for optimal control problems can be found
in [3].
In many control problems, the objective functional contains gradients of the state variables. Thus the
accuracy of the gradient is important in numerical approximation of the state equations. In finite
element method, mixed finite element methods are widely used to approximate flux variables,
although there is only very limited research work on analyzing such elements for optimal control
problems. More recently, some preliminary work have been done on a posteriori error estimates, error
estimates of mixed finite element methods for optimal control problems [4-7]. In [8], the author
presents the variational discretization concept for optimal control problems with control constraints.
However, it doesn't seem to be straightforward to extend these existing techniques to the semilinear
parabolic optimal control problems.
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In [9], the mixed finite element methods were used to discrete nonlinear elliptic optimal control
problems and derive an L2 priori error estimates. An L2 and L∽ priori error estimates for linear
parabolic optimal control problems have been obtained when the space discretization of the state
variable is done using usual mixed finite elements, the time discretization is based on different
methods, and the control is approximated by piecewise constant elements in [10]. In this paper
variational discretization and semi-discrete mixed finite element methods studied for semilinear
parabolic optimal control problems with integral constraint. The state and co-state are approximated
by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. An
L2 optimal error estimate for the state and control variable is structured and is proved that all the
discrete variables possess the convergence property of order h .
The following general semilinear parabolic optimal control problem is considered:
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Here, the admissible set of the control variable K is defined by:
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The plan of this paper is as follows. In section II, the variational discretization and mixed finite
element methods are structured for optimal control problems governed by semilinear parabolic
equations with integral constraint. In section III, a priori error estimates for the variational
discretization and mixed finite element approximation is derived for the optimal control problems. A
numerical example is presented in section IV.

VARIATIONAL DISCRETIZATION AND MIXED METHODS
The variational discretization and mixed finite element discretization of semilinear parabolic optimal

control problems with integral constraint are described below. Let )(2  LW and:
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The original optimal control problem is recast as the following weak form: find KWVuyp 


),,(
such that:
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It is well known that the above optimal control problem has a solution ),,( uyp


, and that a triplet
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where U),(  is the inner product of U . For simplicity, the product U),(  will be denoted as ),(  .

Let h be regular triangulation of  . These are assumed to satisfy the angle condition which means

that there is a positive constant C independent of h such that for all hT  , 221 || TT ChThC  ,

where || T is the area of T and Th is the diameter of T . Let )max( Thh  .

Let WVWV hh  denote the Raviart-Thomas spaces of the lowest order associated with the

triangulation
h of  . kP denotes the space of polynomials of total degree maximally k . If T is a

triangle then:
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By the definition of finite element subspace, the mixed finite element approximation of optimal
control problem is as follows:
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h Wxy )(0 is an approximation of 0y .
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It is well known that the above optimal control problem has a solution ),,( hhh uyp


, and that a triplet
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A PRIORI ERROR ESTIMATES
For any control function Ku ~ , the discrete state solution ))~(),~(),~(),~(( uzuquyup hhhh
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Lemma 1  There is a positive constant C independent of h such that:
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By applying the intermediate errors, the errors can be decomposed as:
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By Lemma 2.1 in [11], the following error estimates can be established.
Lemma 2  There is a positive constant C independent of h such that:
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NUMERICAL EXAMPLE
In this section, the priori error estimates are to be validated for the error in the control, state, and co-
state. The discretization was already simplified: the control function u is not discretized, whereas the
state ),( yp


and the co-state ),( zq


were approximations by the RT0 mixed finite element functions

[12].
The numerical example is the following optimal control problem:
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The admissible set of the control variable is:
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The same mesh partition for the state and the control are adopted such that ht  in the test. The
solutions are computed on a series of uniform meshes. Fig. (1) shows surfaces of the approximation
solution hu at 25.0t . The errors obtained on the variational discretization and mixed finite element

approximation for state functions and control function are presented in Table (1). Furthermore, the
convergence orders are shown by slopes in Fig. (2). This is consistent with the results previously
proved.

Table 1. The numerical errors for state and control functions.

h

Errors

u p
 y q


z

1/16 2.64e-02 6.15e-01 3.18e-02 2.63e-02 3.18e-02

1/32 1.32e-02 3.05e-01 1.56e-02 1.31e-02 1.56e-02

1/64 6.62e-03 1.53e-01 7.75e-03 6.61e-03 7.75e-03

1/128 3.31e-03 7.51e-02 3.88e-03 3.30e-03 3.87e-03



JCARME Variational Discretization and … Vol. 1, No. 1, Sept. 2011

35

Fig. 1. The profile of the control solution at 25.0t .

Fig. 2. The convergence orders on triangle mesh grids.
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CONCLUSIONS
In this paper, a priori error estimates is investigated for variational discretization and mixed finite
element methods of the semilinear parabolic optimal control problems with integral constraint. The
state and the co-state are approximated by the mixed finite element spaces and the control is not
discreted.
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