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Background and Objectives: To design an efficient tracker in a crowded 
environment based on artificial intelligence and image processing, there are 
several challenges such as the occlusion, fast motion, in-plane rotation, variations 
in target illumination and Other challenges of online tracking are the time 
complexity of the algorithm, increasing memory space, and tracker dependence 
on the target model. In this paper, for the first time, sketch matrix theory in ridge 
regression for video sequences has been proposed. 
Methods: A new tracking object method based on the element-wise matrix with 
an online training method is proposed including the kernel correlation Filter (KCF), 
circular, and sketch matrix. The proposed algorithm is not only the free model but 
also increases the robustness of the tracker related to the scale variation, 
occlusion, fast motion, and reduces KCF drift. 
Results: The simulation results demonstrate that the proposed sketch kernel 
correlation filter (SHKCF) can increase the computational speed of the algorithm 
and reduces both the time complexity and the memory space. Finally, the 
proposed tracker is implemented and experimentally evaluated based on video 
sequences of OTB50, OTB100 and VOT2016 benchmarks. 
Conclusion: The experimental results show that the SHKCF method obtains not 
only OPE partial evaluation of Out of view, Occlusion and Motion Blur in object 
accuracy but also achieved the partial evaluation of Illumination Variation, Out of 
Plane Rotation, Scale Variation, Out of View, Occlusion, In of Plane Rotation, 
Background Clutter, Fast Motion and Deformation in object overlap which are the 
first rank compared to the state-the-art works. The result of accuracy, robustness 
and time complexity are obtained 0.929, 0.93 and 35.4, respectively. 
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Introduction 

One of the most important aspects in the machine vision 

and pattern recognition systems is object tracking which 

has different applications such as video surveillance with 

CCTV, medical and military video analysis, human-

computer communication, and robotic smart vehicle [1]-

[6], [12]. The main task of tracking is that the object 

location is automatically estimated and scaled in the 

video sequences [1]. In the last decade, mathematical 

theories and modelling techniques in object tracking have 

been developed. These techniques are based on the 

dynamic and static learning theory, particle filters, 

discriminate correlation filters, pattern matching, deep 

neural networks, etc. [5].  

Despite this impressive progress, the existence of an 

object tracking algorithm that can be adapted to different 

conditions is still a challenging problem in machine vision. 

Besides, the majority of most previous approaches have 

been designed and implemented in simple landscapes. 

However, the online tracking of real objects in 
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unpredictable landscapes is still a big challenge because 

of illumination variations, occlusion, scale variations, and 

background clutter [6]-[8]. Therefore, developing this 

new design of online tracker is still needed to open up 

practical tracking applications. It is worth mentioning that 

the challenges based on tracking benchmarks can help to 

assess the accuracy, precision, and robustness of the 

tracking algorithm instead of the challenges within the 

real-world environments and online video sequences [9], 

[11]. For examples, OTB50 and OTB100 are two well-

known famous standard benchmarks [5], [12], [13]. 

Generally, modern trackers are divided into two main 

categories: the generative and discriminating trackers [9]. 

The generative tracker method is based on the random 

variable probability estimating explained as follows. The 

object is labelled on the first frame. Then, the estimation 

error between the initial and new samples is calculated. 

Finally, based on the results of the previous step, the best 

candidate is generated. This approach extracts two 

models: an appearance model for the object and another 

model for the background. The main goal of this tracker is 

to predict the object location using the maximum 

similarity of the test sample to the appearance model. 

The tracker calculates the density of test samples around 

the object location to increase prediction accuracy. Then 

the object is selected by a particle filter. The main 

problem of the generative tracker is its dependency on 

the labeled datasets. Also, small changes in the 

background cause object estimation from the test 

samples to be inaccurate and very erroneous. As a to 

these challenges, researchers are aiming to use new 

trackers, such as the average transmission tracker [15], 

ensemble object tracker [15], fragment-based tracker 

[16], and sparse representation tracker [17]. However, 

the discriminating tracker can detect the object within the 

background regarding an online classified problem [2]. 

Nowadays, discriminating trackers deploy machine 

learning and tracking algorithms based on the kernel 

correlation filter. The main reasons for using the 

correlation filter-based trackers are their high speed, 

stability, and accuracy since these trackers use both the 

object and background information [7], [9], [11]. Despite 

the advancements of discriminating trackers, the 

efficiency of the designed tracking algorithms must be 

evaluated and compared with different objects on the 

existing benchmarks and challenges (e.g., OTB100 and 

OTB50). 

The robustness and efficiency of the tracker are two 

main issues in the field of tracking that are highly 

competing in the literature. As already mentioned, 

improving the mentioned issues should be evaluated 

according to standard challenges (e.g., OTB50, OTB100, 

VOT2019, UAV123, LaSOT and TrackingNet). In this 

article, we have used two of the most widely used 

benchmarks, ot50 and otb100, and all our results are 

based on these two standard datasets. Also, the speed of 

the designed algorithm for calculating the object location 

is another issue that has to be considered within the 

algorithm evaluation. Recently, there have been attempts 

to overcome the above problems, such as multiple 

learning tracker [18], ensemble tracker [19], SVM tracker 

[8], correlation filter-based tracker, to name a few. It 

should be noted that the high capability and performance 

of the trackers based on discriminating correlation filters 

(DCF), compared to the most up-to-date available 

tracking algorithms, have been proven in [9], [18], [19]. In 

fact, the main advantages of DCF trackers are the 

multidimensional appearance model, circulant matrix, 

and frequency domain calculations explained in the next 

section. 

In the frequency domain, DCF learning comes with a 

huge learning cost, such as circular shift samples of the 

ground-truth object, because a circular shift introduces 

the unwanted boundary effects. This problem is partially 

mitigated by additional predefined spatial constraints on 

the filter coefficients. For example, Danelljan et al. [52] 

introduced spatial regularized differential correlation 

filters (SRDCF) to reduce boundary effects. It is expected 

from an object tracker to be spatially penalized by its 

distance from the object center. In order to generate true 

positive and negative samples of the model training, 

Galoogahi et al. [50] proposed Learning background-

aware correlation filters (BACF) for multiplied the 

correlation filter directly to binary matrix. In order to 

these mentioned method Learning Spatial-Temporal 

Regularized Correlation Filters for Visual Tracking (STRCF) 

and Visual Tracking via Adaptive Spatially-Regularized 

Correlation Filters (ASRCF) are also employed in literature 

for reducing mentioned boundary effect with spatial 

temporal Regularized and adaptive Spatially-Regularized, 

respectively. 

It should be mention that the appearance model of 

most DCF-based trackers is developed by a linear 

interpolation approach. However, these models cannot 

adapt to overall appearance variances, leading to filter 

degradation. In order to solve the problem of filter 

degradation, several approaches have been proposed in 

the literature, such as the training set management  [31], 

[32] and the temporal constraints, where temporal 

regularization has been proven to be an effective method. 

In order to solve most to challenging problem of 

unwanted boundary effect, we proposed sketch kernel 

correlation filters (SHKCF) for real time object tracking. 

We implemented and compared our approach with state-

of-the-art trackers in the OTB 100 benchmarks. The 

results show that SHKCF performs better than the state-

of-the-art trackers in terms of accuracy and 

computational speed. 



Design, Analysis, and Implementation of a New Online Object Tracking Method Based on Sketch Kernel Correlation Filter (SHKCF) 

J. Electr. Comput. Eng. Innovations, 12(1): 115-132, 2024                                                                       117 

 

The rest of the paper is organized as follows: Section II 

presents the related works on video sequence trackers. 

Section III introduces the KCF tracking algorithm. Then, 

the proposed method based on the kernel ridge 

regression (KRR), sketch kernel ridge regression (SKRR), 

and SHKCF video sequence tracking algorithm is analyzed 

and presented. Section V provides the test results and 

compares them with the SOTA works regarding the 

OTB100 and OTB50 datasets. 

Related Works 

As already mentioned, appearance modeling is one of 
the most important approaches for Conventional object 
tracking, which can be classified roughly into 
discriminative and generative methods [37]. Generative 
approaches identify an object by learning reference 
model with the most similar video sequence region, 
including sparse representation [55], template matching 
[39], subspace learning [54], the generative methods can 
provide more accurate performance in a small region and 
are robust against the object occlusion. But they are 
sensitive to the same distractions in the object’ 
surrounding region. 

During the past decade, trackers based on the well-
known regression are investigated and provided well 
performance [12]. Particularly, the series of the 
correlation filters-based trackers, KCF [1], SAMF [38], 
DSST [56], are demonstrated to be the best tracker in 
accuracy on the challenging of OTB100 [26]. 

Kernel correlation filter (KCF) is one of the methods 

used in DCF based trackers that has been highly 

investigated and developed by researchers in recent years 

[8]. The KCF method uses a set of patch mappings 

(positive/negative) and a classification between the 

object and its surroundings to create a kernel model. Fast 

Fourier transform (FFT) and the inverse fast Fourier 

transform (IFFT) are also employed to increase 

computational speed It is worth noting that the 

calculation speed of the correlation filter in the frequency 

domain is higher than in the time domain. Therefore, all 

calculations are performed in the frequency domain, and 

then the IFFT is employed to return them to the time 

domain. Finally, the KCF algorithm returns the object 

location as the output [9]. The results in [2], [5], [20] show 

that the KCF method enhances the object tracking 

performance compared to the SOTA works in terms of 

speed and robustness regarding the standard benchmark 

platforms [8]. However, some KCF method errors against 

various challenges remain unsolved, such as smart 

training, speed, drifting, and occultation. To the best of 

our knowledge, no other KCF object tracker has employed 

the sketch method. Although the sketch is introduced in 

Reference [7], its combination with the video sequence 

tracker has not yet been reported. So, in this paper, we 

combine the sketch method with the classic KCF tracker 

and demonstrate its pros and cons. In this paper, we 

propose a new method for object tracking based on the 

kernel correlation filter (KCF) and compare the results 

with the SOTA algorithms in object tracking scenarios. Our 

proposed method is based on SHKCF principle, which is 

proposed for the first time in video sequence tracking. We 

implement and evaluate our method according to OTB50 

and OTB100 benchmarks to validate the results. 

The main reason for the development of these 

algorithms is that the correlation filter calculates the 

learning coefficients and minimizes energy consumption 

[21]. This filter is also employed to calculate the variance 

of the training sample responses [22]. It should be noted 

that the basic filter-based trackers were designed based 

on calculations in the time domain. However, Bolme et al. 

proposed a filter learning method in the frequency 

domain [23]. In these filters, convolutional operators in 

the time domain transform into summations and 

multiplications in the frequency domain leading to a 

decrease in computational time. Therefore, 

implementing filters in the frequency domain leads to a 

very high frame rate, and the temporal complexity of the 

calculations reduces significantly. Although FFT-based 

algorithms are very effective and have many applications 

in signal processing, FFT has many limitations in tracking 

applications. Recently, the most efficient FFT-based 

tracker has been proposed by Henriques using the kernel 

method [1]. Previous algorithms did not consider a clear 

relationship between nonlinear kernels and Fourier 

domain parameters. So, they had high computational 

complexity and had limitations in image processing. This 

fact motivates Henriques to propose a simple connection 

between the transfer video patches and the training 

algorithms. Since 2015, researchers have improved 

Henriques’ tracker through combination with other 

methods such as circular structure kernel (CSK) tracker, 

color name (CN) tracker, spatially scaled discriminating 

tracker, and kernel correlation filter (KCF). The CSK 

tracker is designed based on light intensity features, but 

it is not robust to some challenges such as occlusion and 

deformation [9]. The KCF deployed the density of samples 

around the object location, minimum kernel squares, and 

the rotational shifting structure of the video patch for 

learning [15]. This tracker shows a more accurate and 

robust performance than the CSK tracker, because the 

intelligent samples in the correlation filter are trained by 

both the histogram of gradient directional (HOG) features 

and the circular shift matrix on the video sequence. In 

addition to the HOG features, KCF can be combined with 

the color name feature to promote multi-feature 

detections. The KCF has significant computational 

properties leading to online frame per second (FPS) rates. 

The KCF tracker, similar to the other trackers, can be 

trained using neural networks and deep learning 
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algorithms. Recently, [24] proposed a deep learning-

based method for estimating the object's location. This 

method, known as the CCOT method, combines location 

information with neural network features and correlation 

filters. It is worth noting that the CCOT tracker wins the 

VOT2016 challenge. For a fair comparison, we have 

compared the results of the proposed method with the 

results of CCOT using OTB100 and OTB50 challenges 

datasets. We also compared the results with the SOTA 

works having the same parameters and processing 

standard platform. Moreover, the KCF tracker can be 

combined with other mathematical matrices such as a 

multidimensional matrix with color scale features [25], 

[26] in a way that the calculations are performed using 

kernel functions and circulant matrix structure. To 

develop KCF trackers in the free model, multiple KCF 

trackers are proposed in [27]. Also, the online classifier 

Fern tracker is proposed in [28] to solve some other 

challenges (e.g., occlusion, out of view). To increase 

accuracy, some methods use the object and its vicinity 

pixels.  

In other words, the KCF tracker intercepts the object 

features using circular shifts and takes samples in the 

vicinities of the desired object. 

The Traditional KCF Tracker Algorithm 

The pattern in the first frame of the video sequence (X) 

is assumed as the input circulant matrix. This one-

dimensional circulant matrix is obtained by the original 

data set received from continuous frames: 𝑃𝑥 =
[𝑥𝑛. 𝑥1. … . 𝑥𝑛−1]

𝑇. Although, this circulant matrix can be 

extended to its two-dimensional form which considers all 

circular shifts:  {𝑃𝑥
𝑖|𝑖 = 0.… . 𝑛 − 1}. There are two 

possible shifts in each direction for this matrix. The matrix 

generated by the possible circular shifts is called the 

circulant matrix or data matrix. Therefore, the goal of KCF 

learning is to train the H filter as follows. Considering the 

minimum regression error, the KCF classifier is trained 

according to (1). 

𝐴𝑟𝑔 𝑚𝑖𝑛
𝐻

∑ (𝑓(𝐻; 𝑃𝑖𝑥) − 𝑌𝑖)
2 + 𝜆‖𝐻‖2

2𝑛
𝑖              (1) 

𝑓(𝐻; 𝑃𝑖𝑥) = 𝐻𝑇𝛷(𝑋)                                              (2) 

where 𝑓, H and 𝛷(𝑋) are the mapping function, KCF filter 

and the mapping of the X pattern in the Fourier domain, 

respectively. In this equation, two patterns are used, the 

learning pattern (X) and the regression pattern (Y). This 

method is known as the minimum output sum of squared 

error (MOSSE) calculation.  

The MOSSE calculation is obtained from the maximum 

values of the Gaussian function with the purpose of the 

minimal change in the circular shift. It should be noted 

that the digitalization of the Gaussian function, often 

termed 𝑃𝑖 is achieved in the KCF method based on the 

degree of circular shifts. The digital matrix 𝑃𝑖 is a matrix 

of zeros and ones indicating the incorrect and correct 

data, respectively. The detecting probability of an object 

is proportional to the number of correct data. Thus, for a 

detected object, the sum of correct data, is higher than a 

predefined threshold. The threshold is set by the designer 

and avoids falling into the local minimum trap. Equation 

(1) can be rewritten as (3): 

ℒ(𝐻) = Arg 𝑚𝑖𝑛
𝐻

‖𝐻𝑇𝛷𝐻 − 𝑌‖2
2 + 𝜆‖𝐻‖2

2                (3) 

where 𝛷𝐻 , λ≥0 and Y are the mapping of all circular shifts 

of the X pattern in the Fourier domain, the regularization 

parameter and the results of the regression object 

pattern, respectively. Equation (3) shows the cost 

function depends on the partial mapping function 𝛷 (.) 

explained as follow. 

If the partial mapping 𝛷 is linear, then 𝛷(𝑋) = 𝑋 

where 𝑋 = [𝑋1 𝑋2 … ]𝑇. The KCF filter function (H) can be 

written by 𝑯 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌, where 𝑰 is the identity 

matrix. The components of the H filter can be obtained 

from the X pattern using a circulant matrix. In other 

words, the H filter performs the diagonal matrix 

calculations using the discrete Fourier transform matrix 

(DFT). Therefore, the H filter in the Fourier domain with 

Hadamard Product (element-wise multiplication) is 

expressed as: 

�̂�∗ =
�̂�∗⨀�̂�

�̂�∗⨀�̂�+𝜆
                                                                    (4) 

where �̂� and �̂�∗ are the fast Fourier transform of X and 

the complex conjugate of X, respectively. It is worth 

mentioning when several patterns are employed in the 

training steps, the H filter is combined with all the 

patterns as [11]: 

�̂�∗ =
∑ �̂�∗⨀�̂�𝑚

𝑗=1

∑ �̂�∗⨀�̂�+𝜆𝑚
𝑗=1

                                                       (5) 

Due to the linearity of partial mapping Φ in (2), it is not 

possible to calculate the multiple features of the objects. 

If the partial mapping Φ is nonlinear, then the X pattern 

has various properties such as HOG. Due to the 

nonlinearity of the mapping, (2) will not have a suitable 

response. Thus, to solve the nonlinear mapping, the 

problem is converted to the ridge regression method and 

the new 𝐻 is calculated using kernel filter analysis as 𝐻 =

𝛷𝑇𝛼, where 𝛼 = (𝐾 + 𝜆𝐼)−1𝑌 and 𝐾 = 𝛷𝑋𝛷𝑋
𝑇. 

The Gaussian kernel function creates multiple features 

of the X pattern. In [16], it is proved that if the kernel 

matrix has a constant permutation, the kernel matrix K is 

circular. Regarding the circularity of the K matrix and DFT 

of the diagonal property in (2), the coefficient α 

(frequency domain) can be extracted as [7]. 

�̂�∗ =
�̂�

�̂�𝑋𝑋′
+𝜆

                                                               (6) 
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For the well-known  Gaussian kernel �̂�(x,x′) =

exp (−
1

σ2
(‖x − x′‖2)), Next 

�̂�𝑋𝑋′
= exp {−

1

𝜎2 (‖𝑋‖2 + ‖𝑋′‖2 −

2𝐹−1(∑ �̂�𝑑
∗⨀�̂�𝑑

′
𝑑 ))}                                                             (7) 

where �̂�𝑋𝑋′
, �̂� and �̂� are the Gaussian kernel, the object 

of FFT filter and response, respectively. 

A.  Kernel Ridge Regression with Circulant Matrix 

The idea of the proposed method is to minimize the 

difference between the output and the object's real 

location. To create a circulant matrix, we need to store 

the first column of the input matrix. Since a circulant 

matrix depends on its first column, a matrix formed by the 

circular shift method requires less memory [29]. The 

circulant matrix is shown as (8): 

𝐶 =

[
 
 
 
 
𝐶1      𝐶𝑚 𝐶𝑚−1 … 𝐶2

𝐶2     𝐶1  𝐶𝑚    ⋮⋱ 𝐶3

𝐶3     𝐶2  𝐶1    ⋮⋱ 𝐶4

⋮⋱        ⋮⋱        ⋮⋱         ⋮⋱     ⋮
𝐶𝑚 𝐶𝑚−1 𝐶𝑚−2 … 𝐶1

 

]
 
 
 
 

                       (8) 

The matrix (8) is expressed in closed form (9): 

𝐶[𝑚] = 𝑐𝑖𝑟[𝑐𝑗: 𝑗 ∈ {1.2. … .𝑚}]                              (9) 

Besides, the matrix C with two inputs i and j is 

displayed in the simple closed-form solution of (10): 

𝐶𝑖𝑗 = 𝑐(𝑖−𝑗)𝑚𝑜𝑑 𝑚                                               (10) 

It should be noted that the advantage of a circulant 

matrix is not only the decreased memory but also 

calculations in the Fourier domain are faster compared to 

time-domain convolution. Discrete Fourier transform 

(DFT) of a circulant matrix is calculated by (11): 

𝐶 =
1

𝑚
𝐺∗𝑑𝑖𝑎𝑔(𝐺𝑐)𝐺                                            (11) 

where 𝐶 = [C1,C2,…,Cm]𝑇 , 𝐺 = [𝑒𝑖(
2𝜋

𝑚𝑘𝑡
)]

𝑘∙𝑡=1

𝑚

 and 𝐺∗ are 

circulant matrix transpose,  discrete Fourier matrix and its 

conjugate, respectively.  𝑑𝑖𝑎𝑔(𝐺𝑐) is a diagonal matrix 

whose diagonal elements are the elements of  vector 𝐺. 

Moreover, the computational complexity is decreased 

from order 𝑚2 to 𝑚𝑙𝑜𝑔(𝑚) by the proposed method for 

tracking [9], [18]. 

B.  Complexity Analysis for Circulant Matrix 

A circulant matrix C ∈  ℝm×m [29] is a structured 

matrix, which is completely defined by its first column so 

that to reconstruct the entire matrix, need to store the 

first column, where m is the sketch dimension. The space 

complexity is 𝒪(𝑚) instead of 𝒪(𝑚2). Therefore, the 

space complexity for solving 𝒪(𝑛𝑚)  Furthermore, the 

circulant matrix can obtain a matrix-vector product (C ∗

V, V ∈ ℝm)by the fast Fourier transform (FFT), whose 

time cost is 𝒪(𝑚 𝑙𝑜𝑔(𝑚)) [44] the time required for the 

same operation with the unstructured Gaussian sketch. 

Therefore, the time complexity for solving the sketch 

matrix–kernel matrix product (𝑆𝐾) in our method is 

𝒪(𝑛𝑚 𝑙𝑜𝑔(𝑚)). For details, see [11]. 

Most importantly, the effectiveness of a circulant 

matrix whose inputs in the first column are independent 

and identically distributed (i.i.d.) Gaussian inputs is 

almost the same as that of an unstructured matrix with 

i.i.d. Gaussian inputs [42]. Due to the advantages 

mentioned above, the circulant matrices have attracted 

extensive attention in some fields: approximation of the 

kernel matrices [43], [44], kernel selection [45], [46], 

approximation of the kernel function [41], binary 

embedding [47], ect. To the best of our knowledge, the 

circulant matrix based on the random sketch has not been 

applied to KRR, except for a theoretical justification. The 

purpose method of using the circulant matrix in our 

method is different from previous methods. 

Proposed Algorithm Implementation Process 

Despite recent advances in KCF tracking algorithms, 

researchers have paid less attention to the learning 

section of KCF tracking algorithms. Careful design of this 

part can solve some challenges, such as drifting and speed 

issues. Therefore, we propose a new method to improve 

the learning section of the KCF tracking algorithm. First, 

we take a look into the background of the learning section 

based on Kernel ridge regression (KRR). 

The classical version of the KRR is well-known for 

solving complex statistical calculations based on the 

Hilbert transform. The goal of the KRR calculation is to 

produce an optimal approximation in the data set 
{(𝒙𝒊,𝒚𝒊)}𝒊=𝟏

𝒏  using the regression model. The 

mathematical expectation function 𝔼 between X and Y 

denoted by 𝑓∗(𝑥) = 𝔼[𝑌|𝑋 = 𝑥]. 

Notice that the KRR method is based on the convex 
equation as [12]: 

𝑓 = 𝑎𝑟𝑔 min
𝑓∈ ℋ

{
1

2𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1 + 𝜆𝑛‖𝑓‖ℋ

2 }     (12) 

The finite dimensions of n are used for optimizing the 
convex equations as: 

α = 𝑎𝑟𝑔 min
𝛼∈ ℝ𝑛

{
1

2
𝛼𝑇𝐾2𝛼 − 𝛼𝑇 𝐾𝑦

√𝑛
+ 𝜆𝑛𝛼𝑇𝐾𝛼}        (13) 

𝑓(∙) =
1

√𝑛
∑ 𝛼𝑖𝑘(.,𝑥𝑖)

𝑛
𝑖=1                               (14) 

where α, 𝑓(∙), 𝜆𝑛 and  K are the quadratic program, 
estimate function, regularization parameter and kernel 
function, respectively. Superscript of T in (13) is the 
transpose operator.  It should be noted that the temporal 
and memory complexities are from the order of 𝒪(𝑛3) 
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and 𝒪(𝑛2), respectively, leading to an increase in 
computational complexity and memory and reducing the 
efficiency of the KRR algorithm. 

A.  Sketch Kernel Ridge Regression 

Adding the circulant matrix to the KRR algorithm 

creates a new feature. Although the dimensions of the 

circulant matrix are small, it still needs to be made smaller 

to reduce the complex calculation and corresponding 

time. Since the large dimensions of the circulant matrix 

highly impact the computational speed, it motivated us to 

propose a sketch circulant matrix in video sequence 

trackers. This proposed method is called sketched KRR. It 

should be noted that the sketched KRR (SHKRR) has been 

previously introduced in statistical calculations [11]. 

However, this method is not employed in video sequence 

tracking yet. The SHKRR reduces the size of the kernel 

matrix and the speed of numerical calculations. In the 

SHKCF method, the sketched matrix is displayed by 𝑆 ∈

ℝ𝑚×𝑛. This matrix S is extracted from the pattern vector 

of X. The kernel matrix is sketched, because the 

dimensions of the kernel matrix are converted from the 

order of 𝑛 × 𝑛 to the order of 𝑚 × 𝑛 (𝑚 ≪ 𝑛). Generally, 

(17) has been applied to the SHKRR method [11]. 

Accordingly, the original KRR method is converted to the 

estimation of sketch kernel ridge regression (SKRR) by the 

sketch matrix. Therefore, we add (15) to the learning 

section of the KCF method and implement it in the Matlab 

platform, particularly for object tracking. This process is 

referred to as SHKCF in this paper. 

α′ = 𝑎𝑟𝑔 min
𝛼∈ ℝ𝑚

{
1

2
𝛼′𝑇(𝑆𝐾)(𝐾𝑆𝑇)𝛼′ − 𝛼′𝑇 𝑆𝐾𝑦

√𝑛
+

𝜆𝑛𝛼′𝑇𝑆𝐾𝑆𝑇𝛼′}     (15) 

It should be noted that this equation is a quadratic 

sketched program with 𝑚 dimensions, in which the 

equations of (𝑆𝐾2𝑆𝑇𝑎𝑛𝑑 𝑆𝐾𝑆𝑇) operate as  input 𝑚 

dimensional matrices  and the equation 𝑆𝐾𝑦 is 𝑚 

dimensional vector. To improve the computational, the 

sketched kernel matrix 𝑆𝐾 = [𝑆𝐾1, . . . , 𝑆𝐾𝑛] in the input 

is calculated in way that parallelization technique is 

employed across its columns. In addition, this sketching 

idea can be extended to other kernel approaches 

regarding other loss functions that Characterizing of its 

properties is an interesting research subject for future 

works [44]. 

In a sliding window technique, the (16) can be 

evaluated on total of the sub-windows for fast detecting. 

However, to compute total of the responses 

simultaneously, one can exploit the circular technique [1]. 

𝑓′(∙) =
1

√𝑛
∑ (𝑆𝑇𝛼′)𝑖𝑘(.,𝑥𝑖)

𝑛
𝑖=1                                        (16) 

with 

α′ = (𝑆𝐾2𝑆𝑇 + 2𝜆𝑛𝑆𝐾𝑆𝑇)−1𝑆𝐾𝑦                         (17) 

where K and I are the kernel matrix with elements 𝐾𝑖𝑗  =

 𝑘(𝑥𝑖;  𝑥𝑗  ), and the identity matrix, respectively. It should 

be noted that parameter α′, as the estimation function, is 

needed for solving the KCF filter (H) in (1). The main 

difference between (6) and (13) is that the sketch matrix 

is integrated into (13). As a result, we will explain how to 

calculate the sketch matrix in detail for implementing the 

KCF method in object tracking (OT), and then we will 

explain the proposed algorithm in a flowchart. 

The key to SKRR success is building the effective Sketch 

matrix in the tracking. Although many methods have been 

implemented to improve tracking through KRR upgrades, 

the Sketch circulant matrix has not yet been used in the 

tracking. 

B.  Sketch Kernel Ridge Regression Algorithm 

As already mentioned, the main part of the proposed 

method is the sketched matrix (S matrix) in (11)) which is 

added to the learning section of the KCF tracking. 

𝑆 =
1

√𝑚
𝐷𝐶𝑄     𝑠 ∈ ℝ𝑚×𝑛, 𝐷 ∈ ℝ𝑚×𝑚, 𝑄 ∈ ℝ𝑚×𝑛  (18) 

where D is Rademacher mapping between +1 or -1 which 

is similar to the behavior of the random diagonal matrix 

with a probability of ½. m is the dimension of the sketch 

matrix. 𝑄 represents the sampling matrix which consists 

of a random subset of m rows from the 𝑛 × 𝑛 identity 

matrix. 

Proposed algorithm: sketch KRR employing Circulant Matrix 

Input: Data set {(𝑥𝑖 . 𝑦𝑖)}𝑖=1
𝑛  

Output: α′ 

1- Initialization: kernel parameters, sketched 
matrix m, the regularization parameter 𝜆𝑛 ≥
√log(𝑛)

2𝑛
. 

2- Construction of a random diagonal matrix 𝐷 ∈
ℝ𝑚×𝑚, regarding the Rademacher variable 

3- Construction of a circulant matrix 𝐶 ∈ ℝ𝑚×𝑚, 
whose inputs in the first column are obtained 
from the standard normal distribution. 

4- Construction of a variable kernel matrix 𝐾′ ∈
ℝ𝑚×𝑛, which is based on the data sample of 
the Q matrix in Eq. (18).  

5- Calculate 𝑆𝐾 ∈ ℝ𝑚×𝑛 using FFT, 𝑆(𝑆𝐾)𝑇. 

Calculate α′ = (𝑆𝐾2𝑆𝑇 + 2𝜆𝑛𝑆𝐾𝑆𝑇)−1𝑆𝐾𝑦. 

 
The Circulant Kernel Ridge Regression (CKRR) shows 

our sketch approach. The Gauss kernel is a typical and 

representative kernel, so in this paper we mainly use 

Gaussian kernel for experiments. The kernel function (7) 

is used for all types of feature representations. In the 

function (9), there are two parameters need to be 

determined in advance, i.e., 𝜎 and 𝜆𝑛, the kernel 
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parameter and regularization parameter, respectively. 

That the 𝜆𝑛 in our approach meets 𝜆𝑛 =
√log(𝑛)

2𝑛
. 

Implementation of the SHKCF tracker is simple, i.e. 

there is no type of heuristic methods for motion modeling 

or failure detection. Using video sequence dataset SHKCF 

tracker can train a model at the object’s initial position in 

the first frame of the video sequence. To obtain some 

context, the searching window of SHKCF tracker is 

considered larger than the size of object. SHKCF tracker 

uses the previous position of the object over the window 

for each new frame. Then, the position of the object is 

updated to the one which yielded the greatest possible 

value. To obtain SHKCF tracker with some memory, SHKCF 

tracker train a new model in its new position. Finally, this 

tracker interpolates the value of α′ linearly with its values 

which are updated with the following equations of linear 

interpolation [57]. 

𝛼′𝑡 = (1 − 𝜃) ∗ 𝛼′𝑡−1 + 𝜃 ∗ 𝛼′                                           (18) 

𝑋′𝑡 = (1 − 𝜃) ∗ 𝑋′𝑡−1 + 𝜃 ∗ 𝑋′                                           (19) 

where α′, 𝑋’, 𝑡 and 𝜃 denote the kernelized regularized 

Ridge regression, the object appearance, the 𝑡-th frame 

and the learning rate, respectively. In fact, this updating 

strategy can work well when changing of object 

appearance is very slow or there is no occlusion. To solve 

this problem, two indicators are introduced for evaluating 

whether the target is in occlusion challenge and tune the 

learning rate adaptively. If the object is in occlusion 

challenge the learning rate is reducing; if else the learning 

rate is fixed. These indicators are Peak-to-Sidelobe Ratio 

(PSR) [23] and appearance similarity(d). then we tune the 

learning rate of 𝜃 = 𝛾 ∗ 𝜃𝑖𝑛, if d ≤ 0.22 and PSR≤ 30, 𝜃 =

𝜃𝑖𝑛, otherwise. where γ and 𝜃𝑖𝑛 are the relative ratio to 

decrease the learning rate and the initialization value, 

respectively [57].  

Fig. 1 shows the implementation steps of the proposed 

algorithm based on the sketch kernel. As can be seen in 

the proposed flowchart, a grayscale image sequence is 

first received to extract the object features. It should be 

noted that the coded color features of the object in 

grayscale image sequence are achieved by replicating the 

gray-scale image sequence into the its red, green and blue 

types and then extracting the object feature on this image 

as usual. The video sequence features are extracted by 

the HOG method. The circulant matrix is then generated 

and formulated by the first sequence patch of input data. 

A circulant matrix is used in the ridge regression kernel 

evaluated by the normal Gaussian distribution.  

In the proposed algorithm, the coefficient α′ is trained 

by calculating the sketched kernel correlation filter. 

Finally, the evaluation is performed to confirm the correct 

choice of the object. However, if the target is lost, the 

feature extraction operation is performed again by 

updating the learning section of the algorithm for the 

current frame. If the error is less than the specified 

threshold, the evaluation of the tracking operation is 

correctly determined, and the next frame is extracted. 

As already mentioned, the optimal value of α′ is 

trained with the pattern X. Besides, the coefficient α′ 

should be updated in each sequence of the flowchart (Fig. 

1) [19], [35], [36]. The object in the next frame is 

estimated using the H filter in the search area of the 

current frame. In other words, the function 𝑓(𝑧; 𝐻) =

𝐻𝑇𝜙(𝑧) is applied to the search area, where z is the 

evaluation data and the mapping 𝜙 is the latest updated 

model of the z. 

If the partial mapping 𝜙 is nonlinear, it can easily 

estimate several features of the object as a function 

𝑓(𝑧; α′) = 𝛼𝑇Φ�̃�𝜙(𝑧). It should be noted that linear 

mapping cannot estimate multiple features. According to 

the element-wise learning algorithm, the mapping z is 

calculated by considering the circular shifts element by 

element. Besides, the filter responses in the frequency 

domain are calculated as a function 𝑓′(𝑧; α′) =

(𝑘′�̃�𝑧⨀α′), where 𝑘′�̃�𝑧 is the estimate of the kernel matrix 

in the FFT of Φ�̃�Φ𝑧
𝑇 [33], [35]. Deferent form the earlier 

type SHKCF tracker [29], it is developed to deal with 

multiple channels, as input arrays’ third dimension. We 

implement SHKCF tracker by three functions: train (13), 

detect (14), and kernel correlation (7), which is 

demonstrated in Fig. 1. 

Evaluating the Proposed Method with other 

Kernel Tracking Algorithms 

For a fair comparison, some recent kernel-based video 

sequence tracking algorithms [29]-[34] are compared to 

the proposed algorithm. They have been evaluated on the 

OTB100/50 and VOT2016 challenges video sequence 

dataset and implemented by the same system (CPU: Core 

i7 RAM: 8GB, GPU: 4G). Fig. 2 shows the conventional 

challenges of OTB100/50 object tracking [7], including 

motion blur (MB), scale variation (SV), out of plane 

rotation (OPR), illumination variation (IV), occlusion 

(OCC), in of plane rotation (IPR), out of view (OV), 

background clutter (BC), low resolution (LR), fast motion 

(FM), deformation (DEF). For more clarity, three different 

kinds of one pass evaluation (OPE) are employed: 1- 

object accuracy, 2- object overlap and 3- qualitative 

comparison of algorithms. Note that OPE is to evaluate 

the threshold error of the object location and also overlap 

with ground truth. 

Using a Gaussian kernel, we propose and implement a 

new object tracker based on the sketch kernelized 

correlation filter. Then we experimentally test more 

variants which works on HOG features with 4 × 4 cell size 

pixels, in particular variant [42], [53]. It should be noted 

that we employed adaptation rate (𝜃𝑖𝑛) = 0.02, γ = 0.1, 
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spatial bandwidth is 𝑆 =
1

√𝑚
𝐷𝐶𝑄 (that 𝑚 =

1.25√log(𝑛) ≅ 2.17, 𝑛 = 1024), feature bandwidth 𝜎 =

0.5, and regularization 𝜆 =
√log(𝑛)

2𝑛
= 8.47 × 10−4 [44], 

in our SHKCF tracker. 

A.  Evaluation Methods 

To examination the tracker’s robustness the OPE 

technique is employed. In this way, The OPE evaluation 

operates on the object trackers just once in a video 

sequence. To analyze the trackers’ efficiency, plots of 

precision and success are shown in Fig. 3, Fig. 4 and Fig. 5. 

The threshold value 𝑡0 differs in range between 0 and 1 

for generating result of curves in the success plots. The 

threshold value of the success rate is bounded to 0.5 for 

evaluation  process.   In  the   other  hand,  the  Euclidean 

distance is calculated between the ground truth-  and 

estimated-centers in precision plots, measures center 

location error (CLE) [12], [31], as follows: 

CLE = υ𝑔𝑝 = √(𝑙𝑔 − 𝑙𝑝)
2
+ (𝑟𝑔 − 𝑟𝑝)

2
,                (20) 

where (𝑙𝑔;  𝑟𝑔) and  (𝑙𝑝;  𝑟𝑝) are the ground truth center 

location and the predicted center location of the object in 

a frame, prospectively. During tracking, the average error 

metric cannot be used to accurately measure the tracking 

performance, as the tracker can lose the actual object’s 

location and the estimated location can be random. 

Instead, it may be a better performance metric to use the 

percentage of frames whose estimated location is within 

the specified threshold distance from the ground truth. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Flowchart of the proposed tracking algorithm (SHKCF). 

 

 

 

 

 

 

 

 

 

Fig. 2: Conventional challenges of video sequences for goal tracking, from [7]. 
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𝑧 =
∑ 𝜒(𝜐𝑔𝑝)𝑁

𝑛=1

𝑁
∗ 100,                  (21) 

𝜒(𝜐𝑔𝑝) = {
1  𝑖𝑓 𝜐𝑔𝑝

𝑛 ≤  𝜐𝑡ℎ 

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
,                 (22) 

where N is all number of frames. Legends in the plots of 

precision demonstrate that precision regarding to a 

threshold of  𝜐𝑡ℎ = 20 pixels. Due to error of object 

center location just measures pixel difference, precision 

cannot produce a clear picture of estimated object shape 

and size. Thus, success plots have been employed as a 

more robustness measurement. In this way, an overlap 

score (OS) is computed between the ground truth- and 

the estimated-bounding box, which is based on area 

under the curve (AUC) [12], [31], as follows: 

𝐴𝑈𝐶 = 𝑜𝑤 =
𝑎𝑟𝑒𝑎(|𝑢𝑡 ∩𝑢𝑔 |)

𝑎𝑟𝑒𝑎(|𝑢𝑡 ∪𝑢𝑔 |)
,                 (23) 

where 𝑢𝑡 , 𝑢𝑔 , |.| ∩ and ∪ are the object bounding box, 

the ground-truth bounding box, the number of pixels, 

intersection and union of two regions, respectively. The 

overlap score is employed to demonstrate whether an 

object tracking algorithm has been successfully tracked an 

object in the frame. To demonstrate the successful 

frames 𝑜𝑤 score should have more value than a threshold. 

Similar to precision, another performance metric is 

considered for computing of the overlap score 

percentage, as follows: 

𝑤 =
∑ Γ(𝑜𝑤

𝑖 )𝑁
𝑛=1

𝑁
∗ 100,                  (24) 

Γ(𝑜𝑤
𝑖 ) = { 1  𝑖𝑓 𝑜𝑤

𝑖 ≤ 𝑡0 
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

,                 (25) 

where N and 𝑡0 are all number of frames and  the overlap 

score threshold, respectively. 

B.  Quantitative Evaluation 

The overall success performance and the precision of 

all the trackers over OTB100 are plotted in Fig. 3, where 

overlap precision (OP) metric is applied by computing the 

bounding box overlaps greater than 0.5 in a video 

sequence. In addition, we provide the overlap success 

plots containing the OP metric over a range of thresholds. 

We compare SHKCF tracker with 8 state-of-the-art 

trackers and one base tracker, including trackers (i.e. ECO 

[32], CCOT [35], ECO_HC, DeepSRDCF [52], SRDCFdecon 

[31], KCF [1], ASRCF [59], BACF [50] and DeepSTRCF [52])). 

It should be noted that for fair comparison, we use the 

publicly available codes or results provided by the 

authors. As can be seen, in Fig. 3 the result of precision 

plots of our SHKCF tracker have better than other trackers 

based on correlation filters and the result of success 

performance of our SHKCF tracker ranks second after 

ASRCF tracker with a difference of 0.017. To decrease the 

drifting problem, the distribution of correlation response 

is modeled in a sketch optimization framework by the 
SHKCF algorithm, making the object location in each 

frame more accurate. 

For better understanding, overall comprehensive 

evaluations of nine top trackers are summarized in Table 

1. Table 1 demonstrates that our SHKCF tracker has 

obtained the best results between three kernel 

correlation filter based trackers and also other type 

trackers. Comparing to KCF_DP [1], the SHKCF tracker gets 

a 32.9%, 55.7% and 78.4% improvement for AUC score, 

OP score and speed, respectively. Comparing to ASRCF 

[58], the SHKCF tracker achieves a 0.65%and 6.4% 

improvement for AUC score and speed, respectively. Also, 

the overall comprehensive evaluation results show that 

SHKCF promotes the KCF’s performance [11] which 

 

Fig. 3: Success plots (right) and precision plots (left) of our SHKCF tracker against the other ones (ECO [32], CCOT [35], 

ECO_HC, DeepSRDCF [52], SRDCFdecon [31], KCF [1], ASRCF [59], BACF [50] and DeepSTRCF [52]))) on the OTB100  

benchmark video sequence. 
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employee the identical scale strategy and features as our 

object tracker. 

 
Table 1: Overall comprehensive evaluations of our SHKCF and 
other trackers 

 

Tracker Mean OP (CLE) AUC (OS) 

SHKCF(OUR+ HOG) 0.878 0.929 

ASRCF 0.895 0.923 

ECO 0.867 0.916 

C-COT 0.840 0.903 

DeepSTRCF 0.776 0.892 

ECO-HC 0.795 0.860 

DeepSRDCF 0.776 0.846 

SRDCFdecon 0.774 0.827 

BACF 0.669 0.824 

KCF_DP 0.564 0.699 
 

Table 2 and Table 3 demonstrate OPE partial 

evaluation of target accuracy based on OTB100 and 

OTB50 datasets. Basically, the output is based on the area 

under the curve (AUC).  

The evaluation accuracy of the tracking algorithm is 

between zero and one. 

If the output is closer to one, more similarity is 

obtained between the actual  and  estimated  location  of 

the object. the evaluation was performed in 1500 

different conventional video sequences, as OTB100 and 

OTB50.  

Also, the output is an average number of 100 video 

sequences (OTB100) in Table 2 and Table 3. Ranking in 

Table 2 and Table 3 is depicted by green/Bold, red/Italic 

and blue/underline for first, second and third rank, 

respectively. 

In addition, we demonstrate the tracking speed (FPS) 

comparison on OTB-2015 dataset in  

Table 4 One can see that SHKCF (HOGCN) runs at 22.1 

FPS. SHKCF (HOG) using HOG feature performs even 

faster and obtains a real-time speed of 35.4 FPS, which is 

1.6× and 1.13× faster than BACF and STRCF tracker, 

respectively. 

As shown in Table 2, the proposed algorithm wins in 

IPR, BC and FM challenges, Location error overall and 

Precision OPE (fps). The results of Table 2 demonstrate 

that the SHKCF method is a good choice considering 

object tracking accuracy since it gains one of the best 

ranks in most challenges.  

The results of Table 3 demonstrate that the SHKCF 

method a lower performance in OCC and MB challenges 

than modern trackers. Fig. 4 and Fig 5 demonstrate the 

precision and success plots of the proposed method and 

other SOTA methods, respectively.  

The ground-truth location in the first frame acts as an 

initial value for evaluating the test sequence.  

It is worth mentioning that the algorithms are ranked 

based on AUC. 

 

 

Table 2: OPE partial evaluation of object accuracy based on AUC calculations 

Deformation 
[44] 

Fast 
motion 

[39] 

Low 
resolution 

[9] 

Background 
Clutter[31] 

Out-of-
view [15] 

In-plane-
rotation 

[52] 

Occlusion 
[48] 

Motion 
Blur [30] 

Scale 
Variation 

[64] 

Out-of-
Plane 
[63] 

illumination 
Variation 
[36][36] 

Tracker 

0.916 0.907 0.942 0.943 0.834 0.910 0.889 0.867 0.905 0.915 0.913 SHKCF(OUR) 

0.917 0.902 0.999 0.929 0.918 0.897 0.909 0.881 0.906 0.929 0.924 ASRCF 

0.869 0.897 0.882 0.936 0.914 0.887 0.927 0.888 0.892 0.918 0.906 ECO 

0.871 0.896 0.977 0.862 0.890 0.862 0.921 0.887 0.885 0.903 0.869 C-COT 

0.861 0.844 0.881 0.846 0.839 0.830 0.881 0.833 0.871 0.884 0.829 DeepSTRCF 

0.813 0.840 0.888 0.846 0.825 0.802 0.860 0.798 0.832 0.845 0.811 ECO-HC 

0.782 0.831 0.847 0.820 0.787 0.817 0.820 0.817 0.825 0.840 0.766 DeepSRDCF 

0.754 0.787 0.747 0.839 0.654 0.774 0.779 0.809 0.815 0.803 0.825 SRDCFdecon 

0.805 0.781 0.925 0.771 0.667 0.820 0.758 0.763 0.802 0.811 0.780 BACF 

0.629 0.637 0.700 0.715 0.526 0.702 0.642 0.601 0.647 0.689 0.725 KCF 
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Table 3: Partial evaluation of OPE object overlap 

Deformat
ion [44] 

Fast 
motion 

[39] 

Low 
resolution 

[9] 

Background 
Clutter [31] 

Out-of-
view [15] 

In-plane-
rotation [52] 

Occlusion 
[48] 

Motion 
Blur [30] 

Scale 
Variation 

[64] 

Out-of-
Plane 
[63] 

illumination 
Variation 

[36] 

 

Tracker 

0.857 0.857 0.807 0.883 0.794 0.847 0.847 0.860 0.844 0.868 0.867 SHKCF(OUR) 

0.868 0.874 0.808 0.907 0.856 0.847 0.882 0.875 0.858 0.889 0.900 ASRCF 

0.831 0.863 0.717 0.853 0.800 0.829 0.865 0.881 0.841 0.863 0.868 ECO 

0.803 0.838 0.738 0.779 0.791 0.775 0.861 0.862 0.817 0.823 0.815 C-COT 

0.829 0.832 0.802 0.812 0.789 0.802 0.856 0.833 0.841 0.864 0.811 DeepSTRCF 

0.764 0.785 0.607 0.792 0.740 0.715 0.787 0.775 0.749 0.764 0.767 ECO-HC 

0.708 0.777 0.713 0.724 0.676 0.734 0.736 0.781 0.754 0.753 0.717 DeepSRDCF 

0.693 0.755 0.679 0.761 0.663 0.715 0.736 0.796 0.765 0.738 0.764 SRDCFdecon 

0.654 0.684 0.341 0.709 0.617 0.678 0.618 0.728 0.560 0.673 0.621 BACF 

0.527 0.557 0.304 0.630 0.492 0.570 0.520 0.558 0.449 0.555 0.560 KCF 
 

Table 4: The FPS results of trackers on OTB-2015. The best three results are shown in green, blue and red fonts, respectively. 

 ECO_HC SRDCF SRDCFDecon KCF_DP STRCF DeepSRDCF CCOT BACF SHKCF(HOGCN) SHKCF 

(HOG) 

FPS 15.6 5.8 2.0 16.7 31.5 5.3 0.3 26.7 22.1 35.4 
 

The number in the parentheses specifies how many 

sequences are used in each challenging scenario. 

According to the precision of OPE in Fig. 4, our SHKCF 

algorithm finds the best result results in some challenging 

scenarios (MB, OCC and OV). Moreover, the experimental 

result of Fig. 4 shows that our SHKCF method achieves 

second and third rank in other challenging scenarios. The 

horizontal and vertical axis in each precision plot of OPE 

indicates the location error and overlap threshold  of  the 

OT algorithm, respectively (Fig. 4 and Fig. 5). Comparing 

results between the proposed method and the top ten 

related works demonstrate that our method has a close 

or even better performance than other methods. Note 

that all methods are implemented using the same 

platform challenges and processor. The final result of the 

AUC calculation is presented at the bottom right of each 

precision plot in Fig. 4. 

 

   

 

    

    
Fig. 4: Precision distance plot of our SHKCF tracker and other trackers (ECO [32], CCOT [35], ECO_HC, DeepSRDCF [52], SRDCFdecon 
[31], KCF [1], ASRCF [59], BACF [50] and DeepSTRCF [52])) on OTB100 [12] benchmark on eleven different challenges (IV, OPR, SV, 

FM, MB, Def, OCC, IPR, OV, BC and LR). The legend has score at a threshold of 20 pixels for each object tracker. 
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C.  Qualitative Evaluation 

For more clarity, Fig. 6 shows the result of the 

qualitative comparisons evaluated between SOTA works 

(e.g., ECO, CCOT, ECO_HC, DeepSRDCF, SRDCFdecon, KCF, 

ASRCF, BACF, DeepSTRCF) and SHKCF. In order to cover 

overall the tracking challenges, random sequences are 

selected as shown in Fig. 6, which is including Soccer, 

Matrix, Ironman, Basketball, Bolt, Bird, Deer, Biker and 

Panda. These samples include several available challenges 

of the OTB 100 benchmark. 

Soccer video sequence sample:  

In this sample with 383 frames evaluates on SV, OCC, 

MB, IPR, OPR and BC challenges. According to 

experimentally result Fig. 6, in frame 30, all trackers were 

able to track the target correctly, it should be noted that 

in its 70th frame SV, MB and IPR challenges are evaluated, 

and the tracking drift is observed in the evaluation of KCF 

and DeepSRDCF trackers. In frame 110, four trackers (KCF, 

BACF, ARSCF and DeepSTRCF) completely lost the target, 

and five trackers (ECO, C_COT, ECO_HC, SRDCFDecon and 

DeepSRDCF) partially overlap the target, and only the 

proposed tracker of SHKCF tracker succeeds in tracking 

the target. Farther more in frame 345, KCF and 

DeepSRTCF trackers completely lost the target and the 

other six trackers and our tracker found the target 

position and overlapped the target. 

Matrix video sequence sample: 

In this sample with 91 frames evaluates on IV, SV, OCC, 

FM, IPR, OPR and BC challenges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Fig. 6, in frame 15, DeepSRDCF and C_COT 

trackers have partial overlap and the other trackers and 

our tracker have full overlap. At frame 40, except for the 

ECO and C_COT trackers which have partial overlap, the 

all other trackers lost the target. In the next frame of 

matrix sample, except the ECO and C_COT trackers which 

have complete overlap, the all other trackers lost the 

target. In this example, the proposed tracker lost the 

target from frame 40 onwards, and the tracker could not 

correct itself in the next frames. 

In this sample with 91 frames evaluates on IV, SV, OCC, 

FM, IPR, OPR and BC challenges. According to Fig. 6, in 

frame 15, DeepSRDCF and C_COT trackers have partial 

overlap and the other trackers and our tracker have full 

overlap. At frame 40, except for the ECO and C_COT 

trackers which have partial overlap, the all other trackers 

lost the target. In the next frame of matrix sample, except 

the ECO and C_COT trackers which have complete 

overlap, the all other trackers lost the target. In this 

example, the proposed tracker lost the target from frame 

40 onwards, and the tracker could not correct itself in the 

next frames. 

Ironman video sequence sample: 

In this sample with 157 frames evaluates on IV, OCC, 

FM, IPR, OPR, OV and BC challenges. According to Fig. 6, 

in frame 36, the BACF and DeepSRDCF trackers the target 

is lost the target, the other trackers have partial overlap, 

and the proposed tracker has the most overlap with the 

target. At frame 54, four trackers (BACF, KCF, DeepSRDCF 

and SRDCFdeecon) have lost the target, and one tracker 

   

 

    

    
Fig. 5: Overlap success plots of our SHKCF tracker and other trackers (ECO [32], CCOT [35], ECO_HC, DeepSRDCF [52], SRDCFdecon 
[31], KCF [1], ASRCF [59], BACF [50] and DeepSTRCF [52])) on OTB100 [12] benchmark on eleven different challenges (IV, OPR, SV, 

FM, MB, Def, OCC, IPR, OV, BC and LR). The legend has score at a threshold 0.5 pixels for each object tracker. 
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(DeepSRTCF) has partial overlap and the other trackers, 

including the proposed SHKCF tracker, have full target 

overlap. 

Basketball video sequence sample: 

In this sample with 716 frames evaluates on IV, OCC, 

FM, IPR, OPR, OV and BC challenges. According to Fig. 6, 

in frame 30, only the SRDCFdecon tracker lost the target. 

At frame 650, the ECO tracker with partial occlusion, the 

target window is larger than the ground-truth and does 

not overlap completely. At frame 717, the ECO tracker 

misses the target completely, the SRDCFdecon tracker has 

partial overlap, and the other trackers track the target 

correctly. 

Bolt video sequence sample: 

In these sample with 341 frames evaluates on OCC, 

OPR and BC challenges. According to Fig. 6, except for the 

SRDCFdecon tracker, the other trackers found the target 

correctly. 

Bird video sequence sample: 

In this sample with 716 frames evaluates on OCC, DEF, 

FM, IPR, OPR and OV challenges. According to Fig. 6, in 

frame 20, except for the KCF tracker which has a partial 

target overlap, the other trackers found the target 

correctly. At frame 123, three SRDCFdecon, KCF, ECO_HC 

trackers lost the target. At frame 182, the proposed 

tracker found the target completely, and the two trackers 

have partial overlap, and the other trackers lost the 

target. In frame 391, only two SHKCF and ASRCF trackers 

found the target correctly. 

Deer video sequence sample: 

In this sample with 62 frames evaluates on MB, FM, IPR 

and BC challenges. According to Fig. 6, in frame 20, all 

trackers track the target correctly. In frame 30, three 

trackers (DeepSRDCF, ECO and C_COT) lost the target.  

At frame 40, only one tracker (C_COT) lost the target 

and the other trackers found the target correctly. At 

frame 40, all trackers found the target correctly. 

Biker video sequence sample: 

In this sample with 133 frames evaluates on OCC, MB, 
FM, OPR, OV and LR challenges. According to Fig. 6, in 
frame 68, three trackers (DeepSRDCF, BACF and C_COT) 
lost the target and other trackers, including the proposed 
SHKCF tracker, follow the target correctly. In frames 80, 
84, and 140, the proposed tracker and five other trackers 
(SHKCF, ECO_HC, DeepSRTCF, KCF, ECO and SRDCFDecon) 
found the tracker with proper overlap. 

Panda video sequence sample: 

In this sample with 991 frames evaluates on DEF, IPR, 

OPR, OV and LR challenges. According to Fig. 6, in frame 

110, the trackers are tracking the target correctly. At 

frame 213, only one tracker (SRDCFDecon) has missed the 

target, and other trackers, including the proposed tracker, 

are tracking the target. At frame 345, the proposed 

tracker and seven other trackers found the target with 

proper overlap. At frame 645, three trackers (C_COT, 

DeepSRDCFand SRDCDecon) lost the target and the 

proposed tracker found the target correctly with other 

modern trackers. 

The SHKCF, ASRCF, ECO, the DeepSRDCF, the CCOT and 

the SRDCFdecon succeeded in object tracking in a clean 

environment. To highlight the strange of our tracker 

against other trackers, quality evaluation in the 

illumination variation of the object, clearly shows that our 

tracker can only track the object in the “Matrix” 

challenges. These quantity output results corroborate 

that our method has better experimental results than 

other works. As mentioned before, we employ the same 

parameters and the protocol generated in the OTB100 for 

all video sequences. 

 

 
Table 5: Evaluation on VOT2016 benchmark by expected average ovelap (EAO), Accuracy and robustness 

 ECO  SRDCF  BACF  SRDCFDecon  ECO_HC  DeepSTRCF  SHKCF (OUR) 

EAO 0.369 0.249 0.221 0.259 0.329 0.318 0.321 

Accuracy 0.52 0.51 0.58 0.51 0.54 0.56 0.54 

Robustness 0.78 1.61 1.80 1.49 1.13 0.96 0.89 

A.  The VOT-2016 Benchmark 

We demonstrate the results on VOT2016 [21] 

benchmark, the VOT2016 benchmark consists of 60 video 

sequences. We evaluate the trackers of expected average 

overlap (EAO), accuracy and robustness [31].  

 

The EAO measures the average without-reset overlap of 

a tracker over several video sequences. The accuracy 

computes the average overlap ratio between the 

predicted and the ground-truth box. And the robustness 

averages the number of tracking failures on the video 

sequence. 
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    SHKCF          ASRCF         DeepSRTCF        BACF        ECO         C-COT        ECO-HC         DeepSRDCF          SRDCFdecon         KCF 

Fig. 6: Qualitative analysis of trackers SHKCF(OUR), ECO [32], CCOT [35], ECO_HC, DeepSRDCF [52], SRDCFdecon [31], KCF [1], 
ASRCF [59], BACF [50] and DeepSTRCF [52] over OTB100 [12] benchmark on eleven challenging sequences (from up to down 

Soccer, Matrix, Ironman, Basketball, Bolt, Bird, Deer, Biker and Panda respectively). 
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Results and Discussion 

We compare SHKCF with state-of-the-art trackers, 

including ECO [32], SRDCF [52], BACF [50], SRDCFDecon 

[31], ECO_HC [32] and DeepSTRCF [52]. Table 5 

demonstrates the results of different trackers on VOT-

2016 dataset.  

We can see from Table 5  that SHKCF performs 

significantly better than the DeepSTRCF, BACF and SRDCF 

methods in terms of the EAO metric. In addition, SHKCF 

also performs favorably against DeepSTRCF, BACF and 

SRDCF by a gain of 2.6%, 4.4% and 2.9% in EAO metric, 

respectively.  

Compared to modern trackers, the SHKCF tracker was 

ranked second and three in robustness and accuracy, 

respectively. 

Conclusion 

In this paper, we have proposed, analyzed, and 

implemented the sketch kernel correlation filter (SHKCF) 

for object tracking.  

The proposed method improves the basic correlation 

filter trackers. Although the sketch matrix theory was first 

proposed in regression, this method was not employed in 

object tracking scenarios which motivated us to employ it 

in the KCF basic algorithm. We exploit the learning section 

of the filter by integrating a new parameter 𝛼 with 

original KCF trackers.  

To speed up learning and detection, the element-wise 

matrix is trained by a sketch algorithm. The element-wise 

matrix is developed by a circulant matrix to sketch 

method.  

Experimental results on OTB100 and OTB50 standard 

challenges such as MB, SV, OP, IV, OCC, IPR, OV, BC, LR, 

FM demonstrate that the SHKCF algorithm can further 

develop the original KCF tracker performance compared 

to most of the state-of-art works. In addition, the SHKCF 

method provides optimal optimization for scaling and 

occlusion problems. 

 Besides, the proposed algorithm shows that it has 

better accuracy and robustness compared to other 

trackers based on in-depth training, ECO, CCOT, ECO_HC, 

DeepSRDCF, SRDCFdecon, KCF, ASRCF, BACF and 

DeepSTRCF.  

Finally, the experimental results of the quality 

comparison of our SHKCF method with other SOTA works 

related to the online CFT demonstrate the better 

performance of the proposed algorithm. In order to 

developed our SHKCF method for the object tracking, the 

BACF algorithm may be incorporated to the Sketch 

coefficient for the learning model, leading to increase the 

learning speed.  

Therefore, in addition to the advantages the BACF 

algorithm such as efficient background target modeling, 

the mention boundary effect of these new incorporating 

method of BACF.  and SHKCF can solves the local 

minimum problem BACF.  

This new algorithm may perform better in various 

challenges.  
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Abbreviations  

MB Motion Blur 

SV Scale Variation 

OPR Out of Plane Rotation 

IV Illumination Variation 

OCC Occlusion 

IPR In of Plane Rotation 

OV Out of View 

BC Background Clutter 

LR Low Resolution 

FM Fast Motion 

DEF Deformation 

OPE One Pass Evaluation 

CLE Center Location Error 

AUC Area Under the Curve 

KCF Kernel Correlation Filter 
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