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Keywords: one-regular graph, symmetric graph, Cayley graph
2010 Mathematics Subject Classification: Primary 05C25; Secondary 20B25.

1 Introduction

Gardiner and Praeger in 1994 constructed 4-valent one-regular graphs of prime order,
see [6]. Let p and q be two primes. Every tetravalent one-regular graph of order p or pq or
p2 is a circulant graph and all of them have been classified in [15]. Furthermore, in [5, 17]
the authors classified tetravalent one-regular graphs of order 2pq and 4p2. Here, we study
the tetravalent one-regular graphs of order p2q2 and show all of them have Cayley structure.
We prove that in such Cayley graphs either the p-Sylow subgroup of G is cyclic and then the
regarded group is abelian or q-Sylow subgroup of G is cyclic. The presentation of a group of
order p2q2 can be found in [12]. All graphs in this paper are undirected, finite, and connected
without loops or multiple edges. For a graph Γ, we use V(Γ), E(Γ) and Aut(Γ) to denote
its vertex set, edge set and its full automorphism group, respectively. A graph Γ is said to
be vertex-transitive if Aut(Γ) acts transitively on V(Γ). For a positive integer s, an s-arc of
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Γ is an (s + 1)-tuple (v0,v1, · · · ,vs) of vertices such that {vi−1,vi} ∈ E(Γ) for 1 ≤ i ≤ s and
vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1. In particular, a 1-arc is called an arc for short and a 0-arc is a
vertex. If X ⩽ Aut(Γ) and X is transitive on s-arcs of Γ, then Γ is called a (X, s)-arc transitive
graph. In addition, if X is not transitive on the set of (s + 1)-arcs of Γ, then Γ is called a
(X, s)-transitive graph. If X = Aut(Γ), then (X, s)-arc transitive and (X, s)-transitive graphs
are called s-arc transitive graphs and s-transitive graphs, respectively. A (X,1)-arc transitive
graph is called symmetric. A graph is said to be one-regular if its automorphism group acts
regularly on the set of its arcs.

Let G be a permutation group on Ω and α ∈ Ω. The stabilizer Gα is the subgroup of G
fixing the point α. The group G is called semi-regular on Ω if Gα = 1, for every α ∈ Ω and
regular if G is transitive and semi-regular. Let G be a finite group and S be a symmeric subset
of G (1 /∈ S = S−1 = {g−1|g ∈ S}). The Cayley graph Γ = Cay(G,S) has vertex set V(Γ) = G
and edge set E(Γ) = {{g, sg} | g ∈ G, s ∈ S}. For every element g ∈ G, the map ρg given by
x 7→ xg, x ∈ G, is a permutation on G and the set of all such permutations is called the right
regular representation of G denoted by R(G). One can see that R(G) is a regular subgroup of
Aut(Γ) isomorphic with G. It is a well-known fact that Γ is connected if and only if G = ⟨S⟩,
that is, S generates G. In general, it is a very difficult task to find the full automorphism
group of a graph. Although, we know that a Cayley graph is vertex-transitive, in general it is
difficult to determine whether it is edge-transitive or arc-transitive. Suppose that Aut(G,S) =
{α ∈ Aut(G),α(S) = S}. Obviously, R(G)⋊ Aut(G,S)≤ Aut(Γ). Let A = Aut(Γ), according
to [16], we have NA(R(G)) =R(G)⋊ Aut(G,S). The Cayley graph Γ = Cay(G,S) is said to
be normal if the right regular representation R(G) of G is normal in Aut(Γ) and in this case,
R(G)� Aut(Γ) or equivalently Aut(Γ) =R(G)⋊ Aut(G,S). The Cayley graph Γ =Cay(G,S)
is said to be normal symmetric if NA(R(G)) acts transitively on the set of arcs.

2 Main results

In this section, we determine all tetravalent one-regular Cayley graphs of order p2q2. If
q = 2, then all tetravalent one-regular graphs of order 4p2 have been determined in [5] and
we can conclude the following result.

Theorem 2.1. Let p ̸= 2 be a prime and Γ = Cay(G,S) be tetravalent symmetric Cayley graph on
groups of order 4p2. Then Γ is 1-transitive. Moreover, if Γ is also one-regular, then Γ is a normal
Cayley graph.

Lemma 2.2. [14] Every transitive abelian group is regular.

Lemma 2.3. [14] Suppose G is a permutation group on Ω and P is a p-Sylow subgroup of G, where
p is a prime. Let w ∈ Ω, if pm divides the length of the G-orbit containing ω. Then pm also divides
the length of the P-orbit containing w.

For a finite group G, the product of all nilpotent normal subgroups of G is called the
Fitting subgroup of G denoted by Fit(G).
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Theorem 2.4. [13] If G is solvable group, then Fit(G) ̸= 1 and CG(Fit(G)) ≤ Fit(G).

We recall that Op(G) is the unique largest normal p-subgroup of the finite group G, where
p is a prime number and it can be found by taking the intersection of all of the p-Sylow
subgroups of G. If a p-Sylow subgroup of a finite group G has a normal p-complement, then
G is called p-nilpotent. The set of all p-Sylow subgroups of G is denoted by Sylp(G).

Theorem 2.5. [4] Let G be a group acting transitively on a set Ω and H � G. Then the group H has
at most |G : H| orbits and if the index |G : H| is finite, then the number of orbits of H divides |G : H|.

Theorem 2.6. (i) [2] A graph Γ is isomorphic to a Cayley graph on a group G if and only if its
automorphism group has a subgroup isomorphic to G acting regularly on the vertex set of Γ.

(ii) [2] A circulant graph is vertex-transitive. A vertex-transitive graph with a prime number of
vertices must be a circulant graph.

(iii) [15] Every tetravalent one-regular graph of order p2 is a circulant graph.

Suppose Γ is a symmetric graph and consider the transitive subgroup X of Aut(Γ). Let
N be a normal subgroup of X. Then the quotient graph ΓN is the graph with orbits of N as
its vertices and two vertices are adjacent if there is an edge between these two orbits in Γ. If
further the valency of ΓN equals the valency of Γ, then Γ is called a regular cover of ΓN.

Theorem 2.7. [6] Let Γ be symmetric graph of valency 4 and X ≤ Aut(Γ) be arc-transitive. If
N � X, then one of the following cases holds,

1. N is transitive on V(Γ);

2. Γ is bipartite and N acts transitively on each part of the bipartition;

3. N has r ≥ 3 orbits on V(Γ), the quotient graph ΓN is a cycle of length r, and X induces the full
automorphism group D2r of ΓN;

4. N has r ≥ 5 orbits on V(Γ), N acts semi-regularly on V(Γ), the quotient graph ΓN is a tetrava-
lent connected X/N-symmetric graph and Γ is a regular cover of ΓN.

Theorem 2.8. Let Γ be a one-regular tetravalent graph of an odd order m. Assume A = Aut(Γ).
Then the following cases holds,

1. If A has a subgroup of order m, then Γ is a Cayley graph;

2. If Av ∼= C4, then Γ is a normal Cayley graph;

3. If Av ∼= C2 × C2 and 3 ∤ m, then Γ is a normal Cayley graph.
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Proof. (1) Let A has a subgroup G of order m. By the orbit-stabilizer theorem for the
vertex v, we have |orbG(v)| = |G : Gv|. On the other hand, A acts regularly on the arc set of
Γ, hence |Av| = 4. But Gv devides m and so the fact that m is odd implies Gv ∼= ⟨1⟩. Hence, G
acts regularly on the vertex set of Γ. Applying Theorem 2.6 yields Γ is a Cayley graph.
(2) By [11, Theorem 7.51], A has a normal subgroup of order m and by the Case 1, Γ is a
normal Cayley graph.
(3) Suppose H ∼= C2 × C2

∼= Av is a 2-Sylow subgroup of A. It is not difficult to see that
|Aut(H)|= (22 − 1)(22 − 2) = 6 and there is an embedding NA(H)/CA(H) ↪→ Aut(H). Obvi-
ously, |NA(H)/CA(H)| divides |A|. Since H is abelian, H <CA(H) and then 2 ∤ |NA(H)/CA(H)|.
On the other hand, (3, |A|) = 1, and thus NA(H) = CA(H). Hence, by Burnside’s Theo-
rem [10, Theorem 6.17] H has a normal complement in A. This means that A has a normal
subgroup of order m and by Case 1, Γ is a normal Cayley graph. 2

Theorem 2.9. Let Γ be a one-regular tetravalent graph of order p2q2, where p > q ̸= 2 are prime.
Assume A = Aut(Γ), then the following cases hold,

(1) If A has a subgroup of order p2q2, then Γ is a Cayley graph;

(2) If Av ∼= C4, then Γ is a normal Cayley graph;

(3) If Av ∼= C2 × C2 and q ̸= 3, then Γ is a normal Cayley graph;

(4) If Av ∼= C2 × C2, q = 3, then Γ is a Cayley graph.

Proof. The Cases 1-3 have been discussed in Theorem 2.8. For the Case 4, let P be a
p-Sylow subgroup of A. Then np = 1 + kp | 36, and if p ̸= 5, 11, 17, we can conclude that
np = 1; therefore, P � A. Now, let Q be a q-Sylow subgroup of A. Hence, PQ ≤ A and
|PQ| = p2q2 and the proof is similar to Case 1. For p = 11 or p = 17, by [9, Theorem 1.37 ]
and [9, Corollaries 1.39, 1.40 ], we have |Op|= p or p2. If |Op|= p2, then Γ is a Cayley graph. If
|Op|= p, then the embedding NA(Op)/CA(Op)∼= A/CA(Op) ↪→ Aut(Op)∼= Cp−1 yields that
|CA(Op)| ≥ p2q2 and CA(Op) has a subgroup of order p2q2. This means that Γ is a Cayley
graph. For p = 5, let PQ ≰ A. Then P and Q are not normal subgroups of A. By using a Gap
program, there is only one group of the order 9 × 25 × 4 = 900 with the above conditions
which is isomorphic with A ∼= A5 × C15, a contradiction. So, all one-regular graphs of order
225 have Cayley structures. 2

Theorem 2.10. Let G be a finite group of order p2q2, where p > q ̸= 2 are prime numbers and Γ =

Cay(G,S) be a Cayley graph of valency 4. If Γ is an (X,1)-arc transitive, where G ≤ X ≤ Aut(Γ),
then one of the following cases holds:

1. G is normal in X, X1 ≤ D8 and |X1| ≥ 4;

2. There is a subgroup P < X such that P � G and Γ is a cover of ΓP;

3. X has a unique minimal normal subgroup N ∼= C2
p such that
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(a) G = N ⋊ R ∼= C2
p ⋊ C9 ;

(b) X = N ⋊ ((H ⋊ R).C2) ∼= C2
p ⋊ ((C2

2 ⋊ C9).C2) and X1 = H.C2
∼= (C2 × C2).C2;

(c) NH ∼= D2p × D2p;

(d) H ⋊ R = C2
2 ⋊ C9 = ⟨a,b, c | a2 = b2 = c9 = 1, ab = ba, c−1ac = ab, c−1bc = a⟩;

(e) X/(NH) ∼= D18.

Proof. By [8, Theorem 1.1] the proof is straightforward. 2

Theorem 2.11. Let G be a finite group of order p2q2, where p > q ̸= 2 are prime numbers and
Γ = Cay(G,S) be a Cayley graph of valency 4.

(i) If Γ is one-regular, A = Aut(Γ) and P ∈ Sylp(G), then the following cases hold,

(a) A ∼= GA1 and A1
∼= C4 or C2 × C2,

(b) P � A and A is solvable,

(c) If A1
∼= C4 then G � A,

(d) If A1
∼= C2 × C2 and q ̸= 3 then G � A.

(ii) If Γ is one-regular, A = Aut(Γ) and P ∼= Cp2 is a p-Sylow subgroup of G. Then G is an abelian
group.

Proof. (i) Since Γ is a Cayley graph, the proof of part (a) is clear. For the next one, we
know that P � G, hence G ⊆ NA(P) and |A : NA(G)| = 1 + kp | 4, (p > 3) which implies that
NA(P) = A. It is clear P and A/P are solvable, hence A is solvable and the proof of part (c)
is a result of [11, Theorem 7.51]. There is a similar proof for the part (d), as we have done in
the Case (3) of Theorem 2.8.

(ii) We know that P ∼= Cp2 ≤ Fit(A), hence Fit(A) ̸= ⟨1⟩. We prove that Fit(A) = G which
yields that G is abelian. Suppose Fit(A) ̸= G, then only one of the following possibilities
holds:
Fit(A) = Cp2 , Fit(A) = Cqp2 , Fit(A) = C2qp2 , Fit(A) = C2P2 , |Fit(A)| = 4p2, |Fit(A)| = 4qp2.
We prove that all of them are impossible. By Theorem 2.4,

NA(Fit(A))/CA(Fit(A)) = A/Fit(A).

Hence if Fit(A) = Cp2 , then

NA(Fit(A))/CA(Fit(A)) ∼= A/Fit(A)→ Aut(Fit(A)) ∼= Cp(p−1).

Therefore, A/Fit(G) is abelian. On the other hand, Γ is a Cayley graph, hence two Cases 1, 2
in Theorem 2.7 for N = Fit(G) are impossible. Let ΓN be the quotient graph of Γ relative to
the orbits of N and K be the kernel of A acting on V(ΓN). By Lemma 2.3, the orbits of N are of
length p2. Thus |V(ΓN)| = q2, N ≤ K, and A/K acts transitively on arcs of ΓN. For the Case
3 in Theorem 2.7, we have ΓN is a cycle of length q2 and hence A/K ∼= D2q2 , which yields
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|K| = 2p2. Since A/K is a subgroup of A/P, it follows that A/P is a non-abelian group,
a contradiction. For the Case 4 of Theorem 2.7, ΓN is A/N-symmetric graph, hence A/N
is transitive on the vertices of ΓN and also is abelian. Therefore, by Lemma 2.2, A/N acts
regularly on the vertices of ΓN, a contradiction. Therefore, Fit(G) ̸∼= Cp2 . Similarly, the other
cases are impossible. Suppose |Fit(A)| = 4p2 or 4qp2. Since N ≤ K, where K is the kernel of
A acting on V(ΓN). ΓN is a symmetric graph of valency 2 or 4 and by Theorem 2.7, A/K acts
transitively on arcs of ΓN. Then 2 | |A/K|, which is clearly impossible, because |A| = 4p2q2.
Therefore, |Fit(A)| = p2q2 and so G is an abelian group. 2

Theorem 2.12. Let G be a finite group of order p2q2, where p > q ̸= 2 are prime numbers, and let
Γ = Cay(G,S) be a connected Cayley graph of valency 4. Assume Γ is one-regular, A = Aut(Γ) and
P ∼= Cp × Cp ∈ Sylp(G). Then G ∼= (Cp × Cp)⋊ Cq2 .

Proof. Since Γ is a Cayley graph, two Cases 1, 2 in Theorem 2.7 for N ∼= Cp × Cp ∼=
P, are impossible. By Theorem 2.5, the number of orbits of N on G are q2. Let ΓN be the
quotient graph of Γ relative to the orbits of N and K be the kernel of A acting on V(ΓN).
Thus |V(ΓN)| = q2, N ≤ K and A/K acts transitively on the arcs of ΓN. For the Case 3 in
Theorem 2.7, ΓN is a cycle of length q2 and hence A/K ∼= D2q2 , which yields that |K| = 2p2.
Since Cq2 ≤ A/K, and A/K is a subgroup of A/P, it follows that the q-Sylow subgroup of
A (and G) is cyclic. Now, for the Case 4, let ΓP be the quotient graph of Γ relative to the
orbits of P. By Lemma 2.3, the orbits of N are of length p2. Thus |V(ΓP)| = q2 and A/P acts
transitively on the arcs of ΓP. Now, by Theorems 2.6(ii) and 2.6(iii), ΓP is a circulant graph
and so it is a Cayley graph on an abelian group. Hence the q-Sylow subgroup of A (and G) is
cyclic; therefore, G ∼= (Cp × Cp)⋊ Cq2 . 2

3 Tetravalent normal symmetric Cayley graphs on group of order p2q2

Let G be a group of order p2q2(p > q) with generating set S = {a,b, a−1,b−1}. Suppose
Γ = Cay(G,S) is a Cayley graph, then an automorphism of Aut(G,S) satisfies in one of the
following rules:

α :
{

a 7→ b−1

b 7→ a
, α2 :

{
a 7→ a−1

b 7→ b−1 , α3 :
{

a 7→ b
b 7→ a−1 , β :

{
a 7→ b
b 7→ a

,

α ◦ β :
{

a 7→ a
b 7→ b−1 , α2 ◦ β :

{
a 7→ b−1

b 7→ a−1 , α3 ◦ β :
{

a 7→ a−1

b 7→ b
, i :

{
a 7→ a
b 7→ b

.

It is not difficult to see that α4 = β2 = i, β−1 ◦ α ◦ β = α3 and so ⟨α, β⟩ ∼= D8. In other words,
we can conclude the following theorem.

Theorem 3.1. Let G be a group of order p2q2 with the symmetric generating subset S= {a,b, a−1,b−1}.
Then Aut(G,S) ≤ ⟨α, β⟩ ∼= D8.

Theorem 3.2. Let Γ =Cay(G,S) be a normal symmetric Cayley graph of order p2q2, where p > q ̸= 2
are primes and S = {a, a−1,b,b−1}, (a ̸= b). Then o(a) ̸= p, p2,q2.
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Proof. Suppose Γ = Cay(G,S) is a normal symmetric Cayley graph of order p2q2(p > q)
where G = ⟨a,b⟩ and S = {a, a−1,b,b−1}, (a ̸= b). It is a well-known fact that Aut(G,S) is a
2-group. Since |S| = 4, we conclude that |Aut(G,S)| = 2 or 4 or 8. On the other hand, Γ is
normal symmetric which yields C4 or C2 × C2 is a subgroup of Aut(G,S). First, suppose that
C4

∼= ⟨α⟩ ≤ Aut(G,S) and necessarily o(a) = o(b). Since |G|= p2q2, one of the following cases
holds:
Case 1. o(a) = o(b) = p. Suppose H = ⟨a⟩ and K = ⟨b⟩, then H ≤ P and K ≤ P(P ∈ Sylp(G) is
normal) which implies that ⟨H ∪ K⟩ ⊆ P. This yields G = ⟨a,b⟩ ⊆ P, a contradiction.
Case 2. o(a) = o(b) = p2 and suppose H = ⟨a⟩ and K = ⟨b⟩, then H = P, K = P and thus
⟨H ∪ K⟩ = P = G, a contradiction.
Case 3. o(a) = o(b) = q2, put H = ⟨a⟩ and K = ⟨b⟩, then H,K ∈ Sylq(G) and then there exists
x ∈ G such that H = Kx. Now, according to [12], we have the following subcases:
Subcase 1. G ∼= Cq2 ⋉φ Cp2 ∼= ⟨c,d | cq2

= dp2
= 1, c−1dc = dr⟩, which yields (without loss

of generality) a = c, b = cdi
= d−icdi. It implies that α(b) = α(cdi

) = α(c)α(di) = a. Hence

(c−1)
diα(di)

= (c−1)dj
= c, a contradiction.

Subcase 2.

G ∼= Cq2 ⋉φ (Cp × Cp)

∼= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = dλ, c−1ec = eλ,de = ed⟩,

which yields a = c, b = cdiej
= d−ie−jcdiej. Hence α(b) = α(cdiej

) = α(c)α(diej) = a and so

(c−1)
diejα(diej)

= (c−1)dnem
= c, a contradiction.

Subcase 3.

G ∼= Cq2 ⋉φ (Cp × Cp)

∼= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = d, c−1ec = eλ,de = ed⟩,

which implies that a = c, b = cej
= e−jcej. In other words, α(b) = α(cej

) = α(c)α(ej) = a. Hence

(c−1)
ejα(ej)

= (c−1)em
= c, a contradiction.

Subcase 4.

G ∼= Cq2 ⋉φ (Cp × Cp)

∼= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = dλ, c−1ec = eλl

,de = ed⟩

and we can verify that a = c, b = cdiej
= d−ie−jcdiej. Similarly, we have α(b) = α(cdiej

) =

α(c)α(diej) = a and so (c−1)
diejα(diej)

= (c−1)dnem
= c, a contradiction.

Subcase 5. G ∼= Cq2 ⋉φ (Cp × Cp)
∼= ⟨c,d, e | cq2

= dp = ep = 1, c−1dc = dλeγN, c−1ec = dγeλ,de = ed,λ2 − γ2N ̸= 0, N ̸= n2,λ +

γ
√

N ̸= 1⟩. Again, we can verify that a = c, b = cdiej
= d−ie−jcdiej and thus α(b) = α(cdiej

) =

α(c)α(diej) = a. Consequently, (c−1)
diejα(diej)

= (c−1)dnem
= c, a contradiction.
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Now, suppose C2 × C2
∼= ⟨α2, β⟩ ⊆ Aut(G,S), then Aut(G,S) acts transitivily on S. Hence,

in this case, the Cayley graph Γ is normal symmetric. Again, we can consider the following
cases:
Case 1. o(a) = o(b) = p.
Case 2. o(a) = o(b) = p2. For both of them the proof is similar to that of in Subcase 4.
Case 3. o(a) = o(b) = q2, put H = ⟨a⟩ and K = ⟨b⟩ then H,K ∈ Sylq(G) and hence H = Kx for
some x ∈ G. Now, according to [12], we have the following subcases:
Subcase 1. G ∼= Cq2 ⋉φ Cp2 = ⟨c,d | cq2

= dp2
= 1, c−1dc = dr⟩, where a = c, b = cdi

= d−icdi. It
implies that β(d) = d−1, α2oβ(d) = d−1, α2(d) = d. Hence α2(c−1dc) = α2(dr), so c2d = dc2, a
contradiction.
Subcase 2. G ∼= Cq2 ⋉φ (Cp × Cp)

= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = dλ, c−1ec = eλ,de = ed,λq = 1⟩. Hence Z(G) = ⟨cq⟩ ∼=

Cq, where a = c, b = cdiej
= d−ie−jcdiej. This implies that β(diej) = (diej)−1, α2oβ(diej) =

(diej)−1, α2(diej) = diej. Hence α2(c−1diejc) = α2((diej)λ), so c2(diej) = (diej)c2 and a2 = b2, a
contradiction.
Subcase 3. G ∼= Cq2 ⋉φ (Cp × Cp)

= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = d, c−1ec = eλ,de = ed,λq = 1⟩. Hence Z(G) = ⟨cq,d⟩ ∼= Cpq,

where a = c, b = cej
= e−jcej. In other words, β(ej) = (ej)−1, α2oβ(ej) = (ej)−1, α2(ej) = ej.

Hence α2(c−1ejc) = α2((ej)λ), so c2(ej) = (ej)c2 and a2 = b2, a contradiction.
Subcase 4. G ∼= Cq2 ⋉φ (Cp × Cp)

= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = dλ, c−1ec = eλt

,de = ed,λq = 1⟩. Hence Z(G) = ⟨cq⟩ ∼= Cq,
where a = c, b = cdiej

= d−ie−jcdiej. Consequently, β(diej) = (diej)−1, (α2 ◦ β)(diej) = (diej)−1,
α2(diej) = diej. Hence α2(c−1diejc) = α2((di)λ(ej)λt

), (α2 ◦ β)(c−1diejc) = (α2 ◦ β)((di)λ(ej)λt
),

β(c−1diejc) = β((di)λ(ej)λt
), so β(d) = (α2 ◦ β)(d) = d−1, α2(d) = d, β(e) = (α2 ◦ β)(e) =

e−1, α2(e) = e, so c2d = dc2 and c2e = ec2, a contradiction.
Subcase 5. G ∼= Cq2 ⋉φ (Cp × Cp)

= ⟨c,d, e | cq2
= dp = ep = 1, c−1dc = dλeγN, c−1ec = dγeλ,de = ed,λ2 − γ2N ̸= 0, N ̸= n2,λ +

γ
√

N ̸= 1⟩, where a = c,b = cdiej
= d−ie−jcdiej and so β(diej) = (diej)−1, (α2 ◦ β)(diej) =

(diej)−1, α2(diej) = diej. Thus α2(c−1diejc) = α2(diλ+jγejλ+iγN), (α2 ◦ β)(c−1diejc) = (α2 ◦
β)(diλ+jγejλ+iγN), β(c−1diejc) = β(diλ+jγejλ+iγN), so β(d) = (α2 ◦ β)(d) = d−1, α2(d) = d, β(e) =
(α2 ◦ β)(e) = e−1, α2(e) = e, so c2d = dc2 and c2e = ec2, a contradiction. 2

3.1 symmetric Cayley graphs on abelian groups of order p2q2

Here, we determine the full automorphism group of symmetric tetravalent Cayley graphs
Cay(G,S), where G is an abelian group of order a square product of two primes. To do this,
first notice that there are only four abelian groups of order p2q2. In the case that q = 2, in [7]
all tetravalent symmetric graphs of order 4p2 have been determined. In the following, we
determine the automorphism group for each graph. Here, in this section, α, β are as given in
Theorem 3.1. For solving all congruence equations, we applied [3, Theorem 9.13].

Theorem 3.3. Let G be an abelian group of order p2q2, where p> q ̸= 2 are primes with the symmetric
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generating subset S = {a,b, a−1,b−1} and Γ = Cay(G,S) be a symmetric Cayley graph. Then the
following cases holds,

1. o(a) ̸= p, p2,q,q2,

2. If o(a) = pq, then G ∼= Cpq × Cpq and Aut(Γ) ∼= (Cpq × Cpq)⋊ D8,

3. If o(a) = p2q, then G ∼= Cp2 × Cq × Cq and |Aut(G,S)| = 4,

4. If o(a) = pq2, then G ∼= Cq2 × Cp × Cp and |Aut(G,S)| = 4,

5. If o(a) = p2q2, then G ∼= Cp2q2 and |Aut(G,S)| = 4.

Proof. By [1, Theorem 1.2], we have Aut(Γ) ∼= G ⋊ Aut(G,S) and G is an abelian group,
so the proof of part 1 is clear. For the second one, we know that G = ⟨a,b⟩ = ⟨a⟩.⟨b⟩ =
⟨a⟩ × ⟨b⟩ ∼= Cpq × Cpq, then it is not difficult to see that Aut(G,S) = ⟨α, β⟩ ∼= D8. Hence Γ is
not an one-regular Cayley graph and Aut(Γ) ∼= (Cpq × Cpq)⋊ D8.

For the part 3, let o(a) = o(b) = p2q, H = ⟨a⟩, and K = ⟨b⟩. Then G = ⟨a,b⟩= ⟨a⟩.⟨b⟩= HK
and | G |=| HK |= |H||K|

|H∩K| = p2q2. Since a ̸= b, we conclude that |H ∩ K| = p2. Suppose that

a = xz,b = yzi, where (i, p2) = 1. Hence G ∼= Cq × Cq × Cp2 ∼= ⟨x,y,z | xq = yq = zp2
= 1, xy =

yx, xz = zx,yz = zy⟩ = ⟨a,b | a = xz,b = yzi, (i, p2) = 1⟩. Now, by a same discussion in the
proof of Theorem 3.2, two following cases hold:

Case 1. Suppose ⟨α⟩ ≤ Aut(G,S), since Aut(G)∼= Cp(p−1) × GL(2,q), we have α(a) = b−1

and α(b) = a. This means that α(xz) = y−1z−i, α(yzi) = xz, α(z) = z−i, α(zi) = z, α(x) = y−1

and α(y) = x. Consequently, zi2+1 = 1 and so 1 + i2 ≡ 0 (mod p2) or p = 4k + 1. Finally, if
o(a) = o(b) = p2q, the Cayley graph Γ is symmetric if and only if aiq = bq, 1 + i2 ≡ 0(mod p2)

and p = 4k+ 1. Clearly, Aut(G,S)∼= C4. Since β(a) = b and β(b) = a; it means that β(xz) = yzi

and β(yzi) = xz. We conclude that zi2 = z and so i2 − 1 ≡ 0(mod p2), (i2 + 1 ≡ 0(mod p2)).
Consequently, p2 divides 2, a contradiction. This means that β /∈ Aut(G,S) and Γ is one-
regular Cayley graph. Hence Aut(Γ) ∼= (Cq × Cq × Cp2)⋊ C4.

Case 2. Suppose that ⟨α2, β⟩ ≤ Aut(G,S). In this case, i2 ≡ 1(mod p2) and it is not difficult
to see that Aut(G,S) = ⟨α2, β⟩ ∼= C2 × C2. Hence Aut(Γ) ∼= (Cq × Cq × Cp2)⋊ (C2 × C2) and
Γ is one-regular graph.

For the part 4, let o(a) = o(b) = pq2, H = ⟨a⟩ and K = ⟨b⟩. Then G = ⟨a,b⟩= ⟨a⟩.⟨b⟩= HK
and | G |=| HK |= |H||K|

|H∩K| = p2q2. Since a ̸= b, we conclude that H ∩ K = q2. Suppose that

a = xz, b = yzi, where (i,q2) = 1. Hence G ∼= Cp × Cp × Cq2 ∼= ⟨x,y,z | xp = yp = zq2
= 1, xy =

yx, xz = zx,yz = zy⟩ = ⟨a,b | a = xz,b = yzi, (i,q2) = 1⟩. Again, we consider two cases:
Case 1. Suppose ⟨α⟩ ≤ Aut(G,S). According to the structure of Aut(G)∼= Cq(q−1) × GL(2, p),
we have α(a) = b−1 and α(b) = a. This means that α(xz) = y−1z−i and α(yzi) = xz. Conse-
quently, α(z) = z−i, α(zi) = z, α(x) = y−1 and α(y) = x. Hence zi2+1 = 1 and thus 1 + i2 ≡
0(mod q2). Therefore, according to [12, Theorem 3] we have q = 4k + 1. Finally, if o(a) =
o(b) = pq2, the Cayley graph Cay(G,S) is tetravalent normal symmetric if and only if aip =
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bp, 1 + i2 ≡ 0(mod q2), where q = 4k + 1. It is not difficult to prove that Aut(G,S)∼= C4, since
β(a) = b and β(b) = a. Consequently, β(xz) = yzi and β(yzi) = xz. This means that β(z) = zi,
β(zi) = z, β(x) = y, and β(y) = x. Thus zi2 = z and so i2 − 1≡ 0(mod q2), (i2 + 1≡ 0(mod q2)), a
contradiction. Hence β /∈ Aut(G,S) and Aut(Γ)∼= (Cp ×Cp ×Cq2)⋊C4 and Γ is a one-regular
graph.

Case 2. Suppose ⟨α2, β⟩ ≤ Aut(G,S). In this case, i2 ≡ 1(mod p2) and it is not difficult to
see that Aut(G,S) = ⟨α2, β⟩ ∼= C2 × C2. Hence Aut(Γ) ∼= (Cp × Cp × Cq2)⋊ (C2 × C2) or Γ is
one-regular graph.

For the last part, let G = Cp2q2 ∼= ⟨a⟩. Assume a = bi, where (i, p2q2) = 1. Two cases hold:
Case 1. Suppose ⟨α⟩ ≤ Aut(G,S). So α(a) = α(bi) which means that b−1 = ai. Conse-

quently, α2(a) = α2(bi) and so a−1 = b−i. This yields bi2+1 = 1, hence 1 + i2 ≡ 0(mod p2q2)

and thus p = 4k + 1, q = 4k
′
+ 1. In other words, Aut(G,S) = C4, since β ∈ Aut(G,S), then

a = bi and β(a) = β(bi). Hence b = ai yields a = ai2 and so ai2−1 = 1. It means that p2q2 divides
i2 − 1 and i2 + 1, which implies that p2q2 | 2, a contradiction. Therefore, β /∈ Aut(G,S). Hence
Aut(Γ) ∼= Cp2q2 ⋊ C4 and Γ is one-regular graph.

Case 2. Suppose ⟨α2, β⟩ ≤ Aut(G,S). In this case, i2 ≡ 1(mod p2q2) and thus p = 4k+ 1, q =
4k

′
+ 1. We can verify that Aut(G,S) = ⟨α2, β⟩ ∼= C2 × C2. Hence Aut(Γ) ∼= Cp2q2 ⋊ (C2 × C2)

and Γ is one-regular graph. 2
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