Research Paper

Tetravalent one-regular graphs of order $p^{2} q^{2}$
 Modjtaba Ghorbani', Aziz SeyyedHadi , Farzaneh Nowroozi-Larki

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-163, I. R. Iran

Academic Editor: Mohammad Reza Darafsheh

Abstract

A graph is called one-regular if its full automorphism group acts regularly on the set of arcs. In this paper, we classify all connected one-regular graphs of valency 4 of order $p^{2} q^{2}$, where $p>q$ are prime numbers. We also prove that all such graphs are Cayley graphs.

Keywords: one-regular graph, symmetric graph, Cayley graph
2010 Mathematics Subject Classification: Primary 05C25; Secondary 20B25.

1 Introduction

Gardiner and Praeger in 1994 constructed 4-valent one-regular graphs of prime order, see [6]. Let p and q be two primes. Every tetravalent one-regular graph of order p or $p q$ or p^{2} is a circulant graph and all of them have been classified in [15]. Furthermore, in [5,17] the authors classified tetravalent one-regular graphs of order $2 p q$ and $4 p^{2}$. Here, we study the tetravalent one-regular graphs of order $p^{2} q^{2}$ and show all of them have Cayley structure. We prove that in such Cayley graphs either the p-Sylow subgroup of G is cyclic and then the regarded group is abelian or q-Sylow subgroup of G is cyclic. The presentation of a group of order $p^{2} q^{2}$ can be found in [12]. All graphs in this paper are undirected, finite, and connected without loops or multiple edges. For a graph Γ, we use $V(\Gamma), E(\Gamma)$ and $A u t(\Gamma)$ to denote its vertex set, edge set and its full automorphism group, respectively. A graph Γ is said to be vertex-transitive if $\operatorname{Aut}(\Gamma)$ acts transitively on $V(\Gamma)$. For a positive integer s, an s-arc of

[^0]Γ is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \cdots, v_{s}\right)$ of vertices such that $\left\{v_{i-1}, v_{i}\right\} \in E(\Gamma)$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. In particular, a $1-\operatorname{arc}$ is called an arc for short and a $0-\operatorname{arc}$ is a vertex. If $X \leqslant A u t(\Gamma)$ and X is transitive on s-arcs of Γ, then Γ is called a (X, s)-arc transitive graph. In addition, if X is not transitive on the set of $(s+1)$-arcs of Γ, then Γ is called a (X, s)-transitive graph. If $X=A u t(\Gamma)$, then (X, s)-arc transitive and (X, s)-transitive graphs are called s-arc transitive graphs and s-transitive graphs, respectively. $\mathrm{A}(X, 1)$-arc transitive graph is called symmetric. A graph is said to be one-regular if its automorphism group acts regularly on the set of its arcs.

Let G be a permutation group on Ω and $\alpha \in \Omega$. The stabilizer G_{α} is the subgroup of G fixing the point α. The group G is called semi-regular on Ω if $G_{\alpha}=1$, for every $\alpha \in \Omega$ and regular if G is transitive and semi-regular. Let G be a finite group and S be a symmeric subset of $G\left(1 \notin S=S^{-1}=\left\{g^{-1} \mid g \in S\right\}\right)$. The Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ has vertex set $V(\Gamma)=G$ and edge set $E(\Gamma)=\{\{g, s g\} \mid g \in G, s \in S\}$. For every element $g \in G$, the map ρ_{g} given by $x \mapsto x g, x \in G$, is a permutation on G and the set of all such permutations is called the right regular representation of G denoted by $\mathcal{R}(G)$. One can see that $\mathcal{R}(G)$ is a regular subgroup of $A u t(\Gamma)$ isomorphic with G. It is a well-known fact that Γ is connected if and only if $G=\langle S\rangle$, that is, S generates G. In general, it is a very difficult task to find the full automorphism group of a graph. Although, we know that a Cayley graph is vertex-transitive, in general it is difficult to determine whether it is edge-transitive or arc-transitive. Suppose that $\operatorname{Aut}(G, S)=$ $\{\alpha \in \operatorname{Aut}(G), \alpha(S)=S\}$. Obviously, $\mathcal{R}(G) \rtimes \operatorname{Aut}(G, S) \leq A u t(\Gamma)$. Let $A=A u t(\Gamma)$, according to [16], we have $N_{A}(\mathcal{R}(G))=\mathcal{R}(G) \rtimes \operatorname{Aut}(G, S)$. The Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is said to be normal if the right regular representation $\mathcal{R}(G)$ of G is normal in $A u t(\Gamma)$ and in this case, $\mathcal{R}(G) \unlhd A u t(\Gamma)$ or equivalently $\operatorname{Aut}(\Gamma)=\mathcal{R}(G) \rtimes \operatorname{Aut}(G, S)$. The Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is said to be normal symmetric if $N_{A}(\mathcal{R}(G))$ acts transitively on the set of arcs.

2 Main results

In this section, we determine all tetravalent one-regular Cayley graphs of order $p^{2} q^{2}$. If $q=2$, then all tetravalent one-regular graphs of order $4 p^{2}$ have been determined in [5] and we can conclude the following result.

Theorem 2.1. Let $p \neq 2$ be a prime and $\Gamma=\operatorname{Cay}(G, S)$ be tetravalent symmetric Cayley graph on groups of order $4 p^{2}$. Then Γ is 1-transitive. Moreover, if Γ is also one-regular, then Γ is a normal Cayley graph.

Lemma 2.2. [14] Every transitive abelian group is regular.
Lemma 2.3. [14] Suppose G is a permutation group on Ω and P is a p-Sylow subgroup of G, where p is a prime. Let $w \in \Omega$, if p^{m} divides the length of the G-orbit containing ω. Then p^{m} also divides the length of the P-orbit containing w.

For a finite group G, the product of all nilpotent normal subgroups of G is called the Fitting subgroup of G denoted by Fit(G).

Theorem 2.4. [13] If G is solvable group, then $\operatorname{Fit}(G) \neq 1$ and $C_{G}(\operatorname{Fit}(G)) \leq \operatorname{Fit}(G)$.
We recall that $O_{p}(G)$ is the unique largest normal p-subgroup of the finite group G, where p is a prime number and it can be found by taking the intersection of all of the p-Sylow subgroups of G. If a p-Sylow subgroup of a finite group G has a normal p-complement, then G is called p-nilpotent. The set of all p-Sylow subgroups of G is denoted by $\operatorname{Syl}_{p}(G)$.

Theorem 2.5. [4] Let G be a group acting transitively on a set Ω and $H \triangleleft G$. Then the group H has at most $|G: H|$ orbits and if the index $|G: H|$ is finite, then the number of orbits of H divides $|G: H|$.

Theorem 2.6. (i) [2] A graph Γ is isomorphic to a Cayley graph on a group G if and only if its automorphism group has a subgroup isomorphic to G acting regularly on the vertex set of Γ.
(ii) [2] A circulant graph is vertex-transitive. A vertex-transitive graph with a prime number of vertices must be a circulant graph.
(iii) [15] Every tetravalent one-regular graph of order p^{2} is a circulant graph.

Suppose Γ is a symmetric graph and consider the transitive subgroup X of $A u t(\Gamma)$. Let N be a normal subgroup of X. Then the quotient graph Γ_{N} is the graph with orbits of N as its vertices and two vertices are adjacent if there is an edge between these two orbits in Γ. If further the valency of Γ_{N} equals the valency of Γ, then Γ is called a regular cover of Γ_{N}.

Theorem 2.7. [6] Let Γ be symmetric graph of valency 4 and $X \leq A u t(\Gamma)$ be arc-transitive. If $N \unlhd X$, then one of the following cases holds,

1. N is transitive on $V(\Gamma)$;
2. Γ is bipartite and N acts transitively on each part of the bipartition;
3. N has $r \geq 3$ orbits on $V(\Gamma)$, the quotient graph Γ_{N} is a cycle of length r, and X induces the full automorphism group $D_{2 r}$ of Γ_{N};
4. N has $r \geq 5$ orbits on $V(\Gamma), N$ acts semi-regularly on $V(\Gamma)$, the quotient graph Γ_{N} is a tetravalent connected X / N-symmetric graph and Γ is a regular cover of Γ_{N}.

Theorem 2.8. Let Γ be a one-regular tetravalent graph of an odd order m. Assume $A=A u t(\Gamma)$. Then the following cases holds,

1. If A has a subgroup of order m, then Γ is a Cayley graph;
2. If $A_{v} \cong C_{4}$, then Γ is a normal Cayley graph;
3. If $A_{v} \cong C_{2} \times C_{2}$ and $3 \nmid m$, then Γ is a normal Cayley graph.

Proof. (1) Let A has a subgroup G of order m. By the orbit-stabilizer theorem for the vertex v, we have $\left|o r b_{G}(v)\right|=\left|G: G_{v}\right|$. On the other hand, A acts regularly on the arc set of Γ, hence $\left|A_{v}\right|=4$. But G_{v} devides m and so the fact that m is odd implies $G_{v} \cong\langle 1\rangle$. Hence, G acts regularly on the vertex set of Γ. Applying Theorem 2.6 yields Γ is a Cayley graph.
(2) By [11, Theorem 7.51], A has a normal subgroup of order m and by the Case $1, \Gamma$ is a normal Cayley graph.
(3) Suppose $H \cong C_{2} \times C_{2} \cong A_{v}$ is a 2-Sylow subgroup of A. It is not difficult to see that $|A u t(H)|=\left(2^{2}-1\right)\left(2^{2}-2\right)=6$ and there is an embedding $N_{A}(H) / C_{A}(H) \hookrightarrow A u t(H)$. Obviously, $\left|N_{A}(H) / C_{A}(H)\right|$ divides $|A|$. Since H is abelian, $H<C_{A}(H)$ and then $2 \nmid\left|N_{A}(H) / C_{A}(H)\right|$. On the other hand, $(3,|A|)=1$, and thus $N_{A}(H)=C_{A}(H)$. Hence, by Burnside's Theorem [10, Theorem 6.17] H has a normal complement in A. This means that A has a normal subgroup of order m and by Case $1, \Gamma$ is a normal Cayley graph.

Theorem 2.9. Let Γ be a one-regular tetravalent graph of order $p^{2} q^{2}$, where $p>q \neq 2$ are prime. Assume $A=\operatorname{Aut}(\Gamma)$, then the following cases hold,
(1) If A has a subgroup of order $p^{2} q^{2}$, then Γ is a Cayley graph;
(2) If $A_{v} \cong C_{4}$, then Γ is a normal Cayley graph;
(3) If $A_{v} \cong C_{2} \times C_{2}$ and $q \neq 3$, then Γ is a normal Cayley graph;
(4) If $A_{v} \cong C_{2} \times C_{2}, q=3$, then Γ is a Cayley graph.

Proof. The Cases 1-3 have been discussed in Theorem 2.8. For the Case 4 , let P be a p-Sylow subgroup of A. Then $n_{p}=1+k p \mid 36$, and if $p \neq 5,11,17$, we can conclude that $n_{p}=1$; therefore, $P \triangleleft A$. Now, let Q be a q-Sylow subgroup of A. Hence, $P Q \leq A$ and $|P Q|=p^{2} q^{2}$ and the proof is similar to Case 1. For $p=11$ or $p=17$, by [9, Theorem 1.37] and [9, Corollaries 1.39, 1.40], we have $\left|O_{p}\right|=p$ or p^{2}. If $\left|O_{p}\right|=p^{2}$, then Γ is a Cayley graph. If $\left|O_{p}\right|=p$, then the embedding $N_{A}\left(O_{p}\right) / C_{A}\left(O_{p}\right) \cong A / C_{A}\left(O_{p}\right) \hookrightarrow A u t\left(O_{p}\right) \cong C_{p-1}$ yields that $\left|C_{A}\left(O_{p}\right)\right| \geq p^{2} q^{2}$ and $C_{A}\left(O_{p}\right)$ has a subgroup of order $p^{2} q^{2}$. This means that Γ is a Cayley graph. For $p=5$, let $P Q \not \leq A$. Then P and Q are not normal subgroups of A. By using a Gap program, there is only one group of the order $9 \times 25 \times 4=900$ with the above conditions which is isomorphic with $A \cong A_{5} \times C_{15}$, a contradiction. So, all one-regular graphs of order 225 have Cayley structures.

Theorem 2.10. Let G be a finite group of order $p^{2} q^{2}$, where $p>q \neq 2$ are prime numbers and $\Gamma=$ $\operatorname{Cay}(G, S)$ be a Cayley graph of valency 4 . If Γ is an $(X, 1)$-arc transitive, where $G \leq X \leq A u t(\Gamma)$, then one of the following cases holds:

1. G is normal in $X, X_{1} \leq D_{8}$ and $\left|X_{1}\right| \geq 4$;
2. There is a subgroup $P<X$ such that $P \triangleleft G$ and Γ is a cover of Γ_{P};
3. X has a unique minimal normal subgroup $N \cong C_{p}^{2}$ such that
(a) $G=N \rtimes R \cong C_{p}^{2} \rtimes C_{9}$;
(b) $X=N \rtimes\left((H \rtimes R) \cdot C_{2}\right) \cong C_{p}^{2} \rtimes\left(\left(C_{2}^{2} \rtimes C_{9}\right) \cdot C_{2}\right)$ and $X_{1}=H \cdot C_{2} \cong\left(C_{2} \times C_{2}\right) \cdot C_{2}$;
(c) $N H \cong D_{2 p} \times D_{2 p}$;
(d) $H \rtimes R=C_{2}^{2} \rtimes C_{9}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{9}=1, a b=b a, c^{-1} a c=a b, c^{-1} b c=a\right\rangle$;
(e) $X /(N H) \cong D_{18}$.

Proof. By [8, Theorem 1.1] the proof is straightforward.
Theorem 2.11. Let G be a finite group of order $p^{2} q^{2}$, where $p>q \neq 2$ are prime numbers and $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph of valency 4.
(i) If Γ is one-regular, $A=A u t(\Gamma)$ and $P \in \operatorname{Syl}_{p}(G)$, then the following cases hold,
(a) $A \cong G A_{1}$ and $A_{1} \cong C_{4}$ or $C_{2} \times C_{2}$,
(b) $P \triangleleft A$ and A is solvable,
(c) If $A_{1} \cong C_{4}$ then $G \triangleleft A$,
(d) If $A_{1} \cong C_{2} \times C_{2}$ and $q \neq 3$ then $G \triangleleft A$.
(ii) If Γ is one-regular, $A=A u t(\Gamma)$ and $P \cong C_{p^{2}}$ is a p-Sylow subgroup of G. Then G is an abelian group.

Proof. (i) Since Γ is a Cayley graph, the proof of part (a) is clear. For the next one, we know that $P \triangleleft G$, hence $G \subseteq N_{A}(P)$ and $\left|A: N_{A}(G)\right|=1+k p \mid 4,(p>3)$ which implies that $N_{A}(P)=A$. It is clear P and A / P are solvable, hence A is solvable and the proof of part (c) is a result of [11, Theorem 7.51]. There is a similar proof for the part (d), as we have done in the Case (3) of Theorem 2.8.
(ii) We know that $P \cong C_{p^{2}} \leq \operatorname{Fit}(A)$, hence $\operatorname{Fit}(A) \neq\langle 1\rangle$. We prove that $\operatorname{Fit}(A)=G$ which yields that G is abelian. Suppose $\operatorname{Fit}(A) \neq G$, then only one of the following possibilities holds:
$\operatorname{Fit}(A)=C_{p^{2}}, \operatorname{Fit}(A)=C_{q p^{2}}, \operatorname{Fit}(A)=C_{2 q p^{2}}, \operatorname{Fit}(A)=C_{2 p^{2}},|\operatorname{Fit}(A)|=4 p^{2},|\operatorname{Fit}(A)|=4 q p^{2}$. We prove that all of them are impossible. By Theorem 2.4,

$$
N_{A}(\operatorname{Fit}(A)) / C_{A}(\operatorname{Fit}(A))=A / \operatorname{Fit}(A)
$$

Hence if $\operatorname{Fit}(A)=C_{p^{2}}$, then

$$
N_{A}(\operatorname{Fit}(A)) / C_{A}(\operatorname{Fit}(A)) \cong A / \operatorname{Fit}(A) \rightarrow A u t(\operatorname{Fit}(A)) \cong C_{p(p-1)}
$$

Therefore, $A / \operatorname{Fit}(G)$ is abelian. On the other hand, Γ is a Cayley graph, hence two Cases 1,2 in Theorem 2.7 for $N=\operatorname{Fit}(G)$ are impossible. Let Γ_{N} be the quotient graph of Γ relative to the orbits of N and K be the kernel of A acting on $V\left(\Gamma_{N}\right)$. By Lemma 2.3, the orbits of N are of length p^{2}. Thus $\left|V\left(\Gamma_{N}\right)\right|=q^{2}, N \leq K$, and A / K acts transitively on arcs of Γ_{N}. For the Case 3 in Theorem 2.7, we have Γ_{N} is a cycle of length q^{2} and hence $A / K \cong D_{2 q^{2}}$, which yields
$|K|=2 p^{2}$. Since A / K is a subgroup of A / P, it follows that A / P is a non-abelian group, a contradiction. For the Case 4 of Theorem 2.7, Γ_{N} is A / N-symmetric graph, hence A / N is transitive on the vertices of Γ_{N} and also is abelian. Therefore, by Lemma 2.2, A / N acts regularly on the vertices of Γ_{N}, a contradiction. Therefore, $\operatorname{Fit}(G) \neq C_{p^{2}}$. Similarly, the other cases are impossible. Suppose $|F i t(A)|=4 p^{2}$ or $4 q p^{2}$. Since $N \leq K$, where K is the kernel of A acting on $V\left(\Gamma_{N}\right) . \Gamma_{N}$ is a symmetric graph of valency 2 or 4 and by Theorem 2.7, A / K acts transitively on arcs of Γ_{N}. Then $2||A / K|$, which is clearly impossible, because $| A \mid=4 p^{2} q^{2}$. Therefore, $|\operatorname{Fit}(A)|=p^{2} q^{2}$ and so G is an abelian group.

Theorem 2.12. Let G be a finite group of order $p^{2} q^{2}$, where $p>q \neq 2$ are prime numbers, and let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley graph of valency 4 . Assume Γ is one-regular, $A=A u t(\Gamma)$ and $P \cong C_{p} \times C_{p} \in \operatorname{Syl}_{p}(G)$. Then $G \cong\left(C_{p} \times C_{p}\right) \rtimes C_{q^{2}}$.

Proof. Since Γ is a Cayley graph, two Cases 1,2 in Theorem 2.7 for $N \cong C_{p} \times C_{p} \cong$ P, are impossible. By Theorem 2.5, the number of orbits of N on G are q^{2}. Let Γ_{N} be the quotient graph of Γ relative to the orbits of N and K be the kernel of A acting on $V\left(\Gamma_{N}\right)$. Thus $\left|V\left(\Gamma_{N}\right)\right|=q^{2}, N \leq K$ and A / K acts transitively on the arcs of Γ_{N}. For the Case 3 in Theorem $2.7, \Gamma_{N}$ is a cycle of length q^{2} and hence $A / K \cong D_{2 q^{2}}$, which yields that $|K|=2 p^{2}$. Since $C_{q^{2}} \leq A / K$, and A / K is a subgroup of A / P, it follows that the q-Sylow subgroup of A (and G) is cyclic. Now, for the Case 4 , let Γ_{P} be the quotient graph of Γ relative to the orbits of P. By Lemma 2.3, the orbits of N are of length p^{2}. Thus $\left|V\left(\Gamma_{P}\right)\right|=q^{2}$ and A / P acts transitively on the arcs of Γ_{P}. Now, by Theorems $2.6(i i)$ and $2.6(i i i), \Gamma_{P}$ is a circulant graph and so it is a Cayley graph on an abelian group. Hence the q-Sylow subgroup of A (and G) is cyclic; therefore, $G \cong\left(C_{p} \times C_{p}\right) \rtimes C_{q^{2}}$.

3 Tetravalent normal symmetric Cayley graphs on group of order $p^{2} q^{2}$

Let G be a group of order $p^{2} q^{2}(p>q)$ with generating set $S=\left\{a, b, a^{-1}, b^{-1}\right\}$. Suppose $\Gamma=\operatorname{Cay}(G, S)$ is a Cayley graph, then an automorphism of $\operatorname{Aut}(G, S)$ satisfies in one of the following rules:
$\alpha:\left\{\begin{array}{c}a \mapsto b^{-1} \\ b \mapsto a\end{array}, \alpha^{2}:\left\{\begin{array}{l}a \mapsto a^{-1} \\ b \mapsto b^{-1}\end{array}, \alpha^{3}:\left\{\begin{array}{c}a \mapsto b \\ b \mapsto a^{-1}\end{array}, \beta:\left\{\begin{array}{l}a \mapsto b \\ b \mapsto a^{\prime}\end{array}\right.\right.\right.\right.$
$\alpha \circ \beta:\left\{\begin{array}{c}a \mapsto a \\ b \mapsto b^{-1}\end{array}, \alpha^{2} \circ \beta:\left\{\begin{array}{l}a \mapsto b^{-1} \\ b \mapsto a^{-1}\end{array}, \alpha^{3} \circ \beta:\left\{\begin{array}{c}a \mapsto a^{-1} \\ b \mapsto b\end{array}, i:\left\{\begin{array}{l}a \mapsto a \\ b \mapsto b\end{array}\right.\right.\right.\right.$.
It is not difficult to see that $\alpha^{4}=\beta^{2}=i, \beta^{-1} \circ \alpha \circ \beta=\alpha^{3}$ and so $\langle\alpha, \beta\rangle \cong D_{8}$. In other words, we can conclude the following theorem.

Theorem 3.1. Let G be a group of order $p^{2} q^{2}$ with the symmetric generating subset $S=\left\{a, b, a^{-1}, b^{-1}\right\}$. Then $\operatorname{Aut}(G, S) \leq\langle\alpha, \beta\rangle \cong D_{8}$.

Theorem 3.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a normal symmetric Cayley graph of order $p^{2} q^{2}$, where $p>q \neq 2$ are primes and $S=\left\{a, a^{-1}, b, b^{-1}\right\},(a \neq b)$. Then $o(a) \neq p, p^{2}, q^{2}$.

Proof. Suppose $\Gamma=\operatorname{Cay}(G, S)$ is a normal symmetric Cayley graph of order $p^{2} q^{2}(p>q)$ where $G=\langle a, b\rangle$ and $S=\left\{a, a^{-1}, b, b^{-1}\right\},(a \neq b)$. It is a well-known fact that $\operatorname{Aut}(G, S)$ is a 2-group. Since $|S|=4$, we conclude that $|A u t(G, S)|=2$ or 4 or 8 . On the other hand, Γ is normal symmetric which yields C_{4} or $C_{2} \times C_{2}$ is a subgroup of $A u t(G, S)$. First, suppose that $C_{4} \cong\langle\alpha\rangle \leq A u t(G, S)$ and necessarily $o(a)=o(b)$. Since $|G|=p^{2} q^{2}$, one of the following cases holds:
Case 1. $o(a)=o(b)=p$. Suppose $H=\langle a\rangle$ and $K=\langle b\rangle$, then $H \leq P$ and $K \leq P\left(P \in \operatorname{Syl}_{p}(G)\right.$ is normal) which implies that $\langle H \cup K\rangle \subseteq P$. This yields $G=\langle a, b\rangle \subseteq P$, a contradiction.
Case 2. $o(a)=o(b)=p^{2}$ and suppose $H=\langle a\rangle$ and $K=\langle b\rangle$, then $H=P, K=P$ and thus $\langle H \cup K\rangle=P=G$, a contradiction.
Case 3. $o(a)=o(b)=q^{2}$, put $H=\langle a\rangle$ and $K=\langle b\rangle$, then $H, K \in S y l_{q}(G)$ and then there exists $x \in G$ such that $H=K^{x}$. Now, according to [12], we have the following subcases:
Subcase 1. $G \cong C_{q^{2}} \ltimes_{\varphi} C_{p^{2}} \cong\left\langle c, d \mid c^{q^{2}}=d^{p^{2}}=1, c^{-1} d c=d^{r}\right\rangle$, which yields (without loss of generality) $a=c, b=c^{d^{i}}=d^{-i} c d^{i}$. It implies that $\alpha(b)=\alpha\left(c^{d^{i}}\right)=\alpha(c)^{\alpha\left(d^{i}\right)}=a$. Hence $\left(c^{-1}\right)^{d^{i} \alpha\left(d^{i}\right)}=\left(c^{-1}\right)^{d^{j}}=c$, a contradiction.

Subcase 2.

$$
\begin{aligned}
G & \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right) \\
& \cong\left\langle c, d, e \mid c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d^{\lambda}, c^{-1} e c=e^{\lambda}, d e=e d\right\rangle
\end{aligned}
$$

which yields $a=c, b=c^{d^{i} e^{j}}=d^{-i} e^{-j} c d^{i} e^{j}$. Hence $\alpha(b)=\alpha\left(c^{d^{i} e^{j}}\right)=\alpha(c)^{\alpha\left(d^{i} e^{j}\right)}=a$ and so $\left(c^{-1}\right)^{d^{i} e^{j} \alpha\left(d^{i} e^{j}\right)}=\left(c^{-1}\right)^{d^{n} e^{m}}=c$, a contradiction.

Subcase 3.

$$
\begin{aligned}
G & \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right) \\
& \cong\left\langle c, d, e \mid c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d, c^{-1} e c=e^{\lambda}, d e=e d\right\rangle
\end{aligned}
$$

which implies that $a=c, b=c^{e^{j}}=e^{-j} c e^{j}$. In other words, $\alpha(b)=\alpha\left(c^{e^{j}}\right)=\alpha(c)^{\alpha\left(e^{j}\right)}=a$. Hence $\left(c^{-1}\right)^{e^{j} \alpha\left(e^{j}\right)}=\left(c^{-1}\right)^{e^{m}}=c$, a contradiction.

Subcase 4.

$$
\begin{aligned}
G & \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right) \\
& \cong\left\langle c, d, e \mid c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d^{\lambda}, c^{-1} e c=e^{\lambda^{l}}, d e=e d\right\rangle
\end{aligned}
$$

and we can verify that $a=c, b=c^{d^{j} e^{j}}=d^{-i} e^{-j} c d^{i} e^{j}$. Similarly, we have $\alpha(b)=\alpha\left(c^{d^{i} e^{j}}\right)=$ $\alpha(c)^{\alpha\left(d^{i} e^{j}\right)}=a$ and so $\left(c^{-1}\right)^{d^{i} e^{j} \alpha\left(d^{i} e^{i}\right)}=\left(c^{-1}\right)^{d^{n} e^{m}}=c$, a contradiction.
Subcase 5. $G \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right)$
$\cong\langle c, d, e| c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d^{\lambda} e^{\gamma N}, c^{-1} e c=d^{\gamma} e^{\lambda}, d e=e d, \lambda^{2}-\gamma^{2} N \neq 0, N \neq n^{2}, \lambda+$ $\gamma \sqrt{N} \neq 1\rangle$. Again, we can verify that $a=c, b=c^{d^{i} e^{j}}=d^{-i} e^{-j} c d^{i} e^{j}$ and thus $\alpha(b)=\alpha\left(c^{d^{i} e^{j}}\right)=$ $\alpha(c)^{\alpha\left(d^{i} e^{j}\right)}=a$. Consequently, $\left(c^{-1}\right)^{d^{i} e^{j} \alpha\left(d^{i} e^{j}\right)}=\left(c^{-1}\right)^{d^{n} e^{m}}=c$, a contradiction.

Now, suppose $C_{2} \times C_{2} \cong\left\langle\alpha^{2}, \beta\right\rangle \subseteq \operatorname{Aut}(G, S)$, then $\operatorname{Aut}(G, S)$ acts transitivily on S. Hence, in this case, the Cayley graph Γ is normal symmetric. Again, we can consider the following cases:
Case 1. $o(a)=o(b)=p$.
Case 2. $o(a)=o(b)=p^{2}$. For both of them the proof is similar to that of in Subcase 4.
Case 3. $o(a)=o(b)=q^{2}$, put $H=\langle a\rangle$ and $K=\langle b\rangle$ then $H, K \in \operatorname{Syl}_{q}(G)$ and hence $H=K^{x}$ for some $x \in G$. Now, according to [12], we have the following subcases:
Subcase 1. $G \cong C_{q^{2}} \ltimes_{\varphi} C_{p^{2}}=\left\langle c, d \mid c^{q^{2}}=d^{p^{2}}=1, c^{-1} d c=d^{r}\right\rangle$, where $a=c, b=c^{d^{i}}=d^{-i} c d^{i}$. It implies that $\beta(d)=d^{-1}, \alpha^{2} o \beta(d)=d^{-1}, \alpha^{2}(d)=d$. Hence $\alpha^{2}\left(c^{-1} d c\right)=\alpha^{2}\left(d^{r}\right)$, so $c^{2} d=d c^{2}$, a contradiction.
Subcase 2. $G \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right)$
$=\left\langle c, d, e \mid c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d^{\lambda}, c^{-1} e c=e^{\lambda}, d e=e d, \lambda^{q}=1\right\rangle$. Hence $Z(G)=\left\langle c^{q}\right\rangle \cong$ C_{q}, where $a=c, b=c^{d^{i} e^{j}}=d^{-i} e^{-j} c d^{i} e^{j}$. This implies that $\beta\left(d^{i} e^{j}\right)=\left(d^{i} e^{j}\right)^{-1}, \alpha^{2} o \beta\left(d^{i} e^{j}\right)=$ $\left(d^{i} e^{j}\right)^{-1}, \alpha^{2}\left(d^{i} e^{j}\right)=d^{i} e^{j}$. Hence $\alpha^{2}\left(c^{-1} d^{i} e^{j} c\right)=\alpha^{2}\left(\left(d^{i} e^{j}\right)^{\lambda}\right)$, so $c^{2}\left(d^{i} e^{j}\right)=\left(d^{i} e^{j}\right) c^{2}$ and $a^{2}=b^{2}$, a contradiction.
Subcase 3. $G \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right)$
$=\left\langle c, d, e \mid c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d, c^{-1} e c=e^{\lambda}, d e=e d, \lambda^{q}=1\right\rangle$. Hence $Z(G)=\left\langle c^{q}, d\right\rangle \cong C_{p q}$, where $a=c, b=c^{e^{j}}=e^{-j} c e^{j}$. In other words, $\beta\left(e^{j}\right)=\left(e^{j}\right)^{-1}, \alpha^{2} o \beta\left(e^{j}\right)=\left(e^{j}\right)^{-1}, \alpha^{2}\left(e^{j}\right)=e^{j}$. Hence $\alpha^{2}\left(c^{-1} e^{j} c\right)=\alpha^{2}\left(\left(e^{j}\right)^{\lambda}\right)$, so $c^{2}\left(e^{j}\right)=\left(e^{j}\right) c^{2}$ and $a^{2}=b^{2}$, a contradiction.
Subcase 4. $G \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right)$
$=\left\langle c, d, e \mid c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d^{\lambda}, c^{-1} e c=e^{\lambda^{t}}, d e=e d, \lambda^{q}=1\right\rangle$. Hence $Z(G)=\left\langle c^{q}\right\rangle \cong C_{q}$, where $a=c, b=c^{d^{i} e^{j}}=d^{-i} e^{-j} c d^{i} e^{j}$. Consequently, $\beta\left(d^{i} e^{j}\right)=\left(d^{i} e^{j}\right)^{-1},\left(\alpha^{2} \circ \beta\right)\left(d^{i} e^{j}\right)=\left(d^{i} e^{j}\right)^{-1}$, $\alpha^{2}\left(d^{i} e^{j}\right)=d^{i} e^{j}$. Hence $\alpha^{2}\left(c^{-1} d^{i} e^{j} c\right)=\alpha^{2}\left(\left(d^{i}\right)^{\lambda}\left(e^{j}\right)^{\lambda^{t}}\right),\left(\alpha^{2} \circ \beta\right)\left(c^{-1} d^{i} e^{j} c\right)=\left(\alpha^{2} \circ \beta\right)\left(\left(d^{i}\right)^{\lambda}\left(e^{j}\right)^{\lambda^{t}}\right)$, $\beta\left(c^{-1} d^{i} e^{j} c\right)=\beta\left(\left(d^{i}\right)^{\lambda}\left(e^{j}\right)^{\lambda^{t}}\right)$, so $\beta(d)=\left(\alpha^{2} \circ \beta\right)(d)=d^{-1}, \alpha^{2}(d)=d, \beta(e)=\left(\alpha^{2} \circ \beta\right)(e)=$ $e^{-1}, \alpha^{2}(e)=e$, so $c^{2} d=d c^{2}$ and $c^{2} e=e c^{2}$, a contradiction.
Subcase 5. $G \cong C_{q^{2}} \ltimes_{\varphi}\left(C_{p} \times C_{p}\right)$
$=\langle c, d, e| c^{q^{2}}=d^{p}=e^{p}=1, c^{-1} d c=d^{\lambda} e^{\gamma N}, c^{-1} e c=d^{\gamma} e^{\lambda}, d e=e d, \lambda^{2}-\gamma^{2} N \neq 0, N \neq n^{2}, \lambda+$ $\gamma \sqrt{N} \neq 1\rangle$, where $a=c, b=c^{d^{i} e^{j}}=d^{-i} e^{-j} c d^{i} e^{j}$ and so $\beta\left(d^{i} e^{j}\right)=\left(d^{i} e^{j}\right)^{-1},\left(\alpha^{2} \circ \beta\right)\left(d^{i} e^{j}\right)=$ $\left(d^{i} e^{j}\right)^{-1}, \alpha^{2}\left(d^{i} e^{j}\right)=d^{i} e^{j}$. Thus $\alpha^{2}\left(c^{-1} d^{i} e^{j} c\right)=\alpha^{2}\left(d^{i \lambda+j \gamma} e^{j \lambda+i \gamma N}\right),\left(\alpha^{2} \circ \beta\right)\left(c^{-1} d^{i} e^{j} c\right)=\left(\alpha^{2} \circ\right.$ $\beta)\left(d^{i \lambda+j \gamma}{ }_{e}{ }^{j \lambda+i \gamma N}\right), \beta\left(c^{-1} d^{i} e^{j} c\right)=\beta\left(d^{i \lambda+j \gamma} e^{j \lambda+i \gamma N}\right)$, so $\beta(d)=\left(\alpha^{2} \circ \beta\right)(d)=d^{-1}, \alpha^{2}(d)=d, \beta(e)=$ $\left(\alpha^{2} \circ \beta\right)(e)=e^{-1}, \alpha^{2}(e)=e$, so $c^{2} d=d c^{2}$ and $c^{2} e=e c^{2}$, a contradiction.

3.1 symmetric Cayley graphs on abelian groups of order $p^{2} q^{2}$

Here, we determine the full automorphism group of symmetric tetravalent Cayley graphs $\operatorname{Cay}(G, S)$, where G is an abelian group of order a square product of two primes. To do this, first notice that there are only four abelian groups of order $p^{2} q^{2}$. In the case that $q=2$, in [7] all tetravalent symmetric graphs of order $4 p^{2}$ have been determined. In the following, we determine the automorphism group for each graph. Here, in this section, α, β are as given in Theorem 3.1. For solving all congruence equations, we applied [3, Theorem 9.13].
Theorem 3.3. Let G be an abelian group of order $p^{2} q^{2}$, where $p>q \neq 2$ are primes with the symmetric
generating subset $S=\left\{a, b, a^{-1}, b^{-1}\right\}$ and $\Gamma=\operatorname{Cay}(G, S)$ be a symmetric Cayley graph. Then the following cases holds,

1. $o(a) \neq p, p^{2}, q, q^{2}$,
2. If o(a) $=p q$, then $G \cong C_{p q} \times C_{p q}$ and $\operatorname{Aut}(\Gamma) \cong\left(C_{p q} \times C_{p q}\right) \rtimes D_{8}$,
3. If $o(a)=p^{2} q$, then $G \cong C_{p^{2}} \times C_{q} \times C_{q}$ and $|A u t(G, S)|=4$,
4. If $o(a)=p q^{2}$, then $G \cong C_{q^{2}} \times C_{p} \times C_{p}$ and $|A u t(G, S)|=4$,
5. If o $(a)=p^{2} q^{2}$, then $G \cong C_{p^{2} q^{2}}$ and $|A u t(G, S)|=4$.

Proof. By [1, Theorem 1.2], we have $\operatorname{Aut}(\Gamma) \cong G \rtimes \operatorname{Aut}(G, S)$ and G is an abelian group, so the proof of part 1 is clear. For the second one, we know that $G=\langle a, b\rangle=\langle a\rangle .\langle b\rangle=$ $\langle a\rangle \times\langle b\rangle \cong C_{p q} \times C_{p q}$, then it is not difficult to see that $\operatorname{Aut}(G, S)=\langle\alpha, \beta\rangle \cong D_{8}$. Hence Γ is not an one-regular Cayley graph and $\operatorname{Aut}(\Gamma) \cong\left(C_{p q} \times C_{p q}\right) \rtimes D_{8}$.

For the part 3, let $o(a)=o(b)=p^{2} q, H=\langle a\rangle$, and $K=\langle b\rangle$. Then $G=\langle a, b\rangle=\langle a\rangle .\langle b\rangle=H K$ and $|G|=|H K|=\frac{|H||K|}{|H \cap K|}=p^{2} q^{2}$. Since $a \neq b$, we conclude that $|H \cap K|=p^{2}$. Suppose that $a=x z, b=y z^{i}$, where $\left(i, p^{2}\right)=1$. Hence $G \cong C_{q} \times C_{q} \times C_{p^{2}} \cong\langle x, y, z| x^{q}=y^{q}=z^{p^{2}}=1, x y=$ $y x, x z=z x, y z=z y\rangle=\left\langle a, b \mid a=x z, b=y z^{i},\left(i, p^{2}\right)=1\right\rangle$. Now, by a same discussion in the proof of Theorem 3.2, two following cases hold:

Case 1. Suppose $\langle\alpha\rangle \leq \operatorname{Aut}(G, S)$, since $\operatorname{Aut}(G) \cong C_{p(p-1)} \times G L(2, q)$, we have $\alpha(a)=b^{-1}$ and $\alpha(b)=a$. This means that $\alpha(x z)=y^{-1} z^{-i}, \alpha\left(y z^{i}\right)=x z, \alpha(z)=z^{-i}, \alpha\left(z^{i}\right)=z, \alpha(x)=y^{-1}$ and $\alpha(y)=x$. Consequently, $z^{i^{2}+1}=1$ and so $1+i^{2} \equiv 0\left(\bmod p^{2}\right)$ or $p=4 k+1$. Finally, if $o(a)=o(b)=p^{2} q$, the Cayley graph Γ is symmetric if and only if $a^{i q}=b^{q}, 1+i^{2} \equiv 0\left(\bmod p^{2}\right)$ and $p=4 k+1$. Clearly, $\operatorname{Aut}(G, S) \cong C_{4}$. Since $\beta(a)=b$ and $\beta(b)=a$; it means that $\beta(x z)=y z^{i}$ and $\beta\left(y z^{i}\right)=x z$. We conclude that $z^{i^{2}}=z$ and so $i^{2}-1 \equiv 0\left(\bmod p^{2}\right),\left(i^{2}+1 \equiv 0\left(\bmod p^{2}\right)\right)$. Consequently, p^{2} divides 2 , a contradiction. This means that $\beta \notin A u t(G, S)$ and Γ is oneregular Cayley graph. Hence $A u t(\Gamma) \cong\left(C_{q} \times C_{q} \times C_{p^{2}}\right) \rtimes C_{4}$.

Case 2. Suppose that $\left\langle\alpha^{2}, \beta\right\rangle \leq \operatorname{Aut}(G, S)$. In this case, $i^{2} \equiv 1\left(\bmod p^{2}\right)$ and it is not difficult to see that $\operatorname{Aut}(G, S)=\left\langle\alpha^{2}, \beta\right\rangle \cong C_{2} \times C_{2}$. Hence $\operatorname{Aut}(\Gamma) \cong\left(C_{q} \times C_{q} \times C_{p^{2}}\right) \rtimes\left(C_{2} \times C_{2}\right)$ and Γ is one-regular graph.

For the part 4, let $o(a)=o(b)=p q^{2}, H=\langle a\rangle$ and $K=\langle b\rangle$. Then $G=\langle a, b\rangle=\langle a\rangle .\langle b\rangle=H K$ and $|G|=|H K|=\frac{|H||K|}{|H \cap K|}=p^{2} q^{2}$. Since $a \neq b$, we conclude that $H \cap K=q^{2}$. Suppose that $a=x z, b=y z^{i}$, where $\left(i, q^{2}\right)=1$. Hence $G \cong C_{p} \times C_{p} \times C_{q^{2}} \cong\langle x, y, z| x^{p}=y^{p}=z^{q^{2}}=1, x y=$ $y x, x z=z x, y z=z y\rangle=\left\langle a, b \mid a=x z, b=y z^{i},\left(i, q^{2}\right)=1\right\rangle$. Again, we consider two cases:
Case 1. Suppose $\langle\alpha\rangle \leq \operatorname{Aut}(G, S)$. According to the structure of $\operatorname{Aut}(G) \cong C_{q(q-1)} \times G L(2, p)$, we have $\alpha(a)=b^{-1}$ and $\alpha(b)=a$. This means that $\alpha(x z)=y^{-1} z^{-i}$ and $\alpha\left(y z^{i}\right)=x z$. Consequently, $\alpha(z)=z^{-i}, \alpha\left(z^{i}\right)=z, \alpha(x)=y^{-1}$ and $\alpha(y)=x$. Hence $z^{i^{2}+1}=1$ and thus $1+i^{2} \equiv$ $0\left(\bmod q^{2}\right)$. Therefore, according to [12, Theorem 3] we have $q=4 k+1$. Finally, if $o(a)=$ $o(b)=p q^{2}$, the Cayley graph $\operatorname{Cay}(G, S)$ is tetravalent normal symmetric if and only if $a^{i p}=$
$b^{p}, 1+i^{2} \equiv 0\left(\bmod q^{2}\right)$, where $q=4 k+1$. It is not difficult to prove that $A u t(G, S) \cong C_{4}$, since $\beta(a)=b$ and $\beta(b)=a$. Consequently, $\beta(x z)=y z^{i}$ and $\beta\left(y z^{i}\right)=x z$. This means that $\beta(z)=z^{i}$, $\beta\left(z^{i}\right)=z, \beta(x)=y$, and $\beta(y)=x$. Thus $z^{i^{2}}=z$ and so $i^{2}-1 \equiv 0\left(\bmod q^{2}\right),\left(i^{2}+1 \equiv 0\left(\bmod q^{2}\right)\right)$, a contradiction. Hence $\beta \notin \operatorname{Aut}(G, S)$ and $\operatorname{Aut}(\Gamma) \cong\left(C_{p} \times C_{p} \times C_{q^{2}}\right) \rtimes C_{4}$ and Γ is a one-regular graph.

Case 2. Suppose $\left\langle\alpha^{2}, \beta\right\rangle \leq \operatorname{Aut}(G, S)$. In this case, $i^{2} \equiv 1\left(\bmod p^{2}\right)$ and it is not difficult to see that $\operatorname{Aut}(G, S)=\left\langle\alpha^{2}, \beta\right\rangle \cong C_{2} \times C_{2}$. Hence $\operatorname{Aut}(\Gamma) \cong\left(C_{p} \times C_{p} \times C_{q^{2}}\right) \rtimes\left(C_{2} \times C_{2}\right)$ or Γ is one-regular graph.

For the last part, let $G=C_{p^{2} q^{2}} \cong\langle a\rangle$. Assume $a=b^{i}$, where $\left(i, p^{2} q^{2}\right)=1$. Two cases hold:
Case 1. Suppose $\langle\alpha\rangle \leq \operatorname{Aut}(G, S)$. So $\alpha(a)=\alpha\left(b^{i}\right)$ which means that $b^{-1}=a^{i}$. Consequently, $\alpha^{2}(a)=\alpha^{2}\left(b^{i}\right)$ and so $a^{-1}=b^{-i}$. This yields $b^{i^{2}+1}=1$, hence $1+i^{2} \equiv 0\left(\bmod p^{2} q^{2}\right)$ and thus $p=4 k+1, q=4 k^{\prime}+1$. In other words, $\operatorname{Aut}(G, S)=C_{4}$, since $\beta \in A u t(G, S)$, then $a=b^{i}$ and $\beta(a)=\beta\left(b^{i}\right)$. Hence $b=a^{i}$ yields $a=a^{i^{2}}$ and so $a^{i^{2}-1}=1$. It means that $p^{2} q^{2}$ divides $i^{2}-1$ and $i^{2}+1$, which implies that $p^{2} q^{2} \mid 2$, a contradiction. Therefore, $\beta \notin A u t(G, S)$. Hence $A u t(\Gamma) \cong C_{p^{2} q^{2}} \rtimes C_{4}$ and Γ is one-regular graph.

Case 2. Suppose $\left\langle\alpha^{2}, \beta\right\rangle \leq \operatorname{Aut}(G, S)$. In this case, $i^{2} \equiv 1\left(\bmod p^{2} q^{2}\right)$ and thus $p=4 k+1, q=$ $4 k^{\prime}+1$. We can verify that $\operatorname{Aut}(G, S)=\left\langle\alpha^{2}, \beta\right\rangle \cong C_{2} \times C_{2}$. Hence $\operatorname{Aut}(\Gamma) \cong C_{p^{2} q^{2}} \rtimes\left(C_{2} \times C_{2}\right)$ and Γ is one-regular graph.

References

[1] Y. G. Baik, Y. Q. Feng, H. S. Sim, M. Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5(3) (1998) 297-304.
[2] N. Biggs, Algebraic Graph Theory, Second edition, Cambridge University Press, Cambridge, 1993.
[3] M. D. Burton, Elementary Number Theory, W. C. Brown publishers, 1989.
[4] J. D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag Press, New York, 1996.
[5] Y. Q. Feng, K. Kutnar, D. Marušić, C. Zhang, Tetravalent one-regular graphs of order $4 p^{2}$, Filomat 28 (2014) 285-303.
[6] A. Gardiner, C. E. Praeger, On 4-valent symmetric graphs, European J. Combin. 15 (1994) 375-381.
[7] M. Ghasemi, J. X. Zhou, Tetravalent s-Transitive graphs of order 4p², Graphs Comb. 29 (2013) 87-97.
[8] C. H. Li, Z. Ping Lu, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theor. Series B 96 (2006) 164-181.
[9] I. Martin Isaacs, Finite Group Theory, Graduate Studies in Mathematics Volume 92, American Mathematical Society Providence, Rhode Island, 2008.
[10] H. E. Rose, A Course on Finite Groups, Springer-Verlag, 2009.
[11] J. J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, 1995.
[12] A. Seyyed-Hadi, M. Ghorbani, F. Nowroozi-Larki, A simple classification of finite groups of order $p^{2} q^{2}$, Math. Interdisc. 3(2) (2018).
[13] M. Suzuki, Group Theroy II, New York, Springer-Verlag, 1985.
[14] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
[15] M. Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000) 2160-2162.
[16] J. Xu, M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math. 25 (2001) 355-363.
[17] J. X. Zhou, Y-Q.Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009) 457-471.

Citation: M. Ghorbani, A. SeyyedHadi, F. Nowroozi-Larki, Tetravalent one-regular graphs of order $p^{2} q^{2}$, J. Disc. Math. Appl. 8(2) (2023) 113-123.
dot https://doi.org/10.22061/jdma.2023.1945

COPYRIGHTS
©2023 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

[^0]: *Corresponding author (Email address: mghorbani@sru.ac.ir)
 Received 1 June 2023; Revised 6 June 2023; Accepted 12 June 2023
 First Publish Date: 1 July 2023

