On the distance matrix of an infinite class of fullerene graphs

 Mina Rajabi-Parsa*, Mohammad Javad EslampourDepartment of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 -163, I. R. Iran

Academic Editor: Modjtaba Ghorbani

Abstract

Let G be a graph. The distance $d(u, v)$ between two vertices u and v of G is the minimum length of the paths connecting them. The aim of this paper is computing the distance matrix of infinite familiy of fullerene graph $A_{10 n}$.

Keywords: distance, distance matrix, fullerene Mathematics Subject Classification (2010): 05C12.

1 Introduction

A fullerene is a cubic three connected graph with pentagons and hexagons, see [1,5]. All graphs in this paper are simple and connected. The vertex and edge sets of graph G are denoted by $V(G)$ and $E(G)$, respectively. If $x, y \in V(G)$ be two arbitrary vertices of G, then the distance $d(x, y)$ between x and y is defined as the length of the minimum path connecting them. The matrix $\left[d_{i j}\right]$ consisting of all distances between vertices of a graph G is known as the distance matrix. The Wiener index is a useful number associated with the structure of a molecule is defined as:

$$
W(G)=\frac{1}{2} \sum_{x, y \in V(G)} d(x, y)
$$

see $[2-4,6]$. Here, we compute the distance matrix of the fullerene graph $A_{10 n}$ depicted in Figure 1.

[^0]

Figure 1. The fullerene graph $A_{10 n}$.

2 Main results

A zig-zag nanotube with m rows and n columns of hexagons is denoted by $N T(m, n)$, as shown in Figure 2. By combining a nanotube $N T(10, n)$ with two copies of cap B (Figure 3) as shown in Figure 4, the resulted graph is a fullerene, which has $10 n$ vertices and exactly $5 n-10$ hexagonal faces denoted by $A_{10 n}$, see Figure 1 . For computing the distance matrix of $A_{10 n}$, first we compute the distance between two arbitary vertices of nanotube $N T(10, n)$. To do this, we can divide the set of vertices of $N T(10, n)$ to $n-4$ subsets as shown in Figure 1. The vertices of the i-th layer $(1 \leq i \leq n-4)$ are labled by $x_{i}^{1}, \cdots, x_{i}^{10}$.

Here, we determine the distance matrix of zig-zag nanotube $N T(m, n)$, where $m=10$. Let $1 \leq i, r \leq n$ and $1 \leq j \leq 10$. One can see that the path $x_{i}^{j} \rightarrow x_{i+1}^{j} \rightarrow \cdots \rightarrow x_{r}^{j}$ is the shortest path between x_{i}^{j} and x_{r}^{j}. This yields that $d\left(x_{i}^{j}, x_{r}^{j}\right)=|r-i|$. Also we can see that if $1 \leq i \leq n-3$, then

$$
\begin{equation*}
d\left(x_{i}^{j}, x_{r}^{j+1}\right)=|r-i|+1 \tag{1}
\end{equation*}
$$

where $i \neq r$. It is clear if we suppose that j is odd, then $d\left(x_{i}^{j}, x_{i}^{j+1}\right)=3$ if i is odd, and $d\left(x_{i}^{j}, x_{i}^{j+1}\right)=1$, otherwise. Now suppose that j is even. Then, $d\left(x_{i}^{j}, x_{i}^{j+1}\right)=1$ if i is odd, and $d\left(x_{i}^{j}, x_{i}^{j+1}\right)=3$, otherwise. Note that, it is enough to compute the distance between vertices of each $x_{r}^{j}(j \neq 1, j \leq 6)$ with the vertices of x_{i}^{1}.

First, we report the distance between some vertices x_{r}^{j} and x_{r}^{1} in Tables 1 and 2.

Table 1. Distances between vertices x_{r}^{j} and x_{r}^{1}.

j	r	$d\left(x_{r}^{j}, x_{r}^{1}\right)$	The shortest path
3	even, $2 \leq r \leq n-4$	4	$x_{r}^{3} \rightarrow x_{r-1}^{3} \rightarrow x_{r-1}^{2} \rightarrow x_{r}^{2} \rightarrow x_{r}^{1}$
3	odd, $1 \leq r \leq n-5$	4	$x_{r}^{3} \rightarrow x_{r}^{2} \rightarrow x_{r+1}^{2} \rightarrow x_{r+1}^{1} \rightarrow x_{r}^{1}$
4	even, $2 \leq r \leq n-4$	5	$x_{r}^{4} \rightarrow x_{r}^{3} \rightarrow x_{r-1}^{3} \rightarrow x_{r-1}^{2} \rightarrow x_{r}^{2} \rightarrow x_{r}^{1}$
4	odd, $3 \leq r \leq n-5$		$\begin{aligned} x_{r}^{4} \rightarrow x_{r-1}^{4} \rightarrow & x_{r-1}^{3} \rightarrow x_{r-2}^{3} \rightarrow x_{r-2}^{2} \rightarrow x_{r-1}^{2} \\ & \rightarrow x_{r-1}^{1} \rightarrow x_{r}^{1} \end{aligned}$
5	even, $2 \leq r \leq n-6$	8	$\begin{aligned} x_{r}^{5} & \rightarrow x_{r+1}^{5} \rightarrow x_{r+1}^{4} \rightarrow x_{r+2}^{4} \rightarrow x_{r+2}^{3} \\ & \rightarrow x_{r+1}^{3} \rightarrow x_{r+1}^{2} \rightarrow x_{r}^{2} \rightarrow x_{r}^{1} \end{aligned}$
5	odd, $3 \leq r \leq n-5$	8	$\begin{aligned} & x_{r}^{5} \rightarrow x_{r}^{4} \rightarrow x_{r+1}^{4} \rightarrow x_{r+1}^{3} \rightarrow x_{r}^{3} \\ & \quad \rightarrow x_{r}^{2} \rightarrow x_{r+1}^{2} \rightarrow x_{r+1}^{1} \rightarrow x_{r}^{1} \end{aligned}$
6	even, $2 \leq r \leq n-6$		$\begin{aligned} x_{r}^{6} \rightarrow x_{r}^{5} \rightarrow & x_{r-1}^{5} \rightarrow x_{r-1}^{4} \rightarrow x_{r}^{4} \rightarrow x_{r}^{3} \rightarrow x_{r-1}^{3} \\ & \rightarrow x_{r-1}^{2} \rightarrow x_{r}^{2} \rightarrow x_{r}^{1} \end{aligned}$
6	odd, $3 \leq r \leq n-5$		$\begin{aligned} & x_{r}^{6} \rightarrow x_{r}^{7} \rightarrow x_{r+1}^{7} \rightarrow x_{r+1}^{8} \rightarrow x_{r}^{8} \rightarrow x_{r}^{9} \rightarrow x_{r+1}^{9} \\ & \rightarrow x_{r+1}^{10} \rightarrow x_{r}^{10} \rightarrow x_{r}^{1} \\ & \hline \end{aligned}$

$\underline{\underline{\text { Table 2. Distances between vertices } x_{r}^{j} \text { and } x_{r}^{1}} .}$

Vertices	$d(x, y)$	Vertices	$d(x, y)$
$\left(x_{n-3}^{1}, x_{n-3}^{2}\right)$	2	$\left(x_{n-3}^{1}, x_{n-3}^{5}\right)$	6
$\left(x_{n-3}^{1}, x_{n-3}^{3}\right)$	3	$\left(x_{1}^{1}, x_{1}^{5}\right)$	9
$\left(x_{n-2}^{1}, x_{n-2}^{2}\right)$	3	$\left(x_{n-2}^{1}, x_{n-2}^{3}\right)$	4
$\left(x_{1}^{1}, x_{1}^{4}\right)$	6	$\left(x_{n-4}^{1}, x_{n-4}^{6}\right)$	8
$\left(x_{n-1}^{1}, x_{n-1}^{2}\right)$	1	$\left(x_{n-3}^{1}, x_{n-3}^{6}\right)$	6
$\left(x_{n-3}^{1}, x_{n-3}^{4}\right)$	5	$\left(x_{n-1}^{1}, x_{n-1}^{3}\right)$	2
$\left(x_{n-2}^{1}, x_{n-2}^{2}\right)$	3	$\left(x_{1}^{1}, x_{1}^{6}\right)$	8
$\left(x_{n-4}^{1}, x_{n-4}^{5}\right)$	7		

- Let $j=3$. We find the distance between the vertices x_{r}^{3} and x_{i}^{1}. First, suppose that r is even. We have two following cases:

Case 1. Let $r<i, 2 \leq r \leq n-6$ and $1 \leq i \leq n-3$. The path $x_{r}^{3} \rightarrow x_{r+1}^{3} \rightarrow x_{r+1}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{3} and x_{i}^{1}. So by using Eq.(1) and next argument, we conclude that if $r+1=i$, then $d\left(x_{r}^{3}, x_{i}^{1}\right)=5$ and otherwise

$$
d\left(x_{r}^{j}, x_{i}^{1}\right)=3+|(r+1)-i| .
$$

Let $2 \leq r \leq n-4$. If $i=n-2$, by regarding to the last path we have $d\left(x_{r}^{3}, x_{n-2}^{1}\right)=2+\mid r+$ $1-i \mid$.

If $i=n-1$, the path $x_{r}^{3} \rightarrow x_{n-2}^{2} \rightarrow x_{n-1}^{1}$ is the shortest path and so $d\left(x_{r}^{3}, x_{n-1}^{1}\right)=1+|i-r|$.
Case 2. Let $r>i, 2 \leq r \leq n-4$ and $1 \leq i \leq n-5$. The path $x_{r}^{3} \rightarrow x_{r-1}^{3} \rightarrow x_{r-1}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{3} and x_{i}^{1}. So, if $r-1=i$, then $d\left(x_{r}^{3}, x_{i}^{1}\right)=5$ and otherwise

$$
d\left(x_{r}^{3}, x_{i}^{1}\right)=3+|(r-1)-i| .
$$

Now, suppose that r is odd. Again two following cases hold:
Case 1. Let $r<i, 1 \leq r \leq n-5$ and $1 \leq i \leq n-3$. The path $x_{r}^{3} \rightarrow x_{r}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{3} and x_{i}^{1}. So

$$
d\left(x_{r}^{3}, x_{i}^{1}\right)=2+|r-i| .
$$

Let $1 \leq r \leq n-3$. Similarly, if $i=n-2$, then $d\left(x_{r}^{3}, x_{n-2}^{1}\right)=1+|r-i|$. If $i=n-1$, by regarding the path $x_{r}^{3} \rightarrow x_{n-1}^{2} \rightarrow x_{n-1}^{1}$ we have $d\left(x_{r}^{3}, x_{n-1}^{1}\right)=1+|r-i|$.

Case 2. Let $r>i$ and $1 \leq r, i \leq n-3$. Similar to the last case we have

$$
d\left(x_{r}^{3}, x_{i}^{1}\right)=2+|r-i| .
$$

- Let $j=4$. Here, we find the distance between the vertices x_{r}^{4} and x_{i}^{1}. First, suppose that r is even. We have two following cases:

Case 1. Let $r<i, 2 \leq r \leq n-6$ and $1 \leq i \leq n-3$. The path $x_{r}^{4} \rightarrow x_{r}^{3} \rightarrow x_{r+1}^{3} \rightarrow x_{r+1}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{4} and x_{i}^{1}. So, we conclude that if $r+1=i$, then $d\left(x_{r}^{3}, x_{i}^{1}\right)=$ 6 and otherwise

$$
d\left(x_{r}^{4}, x_{i}^{1}\right)=4+|(r+1)-i| .
$$

Let $2 \leq r \leq n-4$. Similarly, if $i=n-2$, then $d\left(x_{r}^{4}, x_{n-2}^{1}\right)=3+|r+1-i|$ and if $i=n-1$, by considering the path $x_{r}^{4} \rightarrow x_{n-1}^{2} \rightarrow x_{n-1}^{1}$ then $d\left(x_{r}^{4}, x_{n-1}^{1}\right)=1+|i-r|$.

Case 2. Let $r>i, 2 \leq r \leq n-4$ and $1 \leq i \leq n-5$. The path $x_{r}^{4} \rightarrow x_{r}^{3} \rightarrow x_{r-1}^{3} \rightarrow x_{r-1}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{4} and x_{i}^{1}. So, if $r-1=i$, then $d\left(x_{r}^{4}, x_{i}^{1}\right)=6$ and otherwise

$$
d\left(x_{r}^{4}, x_{i}^{1}\right)=4+|(r-1)-i| .
$$

If $r=n-2$ and $1 \leq i \leq n-4$, the path $x_{r}^{2} \rightarrow x_{r-1}^{3} \rightarrow x_{r-1}^{2} \rightarrow x_{r-2}^{2} \rightarrow x_{r-2}^{1} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{n-2}^{2} and x_{i}^{1}. So we have

$$
d\left(x_{n-2}^{2}, x_{i}^{1}\right)=4+|r-2-i| .
$$

If $r=n-1,1 \leq i \leq n-3$, the path $x_{r}^{2} \rightarrow x_{r}^{1} \rightarrow x_{r-1}^{1} \rightarrow x_{r-2}^{1} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{n-1}^{2} and x_{i}^{1}. So we have

$$
d\left(x_{n-1}^{2}, x_{i}^{1}\right)=3+|r-2-i| .
$$

Now, suppose that r is odd. We have two following cases:
Case 1. Let $r<i, 1 \leq r \leq n-7$ and $1 \leq i \leq n-3$. The path $x_{r}^{4} \rightarrow x_{r+1}^{4} \rightarrow x_{r+1}^{3} \rightarrow x_{r+2}^{3} \rightarrow$ $x_{r+2}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{4} and x_{i}^{1}. So, we conclude that if $r+2=i$, then $d\left(x_{r}^{4}, x_{i}^{1}\right)=7$ and otherwise

$$
d\left(x_{r}^{4}, x_{i}^{1}\right)=5+|(r+2)-i| .
$$

Let $1 \leq r \leq n-5$. If $i=n-2$, then $d\left(x_{r}^{4}, x_{n-2}^{1}\right)=4+|r+2-i|$ and if $i=n-1$, then $d\left(x_{r}^{4}, x_{n-1}^{1}\right)=1+|i-r|$.

Case 2. Let $r>i, 3 \leq r \leq n-5$ and $1 \leq i \leq n-6$. The path $x_{r}^{4} \rightarrow x_{r-1}^{4} \rightarrow x_{r-1}^{3} \rightarrow x_{r-2}^{3} \rightarrow$ $x_{r-2}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{4} and x_{i}^{1}. So, we conclude that if $r-2=i$, then $d\left(x_{r}^{4}, x_{i}^{1}\right)=7$ and otherwise

$$
d\left(x_{r}^{4}, x_{i}^{1}\right)=5+|(r-2)-i| .
$$

Similar to the last case if $r=n-3$ and $1 \leq i \leq n-6$ then for $r-2=i, d\left(x_{r}^{4}, x_{i}^{1}\right)=7$ and otherwise

$$
d\left(x_{r}^{4}, x_{i}^{1}\right)=5+|(r-2)-i| .
$$

- Let $j=5$. We find the distance between the vertices x_{r}^{5} and x_{i}^{1}. First, suppose that r is even. We have two following cases:

Case 1. Let $r<i, 2 \leq r \leq n-8$ and $1 \leq i \leq n-3$. The path $x_{r}^{5} \rightarrow x_{r+1}^{5} \rightarrow x_{r+1}^{4} \rightarrow x_{r+2}^{4} \rightarrow$ $x_{r+2}^{3} \rightarrow x_{r+3}^{3} \rightarrow x_{r+3}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{5} and x_{i}^{1}. So, we conclude that if $r+3=i$, then $d\left(x_{r}^{5}, x_{i}^{1}\right)=9$ and otherwise

$$
d\left(x_{r}^{5}, x_{i}^{1}\right)=7+|(r+3)-i| .
$$

If $i=n-2$ and $2 \leq r \leq n-6$, then $d\left(x_{r}^{5}, x_{n-2}^{1}\right)=6+|r+3-i|$ and if $i=n-1$ and $2 \leq r \leq n-6$, then $d\left(x_{r}^{5}, x_{n-1}^{1}\right)=2+|r-i|$.

Case 2. Let $r>i$ and $4 \leq r \leq n-6$ and $1 \leq i \leq n-7$. The path $x_{r}^{5} \rightarrow x_{r-1}^{5} \rightarrow x_{r-1}^{4} \rightarrow x_{r-2}^{4} \rightarrow$ $x_{r-2}^{3} \rightarrow x_{r-3}^{3} \rightarrow x_{r-3}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{5} and x_{i}^{1}. So, we conclude that if $r-3=i$, then $d\left(x_{r}^{5}, x_{i}^{1}\right)=9$ and otherwise

$$
d\left(x_{r}^{5}, x_{i}^{1}\right)=7+|(r-3)-i| .
$$

If $r=n-4$ and $1 \leq i \leq n-6$, then similar to the last case if $r-3=i$, then $d\left(x_{r}^{5}, x_{i}^{1}\right)=9$ and otherwise we have

$$
d\left(x_{r}^{5}, x_{i}^{1}\right)=7+|(r-3)-i| .
$$

Now, suppose that r is odd. We have two following cases:
Case 1. Let $r<i, 1 \leq r \leq n-7$ and $1 \leq i \leq n-3$. The path $x_{r}^{5} \rightarrow x_{r}^{4} \rightarrow x_{r+1}^{4} \rightarrow x_{r+1}^{3} \rightarrow$ $x_{r+2}^{3} \rightarrow x_{r+2}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{5} and x_{i}^{1}. So, we conclude that if $r+2=i$, then $d\left(x_{r}^{5}, x_{i}^{1}\right)=8$ and otherwise

$$
d\left(x_{r}^{5}, x_{i}^{1}\right)=6+|(r+2)-i| .
$$

Let $1 \leq r \leq n-5$. If $i=n-2$, then $d\left(x_{r}^{5}, x_{n-2}^{1}\right)=5+|r+2-i|$ and if $i=n-1$, then $d\left(x_{r}^{5}, x_{n-1}^{1}\right)=2+|r-i|$.

Case 2. Let $r>i, 3 \leq r \leq n-5$ and $1 \leq i \leq n-6$. The path $x_{r}^{5} \rightarrow x_{r}^{4} \rightarrow x_{r-1}^{4} \rightarrow x_{r-1}^{3} \rightarrow$ $x_{r-2}^{3} \rightarrow x_{r-2}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{5} and x_{i}^{1}. So, we conclude that if $r-2=i$, then $d\left(x_{r}^{5}, x_{i}^{1}\right)=8$ and otherwise

$$
d\left(x_{r}^{5}, x_{i}^{1}\right)=6+|(r-2)-i| .
$$

If $r=n-3$ and $1 \leq i \leq n-6$, then similar to the last case if $r-2=i$, then $d\left(x_{r}^{5}, x_{i}^{1}\right)=8$ and otherwise

$$
d\left(x_{r}^{5}, x_{i}^{1}\right)=6+|(r-2)-i| .
$$

- Let $j=6$. We find the distance between the vertices x_{r}^{6} and x_{i}^{1}. First, suppose that r is even. We have two following cases:

Case 1. Let $r<i, 2 \leq r \leq n-4$ and $1 \leq i \leq n-3$. The path $x_{r}^{6} \rightarrow x_{r}^{5} \rightarrow x_{r+1}^{5} \rightarrow x_{r+1}^{4} \rightarrow$ $x_{r+2}^{4} \rightarrow x_{r+2}^{3} \rightarrow x_{r+3}^{3} \rightarrow x_{r+3}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{6} and x_{i}^{1}. So, we conclude that if $r+3=i$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=10$ and otherwise

$$
d\left(x_{r}^{6}, x_{i}^{1}\right)=8+|(r+3)-i|
$$

Let $2 \leq r \leq n-6$. If $i=n-2$, by regarding the path $x_{r}^{6} \rightarrow x_{n-1}^{3} \rightarrow x_{n-1}^{2} \rightarrow x_{n-1}^{1} \rightarrow x_{n-2}^{1}$ we have $d\left(x_{r}^{6}, x_{n-2}^{1}\right)=3+|i+1-r|$ and if $i=n-1$, then $d\left(x_{r}^{6}, x_{n-1}^{1}\right)=2+|i-r|$.

Case 2. Let $r>i, 4 \leq r \leq n-6$ and $1 \leq i \leq n-7$. The path $x_{r}^{6} \rightarrow x_{r}^{5} \rightarrow x_{r-1}^{5} \rightarrow x_{r-1}^{4} \rightarrow$ $x_{r-2}^{4} \rightarrow x_{r-2}^{3} \rightarrow x_{r-3}^{3} \rightarrow x_{r-3}^{2} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{6} and x_{i}^{1}. So, we conclude that if $r-3=i$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=10$ and otherwise

$$
d\left(x_{r}^{6}, x_{i}^{1}\right)=8+|(r-3)-i| .
$$

Similarly, if $r=n-4,1 \leq i \leq n-6$, for $r-3=i, d\left(x_{r}^{6}, x_{i}^{1}\right)=10$ and otherwise

$$
d\left(x_{r}^{6}, x_{i}^{1}\right)=8+|(r-3)-i| .
$$

if $r=n-2$ and $1 \leq i \leq n-3$, by considering the path $x_{n-2}^{3} \rightarrow x_{n-1}^{3} \rightarrow x_{n-1}^{2} \rightarrow x_{n-1}^{1} \rightarrow x_{i}^{1}$ we have

$$
d\left(x_{n-2}^{3}, x_{i}^{1}\right)=3+|(r+1)-i| .
$$

Now, suppose that r is odd. Two following cases hold:
Case 1. Let $r<i, 3 \leq r \leq n-7$ and $3 \leq i \leq n-3$. Suppose $r+4>i$, the path $x_{r}^{6} \rightarrow x_{r}^{7} \rightarrow$ $x_{r+1}^{7} \rightarrow x_{r+1}^{8} \rightarrow x_{r+2}^{8} \rightarrow x_{r+2}^{9} \rightarrow x_{r+3}^{9} \rightarrow x_{r+3}^{10} \rightarrow x_{r+2}^{10} \rightarrow x_{r+2}^{1} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{6} and x_{i}^{1}. This yields that

$$
d\left(x_{r}^{6}, x_{i}^{1}\right)=9+|(r+2)-i| .
$$

If $r+4=i$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=9$. Suppose $r+4<i$, the path $x_{r}^{6} \rightarrow x_{r}^{7} \rightarrow x_{r+1}^{7} \rightarrow x_{r+1}^{8} \rightarrow$ $x_{r+2}^{8} \rightarrow x_{r+2}^{9} \rightarrow x_{r+3}^{9} \rightarrow x_{r+3}^{10} \rightarrow x_{r+4}^{10} \rightarrow x_{r+4}^{1} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{6} and x_{i}^{1}. This means that

$$
d\left(x_{r}^{6}, x_{i}^{1}\right)=9+|(r+4)-i| .
$$

Let $r=1, i>5$ and $i \neq n-1$. So

$$
d\left(x_{1}^{6}, x_{i}^{1}\right)=9+|(r+4)-i| .
$$

Let $1 \leq r \leq n-7$. If $i=n-2$, by regarding the path $x_{r}^{6} \rightarrow x_{r+1}^{6} \rightarrow x_{r+1}^{5} \rightarrow x_{r+2}^{5} \rightarrow x_{r+2}^{4} \rightarrow$ $x_{r+3}^{4} \rightarrow x_{r+3}^{3} \rightarrow x_{r+4}^{3} \rightarrow x_{r+4}^{2} \rightarrow x_{i}^{1}$ we have $d\left(x_{r}^{6}, x_{n-2}^{1}\right)=8+|r+4-i|$ and if $i=n-1$, then $d\left(x_{r}^{6}, x_{n-1}^{1}\right)=2+|i-r|$.

Case 2. Let $r>i, 3 \leq r \leq n-5$ and $1 \leq i \leq n-6$. Suppose $r-3 \geq i$, the path $x_{r}^{6} \rightarrow x_{r}^{7} \rightarrow$ $x_{r-1}^{7} \rightarrow x_{r-1}^{8} \rightarrow x_{r-2}^{8} \rightarrow x_{r-2}^{9} \rightarrow x_{r-3}^{9} \rightarrow x_{r-3}^{10} \rightarrow x_{r-4}^{10} \rightarrow x_{r-4}^{1} \rightarrow x_{i}^{1}$ is the shortest path between vertices x_{r}^{6} and x_{i}^{1}. So we have

$$
d\left(x_{r}^{6}, x_{i}^{1}\right)=9+|(r-4)-i| .
$$

if $i=r-2$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=9$ and if $i=r-1$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=10$. Similarly, if $r=n-3$, $1 \leq i \leq n-6$ and $r-3 \geq i$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=9+|(r-4)-i|$. If $i=r-2$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=9$ and if $i=r-1$, then $d\left(x_{r}^{6}, x_{i}^{1}\right)=10$. If $r=n-1$ and $1 \leq i \leq n-2$, then $d\left(x_{n-1}^{3}, x_{i}^{1}\right)=r+2-i$. The other cases are reported in the Table 3.

Table 3. Vertices and distances between them.

Vertices	$d(x, y)$	Vertices	$d(x, y)$	Vertices	$d(x, y)$
$\left(x_{n-3}^{3}, x_{n-2}^{1}\right)$	2	$\left(x_{n-4}^{5} x_{n-2}^{1}\right)$	6	$\left(x_{n-4}^{6} x_{n-5}^{1}\right)$	9
$\left(x_{n-3}^{3}, x_{n-1}^{1}\right)$	3	$\left(x_{n-4}^{5} x_{n-1}^{1}\right)$	5	$\left(x_{2}^{6}, x_{1}^{1}\right)$	9
$\left(x_{n-4}^{1}, x_{n-3}^{1}\right)$	4	$\left(x_{n-4}^{5} x_{n-5}^{1}\right)$	8	$\left(x_{1}^{6}, x_{1}^{1}\right)$	8
$\left(x_{n-4}^{4}, x_{n-3}^{1}\right)$	5	$\left(x_{2}^{5}, x_{1}^{1}\right)$	8	$\left(x_{1}^{6}, x_{2}^{1}\right)$	9
$\left(x_{n-2}^{2}, x_{n-1}^{1}\right)$	2	$\left(x_{n-5}^{5}, x_{n-4}^{1}\right)$	7	$\left(x_{1}^{6}, x_{3}^{1}\right)$	9
$\left(x_{n-2}^{2}, x_{n-3}^{1}\right)$	4	$\left(x_{n-5}^{5} x_{n-3}^{1}\right)$	7	$\left(x_{1}^{6}, x_{4}^{1}\right)$	11
$\left(x_{n-1}^{2}, x_{n-2}^{1}\right)$	2	$\left(x_{n-3}^{5}, x_{n-2}^{1}\right)$	5	$\left(x_{1}^{6}, x_{5}^{1}\right)$	9
$\left(x_{n-5}^{4}, x_{n-4}^{1}\right)$	6	$\left(x_{n-3}^{5}, x_{n-1}^{1}\right)$	4	$\left(x_{n-3}^{6}, x_{n-2}^{1}\right)$	5
$\left(x_{n-5}^{4}, x_{n-3}^{1}\right)$	6	$\left(x_{n-3}^{5}, x_{n-5}^{1}\right)$	7	$\left(x_{n-5}^{6} x_{n-2}^{1}\right)$	7
$\left(x_{n-3}^{4}, x_{n-2}^{1}\right)$	4	$\left(x_{n-3}^{5}, x_{n-4}^{1}\right)$	6	$\left(x_{n-5}^{6}, x_{n-4}^{1}\right)$	9
$\left(x_{n-3}^{4}, x_{n-1}^{1}\right)$	3	$\left(x_{n-4}^{6} x_{n-3}^{1}\right)$	7	$\left(x_{n-5}^{6}, x_{n-3}^{1}\right)$	8
$\left(x_{n-3}^{4}, x_{n-5}^{1}\right)$	6	$\left(x_{n-4}^{6} x_{n-2}^{1}\right)$	6	$\left(x_{n-5}^{6}, x_{n-2}^{1}\right)$	7
$\left(x_{n-3}^{4}, x_{n-4}^{1}\right)$	5	$\left(x_{n-4}^{6} x_{n-1}^{1}\right)$	5	$\left(x_{n-5}^{6}, x_{n-1}^{1}\right)$	6
$\left(x_{n-6}^{5}, x_{n-5}^{1}\right)$	9	$\left(x_{n-6}^{6}, x_{n-5}^{1}\right)$	10	$\left(x_{n-3}^{6}, x_{n-2}^{1}\right)$	5
$\left(x_{n-6}^{5}, x_{n-4}^{1}\right)$	8	$\left(x_{n-6}^{6}, x_{n-4}^{1}\right)$	9	$\left(x_{n-3}^{6}, x_{n-1}^{1}\right)$	4
$\left(x_{n-6}^{5}, x_{n-3}^{1}\right)$	8	$\left(x_{n-6}^{6}, x_{n-3}^{1}\right)$	9	$\left(x_{n-3}^{6}, x_{n-5}^{1}\right)$	8
$\left(x_{n-4,}^{5}, x_{n-3}^{1}\right)$	7	$\left(x_{n-2,}^{3}, x_{n-1}^{1}\right)$	3	$\left(x_{n-3}^{6}, x_{n-4}^{1}\right)$	7

Now, we compute the distance matrix of vertices of the inner cap with the vertices of the tube and the vertices of the outer cap. It is enough to compute them for the vertices a_{1}, a_{6}, a_{11}. All of them are reported in Table 4 and 5. Finally, the matrices A and B are distance matrices of the inner and the outer cap, respectively.

Figure 2. 2- D graph of zig-zag nanotube $N T(5, n)$, for $m=5, n=10$.

Table 4. Distances between the vertex a_{1} with the vertices of
the zig-zag nanotube $N T(10, n)$ and the vertices of the outer cap.

Vertices	$d(x, y)$	The shortest path between them
$\left(a_{1}, x_{i}^{1}\right)$	$i+2$	$a_{1} \rightarrow a_{6} \rightarrow a_{11} \rightarrow x_{1}^{1} \rightarrow \cdots \rightarrow x_{i}^{1}$
$\left(a_{1}, x_{i}^{2}\right)$	$i+3$	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{12} \rightarrow x_{1}^{2} \rightarrow \cdots \rightarrow x_{i}^{2}$
$\left(a_{1}, x_{i}^{3}\right)$	$i+3$	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{13} \rightarrow x_{1}^{3} \rightarrow \cdots \rightarrow x_{i}^{3}$
$\left(a_{1}, x_{i}^{4}\right)$	$i+4$	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{13} \rightarrow a_{14} \rightarrow x_{1}^{4} \rightarrow \cdots \rightarrow x_{i}^{4}$
$\left(a_{1}, x_{i}^{5}\right)$	$i+4$	$a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{8} \rightarrow a_{15} \rightarrow x_{1}^{5} \rightarrow \cdots \rightarrow x_{i}^{5}$
$\left(a_{1}, x_{i}^{5}\right)$	$i+4$	$a_{1} \rightarrow a_{5} \rightarrow a_{4} \rightarrow a_{9} \rightarrow a_{16} \rightarrow x_{1}^{6} \rightarrow \cdots \rightarrow x_{i}^{6}$
$\left(a_{1}, x_{n-3}^{1}\right)$	$n-1$	$a_{1} \rightarrow a_{6} \rightarrow a_{11} \rightarrow x_{1}^{1} \rightarrow \cdots \rightarrow x_{n-3}^{1}$
$\left(a_{1}, x_{n-3}^{2}\right)$	n	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{12} \rightarrow x_{1}^{2} \rightarrow \cdots \rightarrow x_{n-3}^{2}$
$\left(a_{1}, x_{n-2}^{1}\right)$	n	$a_{1} \rightarrow a_{6} \rightarrow a_{11} \rightarrow x_{1}^{1} \rightarrow \cdots \rightarrow x_{n-2}^{1}$
$\left(a_{1}, x_{n-1}^{1}\right)$	$n+1$	$a_{1} \rightarrow a_{6} \rightarrow a_{11} \rightarrow x_{1}^{1} \rightarrow \cdots \rightarrow x_{n-1}^{1}$
$\left(a_{1}, x_{n-3}^{3}\right)$	n	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{13} \rightarrow x_{1}^{3} \rightarrow \cdots \rightarrow x_{n-3}^{3}$
$\left(a_{1}, x_{n-3}^{4}\right)$	$n+1$	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{13} \rightarrow a_{14} \rightarrow x_{1}^{4} \rightarrow \cdots \rightarrow x_{n-3}^{4}$
$\left(a_{1}, x_{n-2}^{2}\right)$	$n+1$	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{13} \rightarrow x_{1}^{3} \rightarrow \cdots \rightarrow x_{n-2}^{2}$
$\left(a_{1}, x_{n-1}^{2}\right)$	$n+2$	$a_{1} \rightarrow a_{2} \rightarrow a_{7} \rightarrow a_{13} \rightarrow x_{1}^{3} \rightarrow \cdots \rightarrow x_{n-1}^{1}$
$\left(a_{1}, x_{n-3}^{5}\right)$	$n+1$	$a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{8} \rightarrow a_{15} \rightarrow x_{1}^{5} \rightarrow \cdots \rightarrow x_{n-3}^{5}$
$\left(a_{1}, x_{n-3}^{6}\right)$	$n+1$	$a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{8} \rightarrow a_{15} \rightarrow x_{1}^{5} \rightarrow \cdots \rightarrow x_{n-3}^{6}$
$\left(a_{1}, x_{n-2}^{3}\right)$	$n+2$	$a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{8} \rightarrow a_{15} \rightarrow x_{1}^{5} \rightarrow \cdots \rightarrow x_{n-2}^{3}$
$\left(a_{1}, x_{n-1}^{3}\right)$	$n+3$	$a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{8} \rightarrow a_{15} \rightarrow x_{1}^{5} \rightarrow \cdots \rightarrow x_{n-1}^{3}$

Figure 3. Cap B.

Table 5. Distances between the vertices a_{6} and a_{11} with the vertices of the zig-zag nanotube $N T(10, n)$ and the vertices of the outer cap.

Vertices	$d(x, y)$	Vertices	$d(x, y)$
$\left(a_{6}, x_{i}^{1}\right)$	$i+1$	$\left(a_{11}, x_{i}^{1}\right)$	i
$\left(a_{6}, x_{i}^{2}\right)$	$i+2$	$\left(a_{11}, x_{i}^{2}\right)$	$i+1$
$\left(a_{6}, x_{i}^{3}\right)$	$i+3$	$\left(a_{11}, x_{i}^{3}\right)$	$i+2$
$\left(a_{6}, x_{i}^{4}\right) i \neq 1$	$i+4$	$\left(a_{11}, x_{i}^{4}\right) i \neq 1,2$	$i+3$
$\left(a_{6}, x_{1}^{4}\right)$	6	$\left(a_{11}, x_{1}^{4}\right)$	5
$\left(a_{6}, x_{i}^{5}\right)$	$i+5$	$\left(a_{11}, x_{2}^{4}\right)$	5
$\left(a_{6}, x_{i}^{6}\right)$	$i+5$	$\left(a_{11}, x_{i}^{5}\right) i \neq 1,2$	$i+4$
$\left(a_{6}, x_{n-3}^{1}\right)$	$n-2$	$\left(a_{11}, x_{1}^{5}\right)$	6
$\left(a_{6}, x_{n-3}^{2}\right)$	$n-1$	$\left(a_{11}, x_{2}^{5}\right)$	6
$\left(a_{6}, x_{n-2}^{1}\right)$	$n-1$	$\left(a_{11}, x_{i}^{6}\right) i \neq 1,2,3$	$i+5$
$\left(a_{6}, x_{n-1}^{1}\right)$	n	$\left(a_{11}, x_{1}^{6}\right)$	7
$\left(a_{6}, x_{n-3}^{3}\right)$	n	$\left(a_{11}, x_{2}^{6}\right)$	8
$\left(a_{6}, x_{n-3}^{4}\right)$	$n+1$	$\left(a_{11}, x_{3}^{6}\right)$	9
$\left(a_{6}, x_{n-2}^{2}\right)$	$n+1$	$\left(a_{11}, x_{n-3}^{1}\right)$	$n-3$
$\left(a_{6}, x_{n-1}^{2}\right)$	$n+1$	$\left(a_{11}, x_{n-3}^{2}\right)$	$n-2$
$\left(a_{6}, x_{n-3}^{5}\right)$	$n+2$	$\left(a_{11}, x_{n-2}^{1}\right)$	$n-2$
$\left(a_{6}, x_{n-3}^{6}\right)$	$n+2$	$\left(a_{11}, x_{n-1}^{1}\right)$	$n-1$
$\left(a_{6}, x_{n-2}^{3}\right)$	$n+3$	$\left(a_{11}, x_{n-3}^{3}\right)$	$n-1$
$\left(a_{6}, x_{n-1}^{3}\right)$	$n+2$	$\left(a_{11}, x_{n-3}^{4}\right)$	n
-	-	$\left(a_{11}, x_{n-2}^{2}\right)$	n
-	-	$\left(a_{11}, x_{n-1}^{2}\right)$	n
-	$\left(a_{11}, x_{n-3}^{5}\right)$	$n+1$	
-	$\left(a_{11}, x_{n-3}^{6}\right)$	$n+2$	
-	$\left(a_{11}, x_{n-2}^{3}\right)$	$n+2$	
-	$\left(a_{11}, x_{n-1}^{3}\right)$	$n+1$	
-	-		

Figure 4. Fullerene $A_{10 n}$ constructed by combining two copies of B and the zig-zag nanotube $N T(5, n)$.

$$
A=\left(\begin{array}{l}
01221123322334444332 \\
10122212333223344443 \\
21012321234332233444 \\
22101332124443322334 \\
12210233213444433223 \\
12332034431245555421 \\
21233303442112455554 \\
32123430345421124555 \\
33212443035554211245 \\
23321344304555542112 \\
23443125540134666532 \\
32344214551023566643 \\
32344412553201346665 \\
43234521454310235666 \\
43234541256532013466 \\
44323552146643102356 \\
44323554126665320134 \\
34432455215666431023 \\
34432255413466653201 \\
23443145522356664310
\end{array}\right)
$$

$$
B=\left(\begin{array}{l}
02356664311455223443 \\
20134666531255423443 \\
31023566642145532344 \\
5320134666412553344 \\
64310235665214543234 \\
66532013465412543234 \\
66643102355521444323 \\
46665320135541244323 \\
35666431024552134432 \\
13466653202554134432 \\
11245555420344312332 \\
42112455553034421233 \\
55421124554303432123 \\
55554211244430333212 \\
24555542113443023321 \\
22334444331233201221 \\
33223344442123310122 \\
44332233443212321012 \\
4444332233321222101 \\
33444433222332112210
\end{array}\right)
$$

References

[1] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.
[2] M. Ghorbani, T. Ghorbani, Computing the Wiener index of an infinite class of fullerenes, Studia Ubb Chemia. 58 (2013) 43-50.
[3] M. Ghorbani, Computing Wiener index of $C_{24 n}$ fullerenes, J. Comput. Theor. Nanosci. 12 (2015) 1847-1851.
[4] M. Ghorbani, M. Songhori, Computing Wiener index of $C_{12 n}$ fullerenes, Ars Combin. 130 (2017) 175-180.
[5] H. W. Kroto, J. E. Fichier, D. E. Cox, The Fullerene, Pergamon Press, Inc, New York, 1993.
[6] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.

Citation: M. Rajabi Parsa, M. J. Eslampour, On the distance matrix of an infinite class of fullerene graphs, J. Disc. Math. Appl. 7(4) (2022) 173-184.
https://doi.org/10.22061/JDMA.2022.1940

COPYRIGHTS
©2023 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

[^0]: *Corresponding author (Email address: mina.rparsa@gmail.com)
 Received 25 October 2022; Revised 4 November 2022; Accepted 16 November 2022
 First Publish Date: 1 December 2022

