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1 Introduction

A fullerene is a cubic three connected graph with pentagons and hexagons, see [1,5]. All
graphs in this paper are simple and connected. The vertex and edge sets of graph G are
denoted by V(G) and E(G), respectively. If x,iy € V(G) be two arbitrary vertices of G, then
the distance d(x,y) between x and y is defined as the length of the minimum path connecting
them. The matrix [d;;] consisting of all distances between vertices of a graph G is known as
the distance matrix. The Wiener index is a useful number associated with the structure of a
molecule is defined as:

W)=, ¥ dxy)

x,yeV(G)
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see [2—4,6]. Here, we compute the distance matrix of the fullerene graph Ajg, depicted in
Figure 1.

Figure 1. The fullerene graph Aqgj,.

2 Main results

A zig—zag nanotube with m rows and n columns of hexagons is denoted by NT(m,n),
as shown in Figure 2. By combining a nanotube NT(10,7) with two copies of cap B (Figure
3) as shown in Figure 4, the resulted graph is a fullerene, which has 10n vertices and exactly
5n — 10 hexagonal faces denoted by Ajg,,, see Figure 1. For computing the distance matrix of
A1qon, first we compute the distance between two arbitary vertices of nanotube NT(10,n). To
do this, we can divide the set of vertices of NT(10,1) to n — 4 subsets as shown in Figure 1.
The vertices of the i-th layer (1 <i < n — 4) are labled by xl.l,- . ,x}o.

Here, we determine the distance matrix of zig—zag nanotube NT(m,n), where m = 10.
Let1 <i,r <mand 1 <j<10. One can see that the path xg — fo — -+ — x} is the shortest
path between x/ and x}. This yields that d(x/,x}) = |r — i|. Also we can see thatif 1 <i<n—3,
then

_— ‘

d(x,x ) =[r—i[+1, (1)
where i # r. It is clear if we suppose that j is odd, then d(x{,x5+1) =3 if i is odd, and
d (xf,xf“) =1, otherwise. Now suppose that j is even. Then, d (xf,xfrl) =1ifiis odd, and
d(xf,xfﬂ) = 3, otherwise. Note that, it is enough to compute the distance between vertices

of each x/ (j #1,j < 6) with the vertices of x} .

First, we report the distance between some vertices x. and x! in Tables 1 and 2.
P r

Table 1. Distances between vertices x} and x.
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j r d(xi,x}) The shortest path
3leven,2<r<n-—4 4 P T AT e
3| o0dd,1<r<n-5 4 o xl o xt =l o)
4 | even,2<r<n-—4 5 Xpo x> a0 x| o x2—x)
1 1 3 3 2 2
4| odd,3<r<n-5 7 Xy — Xy —>xr_11—>9cr721—>xr_2—>xrf1
5 5 —>xr4_1—>x,4 3
5|leven,2<r<n-—=6 8 Xp = X)X X X,
—x —xt aox
5| 0dd,3<r<n-5 8 XP XX XS X
— X7 X2 X X
6| even,2<r<n-—6 9 X a0
2 2 1
—x2 | = x?— x}
6| odd,3<r<n-5 9 e e A I e e |
10 10 1
— %0, = 0 = x]

Table 2. Distances between vertices x} and x.

Vertices  d(x,y) Vertices  d(x,y)

(%p_3% 3) 2 (*p_3.% 3) 6
(x} 5,23 ) 3 (xf,x3) 9
(xp_2r%0 ) 3 (xp 0% ) 4

(x%,x‘ll) 6 (x}q_4,x274) 8
(xp_ 1% 1) 1 (%_3,%5_3) 6
(%53 %5_3) 5 CE ) 2
(%05 2) 3 (x1,x7) 8
(%p_ 4% _4) 7

e Let j = 3. We find the distance between the vertices x? and x. First, suppose that r is
even. We have two following cases:

Casel.Letr<i,2<r<n—6and1<i<n-—3. Thepathx§—>xf+1—>xf+1—>x}isthe

shortest path between vertices x? and x}. So by using Eq.(1) and next argument, we conclude
thatif r + 1 =, then d(x3,x}) = 5 and otherwise

d(x},x}) =3+ |(r+1) —i.

Let2 <r<n—4.1Ifi = n — 2, by regarding to the last path we have d(x3,x} ,)=2+|r+
1—il.
Ifi=n—1,the path x} — x2_, — x. | is the shortest pathand sod(x3,x} ;) =1+ i —r|.

Case2. Lletr>i,2<r<n—4and1<i<n-—>. Thepathx?—mci1 —>xf_1 —>x} is the
shortest path between vertices x> and xil. So,ifr —1 =i, then d(xf’,x}) = 5 and otherwise

d(x3,x1) =3+ |(r—1) —1l.
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Now, suppose that r is odd. Again two following cases hold:

Casel. Letr <i,1<r<mn—5and1<i<n—3. The path xJ — x2 — x! is the shortest
path between vertices x? and x. So
d(x2,x1) =2+ |r —i|.

Let1<r<n-3. Slrmlarly,1fz—n—2 thend(x bl )y=1+r—il. Ifi=n—1, by
regarding the path x3 — x2 | —x. | wehaved(x3,x) )=1+|r—i|

Case 2. Letr >iand 1 <r,i <n — 3. Similar to the last case we have
d(x2,x}) =2+ |r —il.

o Let j = 4. Here, we find the distance between the vertices xf and x}. First, suppose that
ris even. We have two following cases:

Casel. Letr <i,2<r<n—6and1<i<n—3. The path x} — xJ —>xr+1—>xr+1—>x}is
the shortest path between vertices x7 and x}. So, we conclude thatif r +1 =1, thend(x3,x]) =
6 and otherwise

A2 =4+ (r+1) — il

Let2<r<n-—4. Similarly,ifz—n—Z thend(xr,xn ,)=3+|r+1—ilandifi=n—1,

by considering the path xf — x> | —x. | thend(x},x} ) =1+ i—r|

1’l

Case2. letr>i,2<r<m—4and1<i<n-—>. Thepathxf—mcf—>xffl—>x3_1—>x} is
the shortest path between vertices x; and xl-l. So, if r —1 =i, then d(xf,x}) = 6 and otherwise

d(xt,xl)=4+|(r—1)—il

Ifr:n—2and1§i§n—4,thepathx%—mcffl—>x3_1—>x$72—>x}72—>x} is the

shortest path between vertices x2_, and x}. So we have

d(xy p,x}) =4+ [r—2~1l.

Ifr=n-1,1<i<n-—3, the path xf — x} — x}_l — xLz — x} is the shortest path

between vertices x%f

, and x}. So we have
d(x2_,x})=3+|r—2—i
Now, suppose that r is odd. We have two following cases:

Casel Letr<i,1<r<n—7and1<i<n-3, Thepathx — A X X, =

x2,, — x] is the shortest path between vertices x} and x!. So, we conclude that if r +2 =,
then d (xr,x ) =7 and otherwise

d(xy,xi) =5+ |(r+2) —il.
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Letl1<r<n-5 Ifi=n-—2, thend(xf,x}l_z):4+]r+2—i\ and if i = n — 1, then
d(xt, ) =1+ i—1].

Case2. Letr>i,3<r<n—5and1<i<n—6. Thepathxf - x* , —x> =2,
Xy o —> x is the shortest path between vertices xf and xl-l. So, we conclude thatif r — 2 =1,
then d (xr,x ) =7 and otherwise

d(x},x1) =5+ |(r—2) —il.

Similar to the last case if r=n —3and 1 <i <n — 6 then for r —2 =1, d(x},x}) =7 and
otherwise

2

d(xk,x}) =5+ |(r—2) —il.

e Let j = 5. We find the distance between the vertices x? and x]. First, suppose that r is
even. We have two following cases:

Case 1. Letr </, 2<r<n—8and1<z<n—3 The path x2 —>xr+1—>xr+1—>xr+2—>
X +2 — x3 3 x2 13— x! is the shortest path between vertices x? and x}. So, we conclude
thatif r +3 =7, then d(x,,x ) =9 and otherwise

d(x),x1) =7+ |(r+3) —il.
Ifi=n—2and 2<r<n-—6,thend(x},x! ,)=6+|r+3—ilandifi=n—1 and
2§r§n—6,thend(xr,xn_1)—2+\r—1|.

Case 2. Letr > iand4§r§n—6and1 <i<n-7 Thepathx}; x> | —x}  —x} ,—
xffz — xs’ 53— xr 5= x is the shortest path between vertices x? and x}. So, we conclude

that if r — 3 =i, then d(xr,x ) =9 and otherwise
d(x2,x}) =7+ |(r—3) — 1.

Ifr=n—4and 1 <i<n — 6, then similar to the last case if r — 3 = i, then d(x?,x}) =9
and otherwise we have
d(x2,x}) =7+ |(r—3) —i.

Now, suppose that r is odd. We have two following cases:

Case 1. Letr<z 1<r<n-—7and1<i<n-3. Thepathx — Xy Xy X —

X3, — x2 o x! is the shortest path between vertices x? and x}. So, we conclude that if
r+2 =i, then d(xr,x ) = 8 and otherwise

d(x2,x}) =64 |(r+2) —i.

Let 1<r<n-5 Ifi=n—2 thend(x),x} ,)=5+|r+2—i|land if i =n — 1, then
d(x2,x )=2+|r—il
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Case 2. Letr>i,3<r<n—-5and1<i<n—6. Thepathx?—>x§—>xf_1—>xffl—>
x3_, — x2_, — x} is the shortest path between vertices x? and x}. So, we conclude that if

r—2=1i,thend(x},x}) = 8 and otherwise
d(x2,x}) =6+ |(r—2) —il.

Ifr=n—3and 1 <i<n — 6, then similar to the last case if r — 2 = i, then d(x?,xil) =38
and otherwise
20,31 =6+ [(r—2) —il.

e Let j = 6. We find the distance between the vertices x¢ and x}. First, suppose that  is even.
We have two following cases:

Casel. Letr<i,2<r<n-—4and1<i<n-—3. Thepath x® = x> — x> , — x}

4 3 3 2 1 6 [ Ha ! -
Xpio = X; 5 = X7 53— X;, 3 — X; is the shortest path between vertices x;’ and x;. So, we

conclude that if r + 3 = i, then d(x%,x}) = 10 and otherwise
d(xp,x}) =8+ |(r+3) —il.

Let2 <r <mn—6. If i =n — 2, by regarding the path xf — ngl — x%_l — x111_1 — x,1172
wehaved(x8,x! ,)=3+|i+1—r[andifi=n—1, thend(xt,x} ) =2+41]i—7|

n—1

Case2. Letr>i,4<r<n—6and1<i<n—7. Thepathx® —x} > x> , —xt —

X}, = x>, = x> 5 — x2_ 5 — x] is the shortest path between vertices x® and x}. So, we

conclude that if r — 3 = i, then d(x%,x} ) = 10 and otherwise
d(x8,x}) =8+ |(r—3) —il.

Similarly, ifr=n—4,1<i<n—6,forr —3=1,d(x8x!) =10 and otherwise
d(x8,x}) =8+ |(r—3) —il.

ifr=n—2and 1 <i<n—3, by considering the path x> , — x> | =22 | —xl  —xl
we have
d(x)_pxj) =3+ |(r+1) —i.

Now, suppose that 7 is odd. Two following cases hold:

Casel. Letr <i,3<r<n—7and3<i<n-—23. Suppose r +4 > i, the path x¢ — x7 —
o=l =l =) =) = a0 — a0, — x), — x] is the shortest path between
vertices x and x}. This yields that

A(x8,x]) =9+ |(r +2) — il
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Ifr+4—z then d(xr,x ) —9 Suppose r+4<z the path x& — x7 — x7
r—l—Z =X X3 N0
x}. This means that

1 x;
— x! e x! is the shortest path between vertices x®

rérl -
r+4 and

d(x8,x1) =9+ |(r+4) —i|.
Letr=1,i>5andi#n—1. So

d(x?, ) 9+ |(r+4)—i.

Let1<r<n—7.1fi=n— 2, by regarding the path x¢ —>xr+1—>xr+1—>xr+2—>xr+2—>
Xpia— X0 —x0 , —x2, —x] wehaved(x%,x}_,) =8+ |r+4—ilandifi =n —1, then

d(x8,xl y=2+]i—r|

Case2. Lletr>i,3<r<n—-5and1<i<n-—6. Supposer—SZi,thepathx?—>xZ—>
xZ_l — xffl — xf_z — x?_z — x?_3 — x}% — x}ﬂ s x}_ s x} is the shortest path between

vertices x and x}. So we have
d(x8,x}) =94 |(r —4) —i|.

ifi=r—2, thend(x8x!) =9and ifi =r — 1, then d(x%,x}) = 10. Similarly, if r =n — 3,
1<z<n—6andr—3>zthend(xr,x) 9+ |(r—4)—il Ifz—r—2thend(x,,x) 9 and
ifi=r—1,thend(x8,x})=10.If r=n—1land 1 <i<n—2,thend(x> ,x})=r+2—1i. The
other cases are reported in the Table 3.
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Table 3. Vertices and distances between them.

d(x,y) Vertices d(x,y) Vertices d(x,y)

Vertices

11

?/%4)
/%)

X
X

(
(

Now, we compute the distance matrix of vertices of the inner cap with the vertices of the
tube and the vertices of the outer cap. It is enough to compute them for the vertices a1, a¢,41;.
All of them are reported in Table 4 and 5. Finally, the matrices A and B are distance matrices

of the inner and the outer cap, respectively.

5,n =10.

Figure 2. 2- D graph of zig—zag nanotube NT(5,n), for m

Table 4. Distances between the vertex a; with the vertices of
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the zig—zag nanotube NT(10,7) and the vertices of the outer cap.

Vertices  d(x,y) The shortest path between them

(ﬂl, ) i+2 a1—>a6—>a11—>x%—>---%xi1

(ﬂ 12) i+3 a1—>a2—>a7—>a12—>x%—>---%xi2
(CILX?) i+3 al%a2—>a7—>a13—)x%_>..._>x?
(a,x}))  i+4 m—om—oay—az—oaa—xf— ol
(al/x?) i+4 611—>a2—>a3—>a8—>a15—>x?—>---—>xl5
(a1,x))  i+4 4 —as—ag—> a9 —age— x5 = - — a0
(ap,xl 5) n—1 a1 — g —> a1] — X1 — -+ — XL 4
(al'x%—3) n ay —ax —ay —ajp — x% — = x%_3
(alrx}l_2> n a1 — adg — a11 — x% — e —> x}z—Z
(ap,xl ) n+1 a1 — g —> a11 — X — -+ = XL
(al,x%_:%) n ay — a; — ay — a13 — X% — = xi_3
(a1,xt 3) n+1 a—ay—a;— a3 — a1 —xf— - — x4
(a1,x2_,) n+1 A1 — Gy — A7 — 13 — X3 —> -+ — X2,
(a1,%y 1) n+2 a1 — ay — a7 — a3 — X3 — - — XL
(a1, 3) n+1 a1 —ay—az3—ag—>a15— X3 = - — X 4
(al,x2_3) n+1 a1—>a2—>a3—>a8—>a15—>x?—>---—>x2_3
(a1,x32_,) n+2 a;—ay—az—>ag— a5 — x5 — - —>x% 9
(ﬂ1,xfl ) n+3 a1—>a2—>a3—>a8—>a15—>x513—> _>xn1

\
—

Figure 3. Cap B.
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Table 5. Distances between the vertices a4 and a7 with the vertices of
the zig—zag nanotube NT(10,7) and the vertices of the outer cap.

Vertices  d(x,y) Vertices d(x,y)
(a6,x1-1) i+1 (an,x}) ]

(a6,x7) i+2 (a11,x?) i+1

(a6,x3) i+3 (a11,%3) i+2

(ag,x})i#1 i+4  (an,x})i#12  i+3
(o) 6 (il 5
(a6, X7) i+5 (a11,%3) 5

(a6,x?) i+5  (a1,x)i#1,2  i+4
(a6, 3) 1 —2 (a11,%7) 6
(a6,%5_5) n—1 (a11,%3) 6

(ag,x} )  n—1 (a1, x%)i#1,23 i+5
(a6,%, 1) 7 (a11,27) 7
(a6, x>_3) n (a11,x5) 8
(i s) n+l  (an,xd) 9

(ag, x> ,) n+1 (a11,x%_3) n—23

(ag,x2 ;) n+1 (a11,x2_5) n—2

(a6, _5) n+2 (a11,x%_5) n—2

(a6,x% 3)  n+2 (a11,x} ;) n—1

(a6, %) ,) n+3 (a11,%,) 3) n—1
(a6,xﬁ71) n-+2 (an,xﬁﬂg) n
- - (a11,%;,_5) n
- - (a11,%,_4) n

- - (a11,x_3) n+1

- - (an,xflﬁ%) n+42

- - (an,x?lfz) n+2

- - (an,xi_l) n-+1

Figure 4. Fullerene Ajg, constructed by combining two copies of B and the zig-zag nanotube
NT(5,n).
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01221123322334444332
10122212333223344443
21012321234332233444
22101332124443322334
12210233213444433223
12332034431245555421
21233303442112455554
32123430345421124555
33212443035554211245
23321344304555542112
23443125540134666532
32344214551023566643
32344412553201346665
43234521454310235666
43234541256532013466
44323552146643102356
44323554126665320134
34432455215666431023
34432255413466653201
23443145522356664310

02356664311455223443
20134666531255423443
31023566642145532344
53201346664125532344
64310235665214543234
66532013465412543234
66643102355521444323
46665320135541244323
35666431024552134432
13466653202554134432
11245555420344312332
42112455553034421233
55421124554303432123
55554211244430333212
24555542113443023321
22334444331233201221
33223344442123310122
44332233443212321012
44443322333321222101
33444433222332112210
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