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Abstract. A topological index is a special number which describes the whole structure of a graph.
The topological indices are categorized on the basis of their logical roots from topological invariant.
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1 Introduction

Graph theory is a subject of mathematics in which we study the graphs. Presently graph
theory is one of the richest and most cited areas of mathematics, especially chemical graph
theory. In chemical graph theory we study the structure of many chemical compounds and
calculate some physicals as well as chemical properties of these compounds. Firsly chemical
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graph theory that we studied in book [1] and after that in book [2] gave us more concepts
about it. Secondly in book [3] by N. Trinajstić, we found detailed ideas about chemical graph
theory, its uses, and applications.

Nowadays many papers has published in chemical graph theory in which authors stud-
ied the chemical structures and calculated topological indices of some important chemical
compounds like in paper [4]. In papers [5, 6] authors has calculated some degree based
topological indices of graphs. Some works has done on multiplicative topological indices
of graphs in papers [7–9]. Recently in paper [10] Z. Hussain et al, calculated the degree based
multiplicative topological indices of alcohol. In papers [11, 12] authors has calculated the
topological indices of single-walled titania nanotubes. The main idea to calculate the degree
based multiplicative topological indices of single-walled titania nanotube directly came from
the papers [10, 11].

2 Definitions and preliminaries

Let G (V(G), E(G)) be a simple, finite and connected graph with V(G) the set of vertices
and E(G) is the set of edges among the vertices of the graph. A metric space dG : V(G) ×
V(G) → R , define such as dG (i, j) is the number of edges between i and j in shortest path,
where i, j ∈ V(G). In the neighborhood of i in graph G it defines as:

NG(i) = {j ∈ V(G) | dG(i, j) = 1} .

The cardinality of neighborhood set of i ∈ V(G) is called its degree and we will denote it in
this paper as △i.
Now we will define some multiplicative topological indices. First, multiplicative Zagreb
index defines as:

I I∗1 (G) = ∏
rt∈E(G)

(△r +△t) . (1)

Second, multiplicative Zagreb index defines as:

I I2(G) = ∏
rt∈E(G)

(△r.△t) . (2)

The multiplicative first and second hyper-Zagreb indices for graphs are define as:

HII1(G) = ∏
rt∈E(G)

(△r +△t)
2 . (3)

HII2(G) = ∏
rt∈E(G)

(△r.△t)
2 . (4)

First and second multiplicative generalized Zagreb indices are the generalized form of first
and second multiplicative Zagreb indices as well as first and second multiplicative hyper-
Zagreb indices. First and second multiplicative generalized Zagreb indices are define such
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as:
MZα

1 (G) = ∏
rt∈E(G)

(△r +△t)
α . (5)

MZα
2 (G) = ∏

rt∈E(G)

(△r.△t)
α . (6)

Multiplicative sum and product connectivity indices are define as:

SCII(G) = ∏
rt∈E(G)

1√
△r +△t

. (7)

PCII(G) = ∏
rt∈E(G)

1√
△r.△t

. (8)

The multiplicative atomic bond connectivity index and geometric arithmetic index are de-
fined as:

ABCII(G) = ∏
rt∈E(G)

√
△r +△t − 2

△r.△t
. (9)

G∗AII(G) = ∏
rt∈E(G)

(
2
√
△r.△t

△r +△t

)
. (10)

The general multiplicative geometric arithmetic index is the generalized shape of multiplica-
tive geometric arithmetic index which is defined as:

G∗Aα I I(G) = ∏
rt∈E(G)

(
2
√
△r.△t

△r +△t

)α

. (11)

These are the topological indices which will be calculated in this paper.

Fact 2.1. Let r1,r2, . . . ,rn be a sequence. Then

n

∏
i=1

(ri)
α =

(
n

∏
i=1

ri

)α

,

where α is a constant.

For more details, definitions, and topological indices on graphs, we strongly offer, suggest
paper [10].

3 Titania nanotube

Titania is one of the most expansively discussed metal oxide substances. Naturally, tita-
nia nanotubes exist in two forms, single-walled nanotubes (SW Tio2 NTs) and multi-walled
titania nanotubes(MW Tio2 NTs).
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Figure 1. Titania Nanotubes.

We can see the differences between these two types of nanotubes in Figure 1. In this paper
we will only study the single-walled Titania nanotubes only. Single-walled Titania nanotubes
have further two types which are single-walled three layered Titania nanotube and single-
walled six layered Titania nanotube. For more details of concepts on single-layered titania
nanotube readers shoud review [11].

3.1 Three layered titania nanotubes

A three layered single-walled titania nanotube is written as TNT3[m,n] , where m and n
are the number of atoms in each column and row respectively. It is easy for the readers to
check that the total number of edges in TNT3[m,n] are 12mn − 4m − 3n + 1.

Figure 2. Single walled three layered Titania naotube
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Let G be the TNT3[m,n] nanotube of single-walled, there are total nine types of edges
based on the end degree for each vertex so we can decompose the set of edges such as

E (G) = E1 (G)
⋃

E2 (G)
⋃

E3 (G)
⋃

E4 (G)
⋃

E5 (G)
⋃

E6 (G)
⋃

E7 (G)
⋃

E8 (G)
⋃

E9 (G) ,

where

E1 (G) = {e = rt ∈ E (G) | △r = 1,△t = 4} ,

E2 (G) = {e = rt ∈ E (G) | △r = 1,△t = 6} ,

E3 (G) = {e = rt ∈ E (G) | △r = 2,△t = 2} ,

E4 (G) = {e = rt ∈ E (G) | △r = 2,△t = 3} ,

E5 (G) = {e = rt ∈ E (G) | △r = 2,△t = 4} ,

E6 (G) = {e = rt ∈ E (G) | △r = 2,△t = 6} ,

E7 (G) = {e = rt ∈ E (G) | △r = 3,△t = 3} ,

E8 (G) = {e = rt ∈ E (G) | △r = 3,△t = 4} ,

E9 (G) = {e = rt ∈ E (G) | △r = 3,△t = 6} .

It is easy to check that
|E1 (G)|= 1, |E2 (G)|= n, |E3 (G)|= 1, |E4 (G)|= 2, |E5 (G)|= 4m− 2, |E6 (G)|= 4m+ 2n− 6,
|E7 (G)| = 3n − 4, |E8 (G)| = 4m − 3 and |E9 (G)| = 12mn − 16m − 9n + 12.

Theorem 3.1. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of three layered
TNT3[m,n]. The first multiplicative Zagreb index for G is 216m+9n−22 × 324mn−28m−15n+18 × 53 ×
74m+n−3.

Proof. From Eq. (1)

I I∗1 (G) = ∏
rt∈E(G)

(△r +△t) ,

= ∏
rt∈E1(G)

(△r +△t)× ∏
rt∈E2(G)

(△r +△t)× ∏
rt∈E3(G)

(△r +△t)× ∏
rt∈E4(G)

(△r +△t)

× ∏
rt∈E5(G)

(△r +△t)× ∏
rt∈E6(G)

(△r +△t)× ∏
rt∈E7(G)

(△r +△t)× ∏
rt∈E8(G)

(△r +△t)

× ∏
rt∈E9(G)

(△r +△t) ,

= (1 + 4)|E1(G)| × (1 + 6)|E2(G)| × (2 + 2)|E3(G)| × (2 + 3)|E4(G)| × (2 + 4)|E5(G)|

× (2 + 6)|E6(G)| × (3 + 3)|E7(G)| × (3 + 4)|E8(G)| × (3 + 6)|E9(G)| ,

= 5 × 7n × 22 × 52 × 24m−2.34m−2 × 23(4m+2n−6) × 23n−4.33n−4 × 74m−3

× 32(12mn−16m−9n+12).

After some simple calculations we get

I I∗1 (G) = 216m+9n−22 × 324mn−28m−15n+18 × 53 × 74m+n−3.

159



Hussain et al. / Journal of Discrete Mathematics and Its Applications 7 (2022) 155–171

Theorem 3.2. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of three layered
TNT3[m,n]. The second multiplicative Zagreb index for G is 212mn+12m−4n−6 × 324mn−24m−9n+9.

Proof. From Eq. (2)

I I2(G) = ∏
rt∈E(G)

(△r.△t) ,

= ∏
rt∈E1(G)

(△r.△t)× ∏
rt∈E2(G)

(△r.△t)× ∏
rt∈E3(G)

(△r.△t)× ∏
rt∈E4(G)

(△r.△t)

× ∏
rt∈E5(G)

(△r.△t)× ∏
rt∈E6(G)

(△r.△t)× ∏
rt∈E7(G)

(△r.△t)× ∏
rt∈E8(G)

(△r.△t)

× ∏
rt∈E9(G)

(△r.△t) ,

= (1.4)|E1(G)| × (1.6)|E2(G)| × (2.2)|E3(G)| × (2.3)|E4(G)| × (2.4)|E5(G)|

× (2.6)|E6(G)| × (3.3)|E7(G)| × (3.4)|E8(G)| × (3.6)|E9(G)| ,

= 22 × 2n.3n × 22 × 22.32 × 212m−6 × 28m+4n−12.34m+2n−6 × 36n−8

× 28m−6.34m−3 × 212mn−16m−9n+12.324mn−32m−18n+24,

I I2(G) = 212mn+12m−4n−6 × 324mn−24m−9n+9.

Theorem 3.3. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of three layered
TNT3[m,n]. Then multiplicative sum connectivity index for G is

√
222−16m−9n ×

√
328m+15n−24mn−18 ×√

5−3 ×
√

73−4m−n.
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Proof. From Eq. (7)

SCII(G) = ∏
rt∈E(G)

1√
△r +△t

,

= ∏
rt∈E1(G)

1√
△r +△t

× ∏
rt∈E2(G)

1√
△r +△t

× ∏
rt∈E3(G)

1√
△r +△t

× ∏
rt∈E4(G)

1√
△r +△t

× ∏
rt∈E5(G)

1√
△r +△t

× ∏
rt∈E6(G)

1√
△r +△t

× ∏
rt∈E7(G)

1√
△r +△t

× ∏
rt∈E8(G)

1√
△r +△t

× ∏
rt∈E9(G)

1√
△r +△t

,

=

(
1√

1 + 4

)|E1(G)|
×
(

1√
1 + 6

)|E2(G)|
×
(

1√
2 + 2

)|E3(G)|
×
(

1√
2 + 3

)|E4(G)|

×
(

1√
2 + 4

)|E5(G)|
×
(

1√
2 + 6

)|E6(G)|
×
(

1√
3 + 3

)|E7(G)|
×
(

1√
3 + 4

)|E8(G)|

×
(

1√
3 + 6

)|E9(G)|
,

=
1√
5
× 1√

7n
× 1

2
× 1

5
× 1

22m−1.32m−1 × 1√
212m+6n−18

× 1√
23n−4.33n−4

× 1√
74m−3

× 1
312mn−16m−9n+12 ,

SCII(G) =
√

222−16m−9n ×
√

328m+15n−24mn−18 ×
√

5−3 ×
√

73−4m−n.

Theorem 3.4. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of three layered
TNT3[m,n]. Then multiplicative product connectivity index for G is 23+2n−6mn−6m ×

√
324m+9n−24mn−9.
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Proof. From Eq. (8)

PCII(G) = ∏
rt∈E(G)

1√
△r.△t

,

= ∏
rt∈E1(G)

1√
△r.△t

× ∏
rt∈E2(G)

1√
△r.△t

× ∏
rt∈E3(G)

1√
△r.△t

× ∏
rt∈E4(G)

1√
△r.△t

× ∏
rt∈E5(G)

1√
△r.△t

× ∏
rt∈E6(G)

1√
△r.△t

× ∏
rt∈E7(G)

1√
△r.△t

× ∏
rt∈E8(G)

1√
△r.△t

× ∏
rt∈E9(G)

1√
△r.△t

,

=

(
1√
1.4

)|E1(G)|
×
(

1√
1.6

)|E2(G)|
×
(

1√
2.2

)|E3(G)|
×
(

1√
2.3

)|E4(G)|

×
(

1√
2.4

)|E5(G)|
×
(

1√
2.6

)|E6(G)|
×
(

1√
3.3

)|E7(G)|
×
(

1√
3.4

)|E8(G)|

×
(

1√
3.6

)|E9(G)|
,

=
1
2
× 1√

2n.3n
× 1

2
× 1

2.3
× 1

26m−3 × 1
24m+2n−6 × 1

32m+n−3

× 1
33n−4 × 1

24m−3.
√

34m−3
× 1√

1212mn−16m−9n+12
× 1

312mn−16m−9n+12 ,

PCII(G) = 23+2n−6mn−6m ×
√

324m+9n−24mn−9.

Theorem 3.5. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of three lay-
ered TNT3[m,n]. Then multiplicative atomic bond connectivity index for G is

√
212n−12mn−11 ×√

328m+11n−24mn−12 ×
√

54m+n−3 ×
√

712mn−16m−9n+12.
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Proof. From Eq. (9)

ABCII(G) = ∏
rt∈E(G)

√
△r +△t − 2

△r.△t
,

= ∏
rt∈E1(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E2(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E3(G)

√
△r +△t − 2

△r.△t

× ∏
rt∈E4(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E5(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E6(G)

√
△r +△t − 2

△r.△t

× ∏
rt∈E7(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E8(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E9(G)

√
△r +△t − 2

△r.△t
,

=

(√
1 + 4 − 2

4

)|E1(G)|

×
(√

1 + 6 − 2
6

)|E2(G)|

×
(√

2 + 2 − 2
2.2

)|E3(G)|

×
(√

2 + 3 − 2
2.3

)|E4(G)|

×
(√

2 + 4 − 2
2.4

)|E5(G)|

×
(√

2 + 6 − 2
2.6

)|E6(G)|

×
(√

3 + 3 − 2
3.3

)|E7(G)|

×
(√

3 + 4 − 2
3.4

)|E8(G)|

×
(√

3 + 6 − 2
3.6

)|E9(G)|

,

=

√
3

2
×

√
5n

√
2n.

√
3n

× 1√
2
× 1

2
× 24m−2

212m−6 × 1
22m+n−3

× 23n−4

33n−4 ×
√

54m−3

24m−3.
√

34m−3
×

√
712mn−16m−9n+12

312mn−16m−9n+12.
√

212mn−16m−9n+12
,

ABCII(G) =
√

212n−12mn−11 ×
√

328m+11n−24mn−12 ×
√

54m+n−3 ×
√

712mn−16m−9n+12.

Theorem 3.6. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of three layered
TNT3[m,n]. Then multiplicative geometric arithmetic index of G is

218mn−14m−14n+20 ×
√

332m+21n−24mn−27 × 5−3 × 73−4m−n.
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Proof. From Eq. (10)

G∗AII(G) = ∏
rt∈E(G)

2
√
△r.△t

△r +△t
,

= ∏
rt∈E1(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E2(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E3(G)

2
√
△r.△t

△r +△t

× ∏
rt∈E4(G)

2
√
△r.△t

△r +△t
∏

rt∈E5(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E6(G)

2
√
△r.△t

△r +△t

× ∏
rt∈E7(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E8(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E9(G)

2
√
△r.△t

△r +△t
,

=

(
2
√

4
1 + 4

)|E1(G)|

×
(

2
√

6
1 + 6

)|E2(G)|

×
(

2
√

2.2
2 + 2

)|E3(G)|

×
(

2
√

2.3
2 + 3

)|E4(G)|

×
(

2
√

2.4
2 + 4

)|E5(G)|

×
(

2
√

2.6
2 + 6

)|E6(G)|

×
(

2
√

3.3
3 + 3

)|E7(G)|

×
(

2
√

3.4
3 + 4

)|E8(G)|

×
(

2
√

3.6
3 + 6

)|E9(G)|

,

=
22

5
×

√
23n.

√
3n

7n × 23.3
52 × 23(2m−1)

34m−2 × 32m+n−3

24m+2n−6

× 22(4m−3).
√

34m−3

74m−3 ×
√

23(12mn−16m−9n+12)

312mn−16m−9n+12 ,

G∗AII(G) = 218mn−14m−14n+20 ×
√

332m+21n−24mn−27 × 5−3 × 73−4m−n.

3.2 Six layered titania nanotubes

A single-walled six layered titania nanotube written as TNT6[m,n] , where m is defined
periodically as shown in Figure (3) and n is the number of titania atoms in each row. The
number of edges in TNT6[m,n] are 20mn − 4m − 2n.

In this section we consider G is TNT6[m,n] nanotube of single-walled. There are nine
types of edges based on the end degrees for each vertex, so we can rift the set of edges such
as

E (G) = E1 (G)
⋃

E2 (G)
⋃

E3 (G)
⋃

E4 (G)
⋃

E5 (G)
⋃

E6 (G)
⋃

E7 (G)
⋃

E8 (G)
⋃

E9 (G) ,
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Figure 3. Single walled six layered Titania naotube

where

E1 (G) = {e = rt ∈ E (G) | △r = 1,△t = 4} ,

E2 (G) = {e = rt ∈ E (G) | △r = 1,△t = 5} ,

E3 (G) = {e = rt ∈ E (G) | △r = 2,△t = 2} ,

E4 (G) = {e = rt ∈ E (G) | △r = 2,△t = 3} ,

E5 (G) = {e = rt ∈ E (G) | △r = 2,△t = 4} ,

E6 (G) = {e = rt ∈ E (G) | △r = 2,△t = 5} ,

E7 (G) = {e = rt ∈ E (G) | △r = 3,△t = 3} ,

E8 (G) = {e = rt ∈ E (G) | △r = 3,△t = 4} ,

E9 (G) = {e = rt ∈ E (G) | △r = 3,△t = 5} .

It is easy for the reader to check that
|E1 (G)|= 2, |E2 (G)|= 2n− 2, |E3 (G)|= 1, |E4 (G)|= 2, |E5 (G)|= 12m− 5, |E6 (G)|= 8mn−
4m − 4n + 3, |E7 (G)| = 3n − 4, |E8 (G)| = 4m − 1 and |E9 (G)| = 12mn − 16m − 3n + 4.

Theorem 3.7. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of six layered
TNT6[m,n]. Then first multiplicative Zagreb index for G is 236mn−36m−4n+3 × 312m+5n−11 × 54 ×
78mn−4n+2.
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Proof. From Eq. (1)

I I∗1 (G) = ∏
rt∈E(G)

(△r +△t) ,

= ∏
rt∈E1(G)

(△r +△t)× ∏
rt∈E2(G)

(△r +△t)× ∏
rt∈E3(G)

(△r +△t)× ∏
rt∈E4(G)

(△r +△t)

× ∏
rt∈E5(G)

(△r +△t)× ∏
rt∈E6(G)

(△r +△t)× ∏
rt∈E7(G)

(△r +△t)× ∏
rt∈E8(G)

(△r +△t)

× ∏
rt∈E9(G)

(△r +△t) ,

= (1 + 4)|E1(G)| × (1 + 5)|E2(G)| × (2 + 2)|E3(G)| × (2 + 3)|E4(G)| × (2 + 4)|E5(G)|

× (2 + 5)|E6(G)| × (3 + 3)|E7(G)| × (3 + 4)|E8(G)| × (3 + 5)|E9(G)| ,

= 52 × 22n−2.32n−2 × 22 × 52 × 212m−5.312m−5 × 78mn−4m−4n+3

× 23n−4.33n−4 × 74m−1 × 236mn−48m−9n+12,

I I∗1 (G) = 236mn−36m−4n+3 × 312m+5n−11 × 54 × 78mn−4n+2.

Theorem 3.8. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of six layered
TNT6[m,n]. The second multiplicative Zagreb index for G is 28mn+40m−4n−6 × 312mn−12m+3n−3 ×
520mn−20m−5n+5.

Proof. From Eq. (2)

I I2(G) = ∏
rt∈E(G)

(△r.△t) ,

= ∏
rt∈E1(G)

(△r.△t)× ∏
rt∈E2(G)

(△r.△t)× ∏
rt∈E3(G)

(△r.△t)× ∏
rt∈E4(G)

(△r.△t)

× ∏
rt∈E5(G)

(△r.△t)× ∏
rt∈E6(G)

(△r.△t)× ∏
rt∈E7(G)

(△r.△t)× ∏
rt∈E8(G)

(△r.△t)

× ∏
rt∈E9(G)

(△r.△t) ,

= (1.4)|E1(G)| × (1.5)|E2(G)| × (2.2)|E3(G)| × (2.3)|E4(G)| × (2.4)|E5(G)|

× (2.5)|E6(G)| × (3.3)|E7(G)| × (3.4)|E8(G)| × (3.5)|E9(G)| ,

= 24 × 52n−2 × 22 × 22.32 × 236m−15 × 28mn−4m−4n+3.58mn−4m−4n+3 × 36n−8

× 28m−2.34m−1 × 312mn−16m−3n+4.512mn−16m−3n+4,

I I2(G) = 28mn+40m−4n−6 × 312mn−12m+3n−3 × 520mn−20m−5n+5.

Theorem 3.9. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of six layered
TNT6[m,n]. Then multiplicative sum connectivity index for G is

√
236m+4n−36mn−3 ×

√
311−12m−5n ×√

5−4 ×
√

74n−8mn−2.
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Proof. From Eq. (7)

SCII(G) = ∏
rt∈E(G)

1√
△r +△t

,

= ∏
rt∈E1(G)

1√
△r +△t

× ∏
rt∈E2(G)

1√
△r +△t

× ∏
rt∈E3(G)

1√
△r +△t

× ∏
rt∈E4(G)

1√
△r +△t

× ∏
rt∈E5(G)

1√
△r +△t

× ∏
rt∈E6(G)

1√
△r +△t

× ∏
rt∈E7(G)

1√
△r +△t

× ∏
rt∈E8(G)

1√
△r +△t

× ∏
rt∈E9(G)

1√
△r +△t

,

=

(
1√

1 + 4

)|E1(G)|
×
(

1√
1 + 5

)|E2(G)|
×
(

1√
2 + 2

)|E3(G)|
×
(

1√
2 + 3

)|E4(G)|

×
(

1√
2 + 4

)|E5(G)|
×
(

1√
2 + 5

)|E6(G)|
×
(

1√
3 + 3

)|E7(G)|
×
(

1√
3 + 4

)|E8(G)|

×
(

1√
3 + 5

)|E9(G)|
,

=
1
5
× 1

2n−1.3n−1 × 1
2
× 1

5
× 1√

212m−5.312m−5
× 1√

78mn−4m+4n+3

× 1√
23n−4.33n−4

× 1√
74m−1

× 1√
236mn−48m−9n+12

,

SCII(G) =
√

236m+4n−36mn−3 ×
√

311−12m−5n ×
√

5−4 ×
√

74n−8mn−2.

Theorem 3.10. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of six layered
TNT6[m,n]. Then multiplicative product connectivity index for G is

22n+3−4mn−20m ×
√

312m+3−12mn−3n ×
√

520m+5n−20mn−5.
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Proof. From Eq. (8)

PCII(G) = ∏
rt∈E(G)

1√
△r.△t

,

= ∏
rt∈E1(G)

1√
△r.△t

× ∏
rt∈E2(G)

1√
△r.△t

× ∏
rt∈E3(G)

1√
△r.△t

× ∏
rt∈E4(G)

1√
△r.△t

× ∏
rt∈E5(G)

1√
△r.△t

× ∏
rt∈E6(G)

1√
△r.△t

× ∏
rt∈E7(G)

1√
△r.△t

× ∏
rt∈E8(G)

1√
△r.△t

× ∏
rt∈E9(G)

1√
△r.△t

,

=

(
1√
1.4

)|E1(G)|
×
(

1√
1.5

)|E2(G)|
×
(

1√
2.2

)|E3(G)|
×
(

1√
2.3

)|E4(G)|

×
(

1√
2.4

)|E5(G)|
×
(

1√
2.5

)|E6(G)|
×
(

1√
3.3

)|E7(G)|
×
(

1√
3.4

)|E8(G)|

×
(

1√
3.5

)|E9(G)|
,

=
1
2
× 1

5n−1 × 1
2
× 1

2.3
× 1

236m−15 × 1√
28mn−4m−4n+3.58mn−4m−4n+3

× 1
33n−4

× 1

24m−1.
√

34m−1
× 1√

312mn−16m−3n+4.512mn−16m−3n+4
,

PCII(G) = 22n+3−4mn−20m ×
√

312m+3−12mn−3n ×
√

520m+5n−20mn−5.

Theorem 3.11. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of six layered
TNT6[m,n]. Then multiplicative atomic bond connectivity index for G is

√
24mn+11n−32m−11 ×

√
311−4m−6n ×

√
520m+n−12mn−3.
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Proof. From Eq. (9)

ABCII(G) = ∏
rt∈E(G)

√
△r +△t − 2

△r.△t
,

= ∏
rt∈E1(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E2(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E3(G)

√
△r +△t − 2

△r.△t

× ∏
rt∈E4(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E5(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E6(G)

√
△r +△t − 2

△r.△t

× ∏
rt∈E7(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E8(G)

√
△r +△t − 2

△r.△t
× ∏

rt∈E9(G)

√
△r +△t − 2

△r.△t
,

=

(√
1 + 4 − 2

4

)|E1(G)|

×
(√

1 + 5 − 2
5

)|E2(G)|

×
(√

2 + 2 − 2
2.2

)|E3(G)|

×
(√

2 + 3 − 2
2.3

)|E4(G)|

×
(√

2 + 4 − 2
2.4

)|E5(G)|

×
(√

2 + 5 − 2
2.5

)|E6(G)|

×
(√

3 + 3 − 2
3.3

)|E7(G)|

×
(√

3 + 4 − 2
3.4

)|E8(G)|

×
(√

3 + 5 − 2
3.5

)|E9(G)|

,

=
3
22 × 22n−2

5n−1 × 1√
2
× 1

2
× 212m−5

√
236m−15

× 1√
28mn−4m−4n+3

× 23n−4

33n−4 ×
√

54m−1

24m−1.
√

34m−1
×

√
212mn−16m−3n+4

√
512mn−16m−3n+4

,

ABCII(G) =
√

24mn+11n−32m−11 ×
√

311−4m−6n ×
√

520m+n−12mn−3.

Theorem 3.12. Let G (V (G) , E (G)) be the graph of single−walled Titania nanotubes of six layered
TNT6[m,n]. Then multiplicative geometric arithmetic index of G is

252m−12mn−6 ×
√

312mn−36m−7n+19 ×
√

520mn−20m−5n−3 × 74n−8mn−2.
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Proof. From Eq. (10)

G∗AII(G) = ∏
rt∈E(G)

2
√
△r.△t

△r +△t
,

= ∏
rt∈E1(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E2(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E3(G)

2
√
△r.△t

△r +△t

× ∏
rt∈E4(G)

2
√
△r.△t

△r +△t
∏

rt∈E5(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E6(G)

2
√
△r.△t

△r +△t

× ∏
rt∈E7(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E8(G)

2
√
△r.△t

△r +△t
× ∏

rt∈E9(G)

2
√
△r.△t

△r +△t
,

=

(
2
√

4
1 + 4

)|E1(G)|

×
(

2
√

5
1 + 5

)|E2(G)|

×
(

2
√

2.2
2 + 2

)|E3(G)|

×
(

2
√

2.3
2 + 3

)|E4(G)|

×
(

2
√

2.4
2 + 4

)|E5(G)|

×
(

2
√

2.5
2 + 5

)|E6(G)|

×
(

2
√

3.3
3 + 3

)|E7(G)|

×
(

2
√

3.4
3 + 4

)|E8(G)|

×
(

2
√

3.5
3 + 5

)|E9(G)|

,

=
24

5
× 5n−1

32n−2 × 23.3
52 × 236m−15

312m−5 ×
√

224mn−12m−12n+9.58mn−4m−4n+3

78mn−4m−4n+3

× 28m−2.
√

34m−1

74m−1 ×
√

312mn−16m−3n+4.512mn−16m−3n+4

224mn−32m−6n+8 ,

G∗AII(G) = 252m−12mn−6 ×
√

312mn−36m−7n+19 ×
√

520mn−20m−5n−3 × 74n−8mn−2.

Remark 3.1. By using fact 2.1 we can compute the following very easily.

i HII1 (TNT3[m,n]) = 232m+18n−44 × 348mn−56m−30n−36 × 56 × 78m+2n−6.

ii HII2 (TNT3[m,n]) = 224mn+24m−8n−12 × 348mn−48m−18n+18.

iii MZα
1 (TNT3[m,n]) = 216αm+9αn−22α × 324αmn−28αm−15αn−18α × 53α × 74αm+αn−3α.

iv MZα
2 (TNT3[m,n]) = 212αmn+12αm−4αn−6α × 324αmn−24αm−9αn+9α.

v G∗Aα (TNT3[m,n]) = 218αmn−14αm−14αn+20α ×
√

332αm+21αn−24αmn−27α × 5−3α × 73α−4αm−αn.

vi HII1 (TNT6[m,n]) = 272mn−72m−8n+6 × 324m+10n−22 × 58 × 716mn−8n+4.

vii HII2 (TNT6[m,n]) = 216mn+80m−8n−12 × 324mn−24m+6n−6 × 540mn−40m−10n+10.

viii MZα
1 (TNT6[m,n]) = 236αmn−36αm−4αn+3α × 312αm+5αn−11α × 54α × 78αmn−4αn+2α.
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ix MZα
2 (TNT6[m,n]) = 28αmn+40αm−4αn−6α × 3αmn−12αm+3αn−3α × 520αmn−20αm−5αn+5α.

x G∗Aα (TNT6[m,n]) = 252αm−12αmn−6α ×
√

312αmn−36αm−7αn+19α

×
√

520αmn−20αm−5αn−3α × 74αn−8αmn−2α.

Conclusion

In this paper we have calculated some degree based multiplicative topological indices of
single−walled three layered and six layered Titania nanotubes.
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