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Abstract. Let G be a group and R, L,S be subsets of G such that R = R−1, L = L−1 and 1 /∈ R ∪ L.
The undirected graph (G; R, L,S) with vertex set union of G1 = {g1 | g ∈ G} and G2 = {g2 | g ∈ G},
and edge set the union of {{g1, (gr)1} | g ∈ G,r ∈ R}, {{g2, (gl)2} | g ∈ G, l ∈ L} and {{g1, (gs)2} | g ∈
G, s ∈ S} is called semi-Cayley graph over G. We say that (G; R, L,S) is quasi-abelian if R, L and S are
a union of conjugacy classes of G. In this paper, we study the automorphism group of quasi-abelian
semi-Cayley graphs.
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1 Introduction

A graph Γ is called a semi-Cayley graph over a group G if (Γ), the automorphism group of
Γ, contains a semiregular subgroup isomorphic to G with two orbits (of equal size). Resmini
and Jungnickel determined the structure representation of semi-Cayley graphs in [9]. They
proved that a graph Γ is a semi-Cayley graph over a group G if there exist subsets R, L and
S of G such that R = R−1, L = L−1 where 1 /∈ R ∪ L such that Γ is isomorphic to the graph
(G; R, L,S), where (G; R, L,S) is a graph with vertex the union of the right part G1 = {g1 |
g ∈ G} and the left part G2 = {g2 | g ∈ G}, and its edge set is the union of {{g1, (gr)1} | g ∈
G,r ∈ R}, {{g2, (gl)2} | g ∈ G, l ∈ L} and {{g1, (gs)2} | g ∈ G, s ∈ S}. It is easy to see that
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RG = {ρg | g ∈ G}, where ρg : G1 ∪ G2 → G1 ∪ G2 and xρg
i = (xg)i, i = 1,2, is a semiregular

subgroup of automorphism group of (G; R, L,S) isomorphic to G with two orbits G1 and G2.
The semi-Cayley graph (G; R, L,S) is called a quasi-abelian semi-Cayley graph over G if R, L
and S are a union of conjugacy classes of G [4]. Clearly, every semi-Cayley graph over an
abelian group G is a quasi-abelian semi-Cayley graph over G.

The class of semi-Cayley graphs contains many families of graphs, such as the Cayley
graphs on a finite group having a subgroup of index 2 and generalized Petersen graphs,
which have been an object of interest for many years, see for example [1–3, 5, 6, 8]. Very
recently, some graph theoretic properties of quasi-abelian semi-Cayley graphs are studied
[4, 10, 11]. In this paper, we study the automorphism group of these graphs.

2 Results and discussion

Let Γ be a semi-Cayley graph over a group G. Then for all g ∈ G, we define the following
maps on V(Γ):

ρg : V(Γ)→ V(Γ); xρg
i = (xg)i,

ψg : V(Γ)→ V(Γ); xψg
i = (gx)i,

θg : V(Γ)→ V(Γ); xθg
i = (g−1xg)i.

Let RG = {ρg | g ∈ G}, LG := {ψg | g ∈ G} and G = {θg | g ∈ G}. Clearly RG, LG,G are bijections
on V(Γ). Furthermore, RGLG = RGG, since for all g, h ∈ G, we have ρgψh = ρghθh−1 . Also RG ≤
(Γ) and if Γ is quasi-abelian, then G ≤ (Γ). In particular, if G is abelian, then LG = RG ≤ (Γ)
and G is the identity subgroup of (Γ). In the following result which is a direct consequence
of [4, Corollary 2.3], we gather some equivalent conditions for a semi-Cayley graphs to be
quasi-abelian..

Proposition 2.1. Let Γ = (G; R, L,S) be a semi-Cayley graph over group G. Then the following are
equivalent

(1) Γ is quasi-abelian.

(2) LG ≤ (Γ).

(3) G ≤ (Γ).

(4) RGLG ≤ (Γ).

(5) RG InnG ≤ (Γ).

Let ξG : G1 ∪ G2 → G1 ∪ G2 be a map by the rule xξG
i = (x−1)i. In the following lemma, we

determine semi-Cayley graphs that their automorphism group contains ξG.

Lemma 2.2. Let Γ = (G; R, L,S) be a semi-Cayley graph over G. Then ξG ∈ (Γ) if and only if Γ is
quasi-abelian and S = S−1.
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Proof. Suppose ξG ∈ (Γ). Let s∈ S. Then {11, s2} ∈ E(Γ). Since ξG ∈ (Γ), we have {11, (s−1)2} ∈
E(Γ) which means that s−1 ∈ S. This proves that S = S−1. Now we prove that Γ is quasi-
abelian. Let R = T11, L = T22 and S = T12. Since Γ is undirected and S = S−1, Tij is inverse-
closed for all i, j. Let t ∈ Tij for some i, j and g ∈ G. Then {1i, tj} ∈ E(Γ) and moreover,

{1i, tj} ∈ E(Γ) ⇔ {gi, (tg)j} ∈ E(Γ)

⇔ {gξG
i , (tg)ξG

j } ∈ E(Γ)

⇔ {(g−1)i, (g−1t−1)j} ∈ E(Γ),

which implies that g−1tg ∈ T−1
ij = Tij. This means that Γ is quasi-abelian.

Conversely, suppose that Γ is quasi-abelian and S = S−1. Then, by Corollary 2.1, G ≤ (Γ).
Since Γ is undirected R = R−1 and L = L−1. So {xi,yj} ∈ E(Γ) if and only if {yi, xj} ∈ E(Γ).
On the other hand,

{yi, xj} ∈ E(Γ) ⇔ {yθy
i , xθy

j } ∈ E(Γ)

⇔ {yi, (y−1xy)j} ∈ E(Γ)

⇔ {y
ρy−1x−1

i , (y−1xy)
ρy−1x−1

j } ∈ E(Γ)

⇔ {(x−1)i, (y−1)j} ∈ E(Γ),

which proves that ξG ∈ (Γ).

Recall that a semi-Cayley graph (G; R, L,S) is called one-matching over G if S = {1} [8].
The following result is a direct consequence of Lemma 2.2.

Corollary 2.3. Let Γ be a one-matching semi-Cayley graph over a group G. Then Γ is quasi-abelian
if and only if ξG ∈ (Γ).

By Proposition 2.1, if Γ is a quasi-abelian semi-Cayley graph over a group G, then RGLG is
a subgroup of (Γ). In the following theorem, we determine quasi-abelian semi-Cayley graphs
with as small as possible automorphism group in some sense.

Theorem 2.4. Let Γ = (G; R, L,S) be a semi-Cayley graph over a finite group G and S = S−1. Then
(Γ) = RGLG if and only if G is an elementary abelian 2-group and (Γ) = RG.

Proof. Let (Γ) = RGLG. Then, by Corollary 2.1, Γ is quasi-abelian. Hence, by Lemma 2.2,
ξG ∈ (Γ). On the other hand, RG and LG commute each other and so RG is a normal subgroup
of (Γ). Now since ξG fixes 11, [3, Proposition 2(2)] implies that there exists σ ∈ (G) such that
for all x ∈ G, xσ = x−1, which means that G is abelian. Hence RG = LG and (Γ) = RG. On
the other hand, ξG ∈ (Γ) implies that there exist x,y ∈ G such that ξG = ρxψy. Again since ξG
fixes 11, we have y = x−1. So for all g ∈ G,

(g−1)1 = gξG
1 = g

ρxψx−1
1 = (x−1gx)1 = g1,

which implies that G is a elementary abelian 2-group. This proves one direction. Conversely,
suppose that G is an elementary abelian 2-group and (Γ) = RG. Then RG = LG. This means
that (Γ) = RGLG as desired.
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By Theorem 2.4, it is a natural question that for which elementary abelian 2-group G
there exists a semi-Cayley graph Γ over G such that (Γ) = RG? Let R(G) = {rg | g ∈ G},
where rg : G → G is the map by the rule x 7→ xg. Then R(G) is a regular subgroup of any
Cayley graph over G. To attack to the problem, we need the following result which construct
a connection between Cayley graphs and semi-Cayley graphs. One can find the proof of this
result in [3, proof of Lemma 4.1], but we give it for completeness.

Lemma 2.5. Let T be a non-empty inverse-closed subset of a finite group G not containing 1, Σ =

(G, T) be a Cayley graph over G and Γ = (G; R, L,S), where R = T, L = ∅ and S = {1}. If (Σ) =
R(G), then (Γ) = RG.

Proof. We define ψ : R(G) → (Γ), where rψ
g = ρg. Clearly ψ is well-defined and 1 − 1. Since

rg1rg2 = rg1g2 and ρg1ρg2 = ρg1g2 for all g1, g2 ∈ G, ψ is a group homomorphism. Now we show
that ψ is onto. Let φ ∈ (Γ). We claim that φ fixes G1 setwise. To see this, suppose towards a
contradiction that xφ

1 = y2 for some x,y ∈ G. Since for all g ∈ G the only adjacent vertex to g2

is g1, we conclude that xφ
2 = y1. Hence for all t ∈ T, we have (tx)φ

1 = (y)1, which implies that
(tx)1 = (x)1. So for all t ∈ T, we have tx = x which means that t = 1, a contradiction. So our
claim is true and the restriction of φ to G1 induces an automorphism of Σ. Furthermore, we
may assume that for all g ∈ G, (g)φ

1 = (gσ)1 for some σ ∈ (Σ). Let g ∈ G. Then gφ
2 ∈ G2. Since

(g)1 is adjacent to g2, we conclude that (gσ)2 = (g2)
φ. Hence for all g ∈ G and i ∈ {1,2}, we

have (g)φ
i = (gσ)i, which means that σψ = φ. This shows that ψ is onto and so R(G) ∼= (Γ),

which implies that (Γ) = RG.

Now we are ready to answer to the above question.

Theorem 2.6. For every finite elementary abelian 2-group G there exists a semi-Cayley graph over G
such that (Γ) = RG.

Proof. Let G = ⟨a1⟩ × . . . × ⟨an⟩ ∼= Zn
2 , n ≥ 1, be an elementary abelian 2-group. Then one can

check that in all of the following cases we have ((G; R, L,S)) = RG.

If n = 1, put R = {a1}, L = ∅ and S = {1}.

If n = 2, put R = {a1, a2}, L = {a2} and S = {1}.

If n = 3, put R = {a3}, L = {a2, a3} and S = {1, a1, a2, a3}.

If n = 4, then put R = ∅, L = {a3, a4} and S = {1, a1, a2, a3, a4, a1a2, a2a4, a1a3a4}.

Now let n ≥ 5. Then, by [7], there exists an undirected Cayley graph Σ = (G, T) over G
such that (Σ) = R(G). Let Γ = (G; R, L,S), where R = T, L = ∅ and S = {1}. By Lemma 2.5,
(Γ) = RG, which completes the proof.

By Lemma 2.1, if Γ = (G; R, L,S) is quasi-abelian and S = S−1, then RGLG⟨ξG⟩ ≤ (Γ).
Hence it is an interesting question that how far RGLG⟨ξG⟩ is from (Γ)? In the rest of paper, we
determine quasi-abelian semi-Cayley graphs that RGLG⟨ξG⟩ is equal to their automorphism.
We need the following lemma.
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Lemma 2.7. Let G be a group. Then (G × G)/C ∼= RGLG, where C = {(x, x) | x ∈ Z(G)}.

Proof. Define φ : G × G → RGLG by the rule (x,y)φ = ρxψy. Then it is easy to see that φ is a
group epimorphism with kernel C.

Now we are ready to determine quasi-abelian semi-Cayley graphs that RGLG⟨ξG⟩ is equal
to their automorphism group.

Theorem 2.8. Let Γ = (G; R, L,S) be an undirected quasi-abelian semi-Cayley graph over a finite
group G and S = S−1. Then (Γ)11 ≥G ×⟨ξG⟩. Furthermore,

(a) If Γ is not vertex-transitive, then (Γ) = RGLG⟨ξG⟩ if and only if (Γ)11 =G ×⟨ξG⟩.

(b) If Γ is vertex-transitive, then (Γ) = RGLG⟨ξG⟩ if and only if |(Γ)11 | = |G : Z(G)| and G is
non-abelian.

Proof. Put A = (Γ). Since Γ is quasi-abelian and S = S−1, ⟨ξG⟩ and G are subgroups of A and
each of them fixes 11. Furthermore, for all θg ∈G we have ξGθg = θgξG. On the other hand,
G ∩ ⟨ξG⟩ is the trivial subgroup of Γ. This proves that A11 ≥G ×⟨ξG⟩.

Let Γ is not vertex-transitive. We claim that A fixes G1 setwise. To see this, suppose by
contrary that there exists φ ∈ A and g, h ∈ G such that gφ

1 = h2. Then ⟨RG, φ⟩ is a transitive
subgroup of A, which is a contradiction. Hence our claim is true and A acts on G × {1}.
Since RG acts transitively on G1, we have A = A11 RG. In particular, |A| = |G||A11 |.

Let A = RGLG⟨ξG⟩. Then RGLG = RGG implies that A = RGG⟨ξG⟩. Since RG ∩G ⟨ξG⟩ =
{1}, |A| = |G||G⟨ξ⟩|. Hence |G⟨ξ⟩| = |A11 |, which implies that A11 =G ×⟨ξG⟩. The converse
follows from the equalities RGLG = RGG and A = A11 RG. This proves (a).

Finally, we prove (b). Let Γ be vertex-transitive. Then |A| = |V(Γ)||A11 | = 2|G||A11 |.
Let A = RGLG⟨ξG⟩. If G is abelian, then RG = LG and so A = RG⟨ξG⟩. Hence |A| =

|G| or 2|G| whenever G is elementary abelian 2-group or not, respectively. The first case is
impossible and the later implies that |A11 | = 1 which implies that ξG = 1 i.e G is elementary
abelian 2-group, a contradiction. Hence G is non-abelian. If ξG ∈ RGLG, then ξG = ρxψy for

some x,y ∈ G. Hence 11 = 1ξG
1 = 1

ρxψy
1 = (yx)1 which implies that y = x−1. Now (x−1)1 =

(x)ξG
1 = (x)

ρxψx−1
1 = x1 which implies that x = x−1 = y. Hence ξG = ρxψx, where x2 = 1. So

ρxξG = ρ2
xψx = ψx. Thus for all g ∈ G we have (xg)1 = gψx

1 = gρxξG
1 = (xg−1)1 which implies

that g−1 = g. This means that G is abelian, a contradiction. Hence ξ /∈ RGLG and so |A| =
|RGLG||⟨ξG⟩| = 2 |G|2

|Z(G)| by Lemma 2.7. Hence |A11 | = |G : Z(G)|.
Conversely, suppose that |A11 |= |G : Z(G)|. Since G is non-abelian ξG ̸= 1 and |RGLG⟨ξG⟩|=

|RGLG||⟨ξG⟩|= 2 |G|2
|Z(G)| , where the last equality obtained from Lemma 2.7. Hence |RGLG⟨ξG⟩|=

2|G||A11 | which implies that A = RGLG⟨ξG⟩. This completes the proof.
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