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Background and Objectives: Since exact manner of BKZ algorithm for higher block 
sizes cannot be studied by practical running, therefore simulation of BKZ is used 
to predict the total cost of BKZ and quality of output basis. This paper revises some 
main components of BKZ-simulation for better predictions. 
Methods: At first, by definition of full-enumeration success probability, the 
optimal enumeration radius is formally defined. Next, this paper defines three 
more pruning types, besides the well-known pruning by bounding function in GNR-
enumerations, and consequently uses these four pruning types collectively in 
revision of success probability estimation. Also, by using these four pruning types 
and the process of updating-radius, this paper revises the estimation of 
enumeration cost. Finally, this paper introduces a simple technique to generate 
partially better bounding functions.  
Results: For block sizes of 50 ≤ 𝛽 ≤ 240, better domains of radius parameters in 
GNR enumeration are formally introduced. Also, our revised estimation of success 
probability (for GNR bounding function) in our test results shows non-negligible 
gap from former estimations in some main former studies. Moreover, our results 
show that the cost results by our proposed estimator of GNR-enumeration cost 
are closer to the cost results determined in experimental running of enumeration, 
than the cost results by Chen-Nguyen estimator. 
Conclusion: This paper revises the estimators of cost and success probability for 
GNR-Enumeration, and justifies the value of these revised estimators by sufficient 
test results (in actual running and simulation of BKZ). Also, our novel definition of 
optimal enumeration radius can be used effectively in actual running and 
simulation of BKZ. 
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Introduction 

Lattice reduction is the main part of most lattice security 

attacks. BKZ algorithm is one of the main practical lattice 

reductions. The security parameters in lattice-based 

cryptographic primitives are estimated by determining 

the total cost and output quality of BKZ algorithm in high 

block sizes. For predicting the manner of BKZ in higher 

block sizes, practical running is not the way, therefore 

BKZ-simulators are introduced. There are some claimant 

BKZ-simulations in former studies, such as the one is 

introduced by Chen and Nguyen [1], the simulation by Shi 

Bai et al. [2], and the simulation by Aono et al. [3]; The 

outputs of BKZ-simulation are divided by two main parts 

as total cost and output quality which can be used in 

lattice based security analysis.    

The cost of enumeration function on the lattice block 

of ℒ[1…𝛽] can be estimated by old version of [1] as 𝑁 =

20.00405892 𝛽
2−0.337913 𝛽+34.9018 or by [4] as 𝑁 =

20.000784 𝛽
2−0.366 𝛽−0.9; This is obvious that using exact 

versions of “success probability estimators”, 
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“enumeration cost estimators”, “minimum effective 

(optimal) enumeration radius” and “bounding function 

generator”, which are revised in this paper, can make 

such these cost models more exact and more close to the 

practical estimations. To the best of our knowledge, the 

technique of GNR-enumeration and corresponding 

concepts studied in [1], [13], is considered yet in current 

studies and security estimations of Lattice based 

cryptography, however other techniques such as sieve 

algorithm, discrete pruning and RSR algorithm may show 

better results in practical attacks. In fact, the significance 

of our contributions in this paper for bit-security 

estimation of lattice-based cryptographic primitives can 

be more justified by the massive efforts of Albrecht et al., 

in estimation of the LWE/NTRU schemes [5] (see the user-

friendly scripts for these estimations in [6]). For example, 

the cost of primal attack against “Falcon-1024-2.87-

12289” (with claimed bit-security of 230) by using 

enumeration with four different cost models in Table 10 

from [5] is estimated as 2418, 2474, 2836 and 21118! The 

authors of this paper believe that using non-exact 

components and definitions on enumeration functions 

lead to these gaps in bit-security estimations, while our 

contributions in this paper try to fix the problem of such 

non-exactness.  

It is worthy of noting that the results of [5] are 

massively used in “Post-Quantum Cryptography 

Standardization Project” (see the corresponding 

information in [7]), also in bit-security estimations of 

current cryptography researches, such as [8]-[11]. 

In other view on this work, designing a BKZ-simulation 

with GNR-pruned enumeration needs to some necessary 

building-blocks which include enumeration radius, 

generation of bounding function, estimation of success 

probability, LLL simulation, estimation of GNR 

enumeration cost, sampling method for enumeration 

solution, simulation of updating GSO. Our previous study 

in [12] focuses on design of sampling method for 

enumeration solution (as solution norm and coefficient 

vectors). This paper introduces some main revisions for 

following components: optimal enumeration radius, 

generation of bounding function, estimation of success 

probability and GNR enumeration cost. The components 

which are studied in this paper (except estimation of 

enumeration cost) can be used in actual running of BKZ 

algorithm (besides the simulation of BKZ) too! Our 

contributions in this paper are described briefly as 

follows:     

• By definition of full-enumeration success probability 

in this paper, the optimal value for radius parameter 

√Υ (as initial radius factor 𝑟FAC) and corresponding 

bound for solution norm of full-enumeration are 

defined exactly in average-case. This definition can be 

used dynamically to compute optimal enumeration 

radius in BKZ simulation and even actual running of 

BKZ algorithm. In other sides, former studies on BKZ-

simulation [1]-[3] don’t use optimal version of the 

radius parameter of 𝑟FAC.  

• The former studies [1]-[3] use the efficient idea by [1] 

to estimate the success probability of GNR-

enumerations which only consider the pruning type by 

cylinder-intersection of bounding function; This paper 

proposes three more types of pruning in estimation of 

success probability;  

• The former studies [1]-[3] use the efficient idea by [1] 

to estimate the cost of GNR-enumerations which only 

consider the pruning type by cylinder-intersection of 

bounding function; Similar to our revision for success 

probability, this paper considers all of four types of 

pruning along with the process of updating 

enumeration radius in our estimation of GNR-

enumeration cost; 

• This paper introduces a generator of bounding 

function including cutting point of Cut = 𝑑 [12]; In 

former studies [1]-[3], if the simulation tries to 

generate bounding functions with much small success 

probability, this is possible that the success probability 

of this bounding functions unintentionally becomes 

much less than intended value or even zero!           

The remainder of this paper is organized as follows. 

Second section is dedicated to essential background for 

our contributions in this paper. In third section, we 

describe our contributions as follows:  

• In third section (Part A), the optimal enumeration 

radius is defined exactly;   

• In third section (Part B), our estimation of success 

probability is introduced;  

• In third section (Part C), our estimation of GNR-

enumeration cost is introduced;  

• In third section (Part D), a simple technique for forcing 

Cut = 𝛽 in generation of bounding function is 

introduced. 

Also, our test results for these contributions are 

introduced in fourth section. Finally, in fifth section, the 

conclusion for this work is expressed. 

Background 

In this section, the needed preliminaries on theory of 

lattice, BKZ-reduction and other corresponding concepts 

for this work are introduced. 

A.  Basic Definitions and Notations 

In this section, some basic concepts, needed in this 

paper, are defined.  

Lattices. For 𝑛-linearly independent vectors of 𝑏1, … , 𝑏𝑛 ∈

ℝ𝑚, the lattice generated by these vectors is defined as 

following set: 

ℒ(𝑏1, … , 𝑏𝑛) = {∑ 𝑥𝑖𝑏𝑖
𝑛
𝑖=1 : 𝑥𝑖 ∈ ℤ}.                     (1) 
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The set of vectors [𝑏1, … , 𝑏𝑛] is known as a lattice basis 

which is usually shown by a column-matrix 𝐵 where 𝑏𝑖 ∈

ℤ𝑚 for cryptographic applications. Also, the rank and 

dimension of lattice ℒ(𝐵) are respectively shown by 𝑛 

and 𝑚. In this paper, the notation of ℒ𝑖  is defined as 

follows: 

ℒ𝑖 = [𝑏1, 𝑏2, … , 𝑏𝑖].                                     (2) 

Euclidean norm. The length of a lattice vector 𝑣 =

(𝑣1, … , 𝑣𝑚) is measured by ‖𝑣‖ = √𝑣1
2 +⋯+ 𝑣𝑚

22
.  

In this paper, the phrases of “norm” and “length” refer to 

Euclidean norm. 

Volume of Lattices. The– volume of a lattice ℒ(𝐵) is 

defined by determinant of basis matrix:   

Vol(ℒ(𝐵)) = |det 𝐵|.                                 (3) 

First Successive-Minima of lattice ℒ. The norm of shortest 

nonzero vector in lattice ℒ is first successive-minima of 

that lattice and is shown by 𝜆1(ℒ). 

In the worst-case of the SVP solver, the optimal 

(smallest) value of Hermite-factor for all 𝑛-dimensional 

input lattice bases are defined formally as follows: 

Hermite’s constant. Hermite’s constant 𝛾𝑛is supremum of 

the ratio (𝜆1(ℒ)/Vol(ℒ)
1/𝑛)

2
 over all 𝑛-dimensional 

lattices.  

By sterling approximation for high dimensional space, 

volume of a 𝑛-dimensional sphere (ball) is computed as 

follows: 

𝑉𝑛(𝑅) = Vol(𝐵𝑎𝑙𝑙𝑛(𝑅)) =
𝜋
𝑛
2

Γ(
𝑛

2
+1)
𝑅𝑛    

≈
1

√𝑛 𝜋
(
2𝜋𝑒

𝑛
)

𝑛

2
𝑅𝑛.                      (4) 

In this paper, 𝑉𝑙(𝑅) refers to the volume of a 𝑙-

dimensional ball with radius 𝑅. The gamma function Γ(𝑥) 

is defined for 𝑥 > 0 by Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
, where by 

using sterling approximation, the gamma function Γ(𝑛/

2 + 1) is defined as Γ(𝑛/2 + 1) ≈ √𝑛𝜋(
𝑛

2𝑒
)𝑛/2;  

One of the main heuristics in lattice theory is Gaussian 

Heuristic which estimates the number of points in a set 𝑆. 

This heuristic is used massively in our analysis. This 

heuristic is defined as follows:  

Heuristic 1 (Gaussian Heuristic). “Given a lattice ℒ and a 

set 𝑆, the number of points in 𝑆 ∩ ℒ is approximated by 

𝑉𝑜𝑙(𝑆)/𝑉𝑜𝑙(ℒ)” [13]; 

By using Gaussian Heuristic, if a lattice ℒ is limited in a 

centered ball with radius of 𝑅 = 𝜆1(ℒ), then it is expected 

that there is at least one lattice vector in 𝐵𝑎𝑙𝑙𝑛(𝑅) with 

radius 𝑅, which is the shortest vector. Therefore, the 

value of 𝜆1(ℒ) can be estimated by Gaussian Heuristic of 

this lattice as follows (by using sterling approximation): 

GH(ℒ) = (
Vol(ℒ(𝐵))

Vol(𝐵𝑎𝑙𝑙𝑛(1))
)

1

𝑛
≈ √

𝑛

2𝜋𝑒
(det 𝐵)

1

𝑛.                     (5) 

Gram-Schmidt Orthogonal basis (GSO basis). For a given 

lattice basis 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛), the Gram-Schmidt 

orthogonal basis 𝐵∗ = (𝑏1
∗, 𝑏2

∗, … , 𝑏𝑛
∗) is defined as 

follows: 

𝜋𝑖(𝑏𝑖) = 𝑏𝑖
∗ = 𝑏𝑖 −∑ 𝜇𝑖,𝑗𝑏𝑗

∗𝑖−1
𝑗=1 ,                       (6) 

where 𝜇𝑖,𝑗 =
𝑏𝑖𝑏𝑗

∗

‖𝑏𝑗
∗‖
2  𝑎𝑛𝑑 1 ≤ 𝑗 < 𝑖 ≤ 𝑛.        

The parameter of 𝜇𝑖,𝑗 ∈ ℝ is named a GSO coefficient 

and 𝑏𝑖
∗ refers to 𝑖-th vector of GSO basis of 𝐵∗. For an 

input lattice basis 𝐵, the volume of the lattice can be 

computed by the norm of GSO vectors as follows: 

Vol(ℒ(𝐵)) = ∏ ‖𝑏𝑖
∗‖𝑛

𝑖=1 .                              (7) 

Other important heuristic in lattice theory is Schnorr’s 

Geometric Series Assumption (GSA) which is defined as 

follows:   

Geometric Series Assumption (GSA). The geometric 

series of ‖𝑏𝑖
∗‖ = 𝑟𝑖−1‖𝑏1

∗‖ with the GSA constant 𝑟 ∈

[3/4,1) can be assumed for a BKZ-reduced basis [3]. 

Gamma distribution. The Gamma distribution, which is a 

two-parameter and continuous probability distribution, is 

defined as follows (for input shape-parameter of 𝑘 and 

scale-parameter of 𝜃): 

Gamma(𝑥; 𝑘, 𝜃) =
𝑥𝑘−1𝑒−𝑥/𝜃

Γ(𝑘) 𝜃𝑘
,   where 𝑥 > 0.            (8) 

Exponential distribution. The Exponential distribution, 

which is a one-parameter and continuous probability 

distribution, is defined as follows (for input parameter ℷ): 

Expo(𝑥; ℷ) = ℷ𝑒−ℷ 𝑥,   where 𝑥 > 0 and ℷ > 0.          (9) 

The mean and variance in Exponential distribution 

respectively are determined by 1/ℷ and 1/ℷ2.  

Note: The notation of 1𝛽 represents a vector with 

length of 𝛽 as a bounding function with entries of 1.   

B.  Enumeration and GNR-Pruning 

In this paper, for each lattice block of ℒ[𝑗,𝑘] =

ℒ(𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘), the block size 𝛽 = 𝑘 − 𝑗 + 1 is 

assumed sufficiently big. Also since these lattice blocks are 

assumed to be used in BKZ algorithms, in fact, the 

notation of ℒ(𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘) refers to the projected form 

of 𝜋𝑗(𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘), as a lattice block from index 𝑗 to 𝑘, 

while its vectors are projected on the vectors of 

(𝑏1, 𝑏2, … , 𝑏𝑗−1).  

Full-enumeration. For fixed enumeration radius 𝑅 (by no 

updating radius), the tree of full-enumeration includes all 

lattice points in n-dimensional ball of radius 𝑅.  

Full-enumeration Cost. For fixed enumeration radius 𝑅 (by 

no updating radius), the number of total nodes of the full-

enumeration tree can be estimated as follows [1]:  

𝑁 ≈ ∑ 𝐻𝑙
𝑘−𝑗+1=𝑑
𝑙=1 ,                                  (10) 
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where 

 𝐻𝑙 =
1

2

𝑉𝑙(𝑅)

∏ ‖𝑏𝑖
∗‖𝑑

𝑖=𝑑−𝑙+1

=
1

2

𝑅𝑙.𝑉𝑙(1)

∏ ‖𝑏𝑖
∗‖𝑑

𝑖=𝑑−𝑙+1

.           (11) 

The value of 𝐻𝑙  represents the Gaussian Heuristic 

prediction of the number of nodes at the level 𝑙 (see [1], 

[13]).     

Note: In this paper, “enumeration cost”, “total nodes 

of GNR-enumeration” and “number of enumeration tree 

nodes” are referred to 𝑁 as the number of total nodes in 

the tree [13].  

The concepts of cylinder-intersection, bounding 

function and GNR-pruning formally are defined as 

follows: 

Cylinder-intersection. The 𝑙-dimensional cylinder-

intersection with radius of (𝑅1, … , 𝑅𝑙) is defined as 

follows [13]:  

𝐶𝑅1…𝑅𝑙 = {(𝑥1, … , 𝑥𝑙) ∈ ℝ
𝑙 , ∀ 1 ≤ 𝑖 ≤ 𝑙, ∑ 𝑥𝑡

2 ≤ 𝑅𝑖
2𝑖

𝑡=1 }.   

(12) 

Bounding function. The vector of ℛ = [ℛ1, ℛ2, … , ℛ𝛽] 

where 0 ≤ ℛ1 ≤ ℛ2 ≤ ⋯ ≤ ℛ𝛽 = 1, when multiplied by 

initial radius of 𝑅, defines a bounded cylinder-

intersections with radius (𝑅1, … , 𝑅𝑙) = (𝑅 × ℛ1, … , 𝑅 ×

ℛ𝑙) for 1 ≤ 𝑙 ≤ 𝛽, and consequently can be used to 

prune the enumeration tree [13].  

GNR-pruning (Sound pruning). For a lattice block of 

𝐵[𝑗,𝑘] = (𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘) and the coefficient vector 𝑥 ∈

ℤ𝛽, GNR-pruning replaces the inequalities of 

‖𝜋𝑘+1−𝑖(𝑥. 𝐵[𝑗,𝑘])‖ ≤ 𝑅 for 1 ≤ 𝑖 ≤ 𝑘 − 𝑗 + 1 as a 

bounded ball (in full-enumeration) by 

‖𝜋𝑘+1−𝑖(𝑥. 𝐵[𝑗,𝑘])‖ ≤ ℛ𝑖 × 𝑅, where 0 ≤ ℛ1 ≤ ⋯ ≤

ℛ𝑘−𝑗+1=1 as a cylinder-intersection [1].  

The pseudo-code of the GNR pruned enumeration is 

shown in Appendix B from [13]. Based on the definition of 

GNR-pruning, this paper uses the concepts of final 

solution vector (usually referred to solution vector) and 

partial solution candidate as follows: 

Final solution vector. For a lattice block of 𝐵[𝑗,𝑘] =

(𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘) and the coefficient vector 𝑥 ∈ ℤ𝛽, the 

projected vector of 𝜋𝑗(𝑣) = 𝜋𝑗(𝑥. 𝐵[𝑗,𝑘]) which satisfies 

all of the conditions of ‖𝜋𝑘+1−𝑖(𝑥. 𝐵[𝑗,𝑘])‖ ≤ ℛ𝑖 × 𝑅 for 

1 ≤ 𝑖 ≤ 𝑘 − 𝑗 + 1, is a final solution vector. 

Note: In this paper, 𝜋𝑗(𝑣) is shown by the notation of 

𝑣 for simplicity. 

Fact 1 is an obvious proposition on GNR pruned 

enumeration.    

Fact 1. If there are several solution vectors in cylinder-

intersection of a GNR pruned enumeration over ℒ𝛽, the 

shortest solution among them never be eliminated by 

updating radius and finally is returned as the final 

response of this enumeration; 

Partial solution candidate. For a lattice block of 𝐵[𝑗,𝑘] =

(𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘), the coefficient vector 𝑥 ∈ ℤ𝛽  and the 

projection level of ℓ for 1 ≤ ℓ ≤ 𝑘 − 𝑗 + 1, the projected 

vector of 𝜋𝑘+1−𝑖(𝑣) = 𝜋𝑘+1−𝑖(𝑥. 𝐵[𝑗,𝑘]) which satisfies all 

of the conditions of ‖𝜋𝑘+1−𝑖(𝑥. 𝐵[𝑗,𝑘])‖ ≤ ℛ𝑖 × 𝑅 for 1 ≤

𝑖 ≤ 𝑘 − ℓ + 1, is a partial solution candidate at the level 

of ℓ in enumeration tree; 

The success probability is one of the main features of 

bounding function which can be defined as follows [13]: 

Success probability of bounding function: For any lattice 

block of ℒ[𝑗,𝑘] = [𝑏𝑗, 𝑏𝑗+1, … , 𝑏𝑘], initial enumeration 

radius 𝑅 and bounding function ℛ, if there is just one 

lattice vector 𝑣 in 𝑛-dimensional ball with radius of 𝑅 (i.e., 

‖𝑣‖ ≤ 𝑅), the probability of finding solution vector 𝑣 

after GNR pruning by ℛ in enumeration tree is defined as 

the success probability of ℛ, which is shown by 𝑝𝑠𝑢𝑐𝑐(ℛ). 

For analysis of the success probability of GNR bounding 

function, Gama et al. use following heuristic [13]:  

Heuristic 2. “The distribution of the coordinates of the 

target vector 𝑣, when written in the normalized Gram-

Schmidt basis (𝑏1
∗/‖𝑏1

∗‖, … , 𝑏𝑛
∗/‖𝑏𝑛

∗‖) of the input basis, 

look like those of a uniformly distributed vector of norm 

‖𝑣‖”; 

The coefficient of orthonormal basis vector 𝑧 =

(𝑧1, 𝑧2, … , 𝑧𝑘−𝑗+1=𝑑) in Heuristic 2 which corresponds 

with the target lattice vector of 𝑣 can be formulated as 

follows [13]:  

𝑣 = [𝑧1, ⋯ , 𝑧𝑑] [

𝑏𝑘
∗/‖𝑏𝑘

∗‖
⋮

𝑏𝑗
∗/‖𝑏𝑗

∗‖
] = (𝑣1, ⋯ , 𝑣𝑚).            (13)  

where 𝑏𝑖
∗/‖𝑏𝑖

∗‖ is 𝑖-th vector of the orthonormal basis of 

𝑏1
∗/‖𝑏1

∗‖, … , 𝑏𝑛
∗/‖𝑏𝑛

∗‖) [13]. Also, the solution vector 𝑣 

can be written by the coefficient vector 𝑤 = (𝑧𝑑/

‖𝑏1
∗‖, … , 𝑧2/‖𝑏𝑑−1

∗ ‖, 𝑧1/‖𝑏𝑑
∗‖) on the GSO block basis as 

follows [12]:  

𝑣 = (𝑣1, ⋯ , 𝑣𝑚) = (𝑤1, ⋯ , 𝑤𝑑) [
𝑏1
∗

⋮
𝑏𝑑
∗
].              (14) 

The coordinates of the coefficient vector 𝑧 are 

reversed (i.e., 𝑧𝑖  corresponds to 𝑏𝑘−𝑖+1
∗ /‖𝑏𝑘−𝑖+1

∗ ‖), and it 

is clear that ‖𝑧‖ = ‖𝑣‖ [13]. Also, the vector 𝑢 =

(𝑢1, 𝑢2, … , 𝑢𝑘−𝑗+1=𝑑) = (𝑧1/𝑅, 𝑧2/𝑅,… , 𝑧𝑑/𝑅) is chosen 

to be uniformly distributed from the 𝑑-dimensional ball of 

the radius 1 (by the notation of 𝑢 ∽ 𝐵𝑎𝑙𝑙𝑑). By using these 

formulations, success probability of a GNR bounding 

function ℛ can be defined as follows [13]: 

𝑝𝑠𝑢𝑐𝑐(ℛ) = Pr𝑢∽𝐵𝑎𝑙𝑙𝑑 (∀ 𝑖 ∈ [1, 𝑑], ∑ 𝑢𝑙
2𝑖

𝑙=1 ≤
𝑅𝑖
2

𝑅𝑑
2) =

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑(∀ 𝑖 ∈ [1, 𝑑], ∑ 𝑢𝑙
2𝑖

𝑙=1 ≤ ℛ𝑖
2).                   (15) 
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Note: Since in last block of BKZ, the size of blocks 

become less than initial block size of 𝛽, so the variable size 

of 𝑑 = 𝑘 − 𝑗 + 1 is used to emphasize this fact.   

C.  Cost of GNR-enumeration 

The estimation of total nodes in GNR pruned enumeration 

tree is the same as the full-enumeration (Schnorr-Euchner 

enumeration), except that instead of using balls of radius 

𝑅, GNR pruned enumeration employs the cylinder-

intersections of radius (𝑅1, … , 𝑅𝑙) = (𝑅 × ℛ1, … , 𝑅 × ℛ𝑙) 

for 1 ≤ 𝑙 ≤ 𝛽. In reminder of this paper, the enumeration 

radius is determined by parameter of 𝑟FAC, as follows:  

𝑅 = 𝑟FAC × 𝐺𝐻(ℒ).                               (16) 

By using Heuristic 1 (Gaussian Heuristic), the number 

of nodes at the level 𝑙 of the GNR pruned enumeration 

tree can be estimated as follows:  

𝐻΄𝑙 =
1

2

𝑉𝑅1,…,𝑅𝑙

∏ ‖𝑏𝑖
∗‖𝑘

𝑖=𝑘−𝑙+1

=
1

2

𝑅𝑙 𝑉ℛ1,…,ℛ𝑙

∏ ‖𝑏𝑖
∗‖𝑘

𝑖=𝑘−𝑙+1

.               (17) 

The volume of cylinder-intersection of 𝐶𝑅1,…,𝑅𝑙  can be 

defined as follows: 

𝑉𝑅1,…,𝑅𝑙 = Vol(𝐶𝑅1,…,𝑅𝑙) = 𝑉𝑙(𝑅) × Pr𝑢∽𝐵𝑎𝑙𝑙𝑙(∀𝑗 ∈

[1, 𝑙], ∑ 𝑢𝑖
2 ≤ ℛ𝑗

2𝑗
𝑖=1 ).                       (18) 

Therefore, the total number of nodes in the GNR 

pruned enumeration tree can be estimated as follows:   

𝑁΄(ℒ[𝑗,𝑘], ℛ΄, 𝑅) ≈ ∑ 𝐻΄𝑙
𝑘−𝑗+1
𝑙=1 ≈ ∑ Pr𝑢∽𝐵𝑎𝑙𝑙𝑙(∀𝑗 ∈

𝛽
𝑙=1

[1, 𝑙], ∑ 𝑢𝑖
2 ≤ ℛ𝑗

2𝑗
𝑖=1 ) × 𝐻𝑙 .                  (19) 

Note: In this paper, the total number of nodes in full-

enumeration tree and number of nodes in level 𝑙 of full-

enumeration tree are shown by 𝑁 and 𝐻𝑙 , while the total 

number of nodes in GNR pruned enumeration tree and 

number of nodes in level 𝑙 of GNR pruned enumeration 

tree are shown by 𝑁′ and 𝐻𝑙
′. 

As shown in Section 3.3 from [13], the most populated 

level of full-enumeration tree is middle-level. By assuming 

the populated level in middle-level, paper [13] concludes 

the approximation of 𝑁΄(ℒ[1,𝛽], ℛ΄, 𝑅) ≈ 𝐻΄𝑙=𝛽/2 for all 

GNR-enumeration (not just for full-enumeration). To the 

best of our knowledge, by using this approximation for 

well-defined bounding function of Linear pruned, paper 

[13] concludes that the total cost of enumeration pruned 

by an optimal bounding function with success probability 

≈ %100 tends to 
1

2𝛽/4
 times of total cost of full-

enumeration; In other side, by using this approximation 

for some well-defined bounding functions of Piecewise-

Linear and Step bounding function, paper [13] tries to 

show that for extremely small success probability, the 

total cost of enumeration pruned by these two bounding 

functions (as extreme-pruning) tends to 
1

2𝛽/2
 times of total 

cost of full-enumeration. Our analysis in [14] proves the 

assumption of most populated level of 𝑙 = 𝛽/2 and 

speedup of 
1

2𝛽/4
 for an optimal bounding function with 

success probability ≈ %100, but rejects the assumption 

of most populated level of 𝑙 = 𝛽/2 and speedup of 
1

2𝛽/2
 

for Piecewise-Linear bounding function for extremely 

small success probability.        

The success probability of the bounding function ℛ can 

be estimated by Monte-Carlo simulation (see Algorithm 8 

in [1]) which is used in some test results of this paper, but 

it is not efficient since the number of samples required for 

this estimation is proportional to 
1

𝑝𝑠𝑢𝑐𝑐(ℛ)
 [13]. The Monte-

Carlo estimation of success probability is defined by the 

number of 
1

𝑝𝑠𝑢𝑐𝑐(ℛ)
 samples of random vector 𝑢 ∽ 𝐵𝑎𝑙𝑙𝑑 , 

and counting the success of each sample satisfying the 

bounding function constraints which is defined as follows 

[1]:   

∀ 𝑖 ∈ [1, 𝑑], ∑ 𝑧𝑙
2𝑖

𝑙=1 ≤ ℛ𝑖
2𝑅𝑑

2 ≡  

∀ 𝑖 ∈ [1, 𝑑], ∑ 𝑢𝑙
2𝑖

𝑙=1 ≤
𝑅𝑖
2

𝑅𝑑
2 = ℛ𝑖

2 ≡  

 ∀ 𝑖 ∈ [1, 𝑑], ∑
𝜔𝑑−𝑙+1

∑ 𝜔𝑡
𝑑
𝑡=1

𝑖
𝑙=1 ≤ ℛ𝑖

2,                 (20) 

where 𝜔𝑖 ← Gamma(1/2,2) and 𝑅 = 𝑅𝑑 is the 

enumeration radius. Some speedup for Monte-Carlo 

estimation of 𝑝𝑠𝑢𝑐𝑐(ℛ) can be introduced by replacing the 

ball with a smaller containing body whose volume is 

known and also the vector 𝑢 can be sampled uniformly 

from it [13]. Moreover, some cases are noted in [13], 

where the volume 𝑉ℛ1,…,ℛ𝑙  can be computed exactly. In 

these cases, when vector 𝑢 is sampled from 𝐵𝑎𝑙𝑙𝑙, the 

distribution of vector (𝑢1
2 + 𝑢2

2, 𝑢3
2 + 𝑢4

2, … , 𝑢𝑙−1
2 +

𝑢𝑙
2) can be given by a Dirichlet distribution with the 

parameters of 
𝑙

2
+ 1 ones, which are simply a uniform 

distribution over the set of all vectors whose coordinates 

are non-negative and summed to at most 1 (see page 593 

of [15]).  

Accordingly, in this particular case, some conditions 

should be assumed, such as ℛ1 = ℛ2, ℛ3 = ℛ4, …, 

ℛ𝑑−1 = ℛ𝑑, where 0 ≤ ℛ1 ≤ ℛ3 ≤ ⋯ ≤ ℛ𝑑−1 and even 

number of block sizes 𝑑 = 𝛽 = 2ℓ [13]. In Appendix A of 

[1], it is shown that for any vector (𝑡1, … , 𝑡ℓ) ∈ ℝ≥0
ℓ , the 

related polytope is denoted by 𝒫ℓ(𝑡1, … , 𝑡ℓ), which is 

defined as [1]: 𝒫ℓ(𝑡1, … , 𝑡ℓ) = {(𝑥1, … , 𝑥ℓ) ∈ ℝ
ℓ| ∀𝑖 ∈

{1, … , ℓ}, 𝑥𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝑥𝑗 ≤ 𝑡𝑖
𝑖
𝑗=1 }. The volume of 

𝒫ℓ(𝑡1, … , 𝑡ℓ) is computed as follows: 

Vol𝒫ℓ(𝑡1, … , 𝑡ℓ) =

∫ ∫ …∫ 𝑑𝑥ℓ
𝑡ℓ−∑ 𝑥𝑖

ℓ−1
𝑖=1

𝑥ℓ=0
…𝑑𝑥2

𝑡2−𝑥1
𝑥2=0

𝑑𝑥1
𝑡1
𝑥1=0

𝑦𝑖=∑ 𝑥𝑗
i
𝑗=1

⇒           

𝑉𝑜𝑙𝒫ℓ(𝑡1, … , 𝑡ℓ) =

∫ ∫ …∫ 𝑑𝑦ℓ
𝑡ℓ
𝑦ℓ=𝑦ℓ−1

…𝑑𝑦2
𝑡2
𝑦2=𝑦1

𝑑𝑦1
𝑡1
𝑦1=0

.                           (21) 
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The integral of (21) can be computed numerically as 

discussed in [1]. For a polytope 

𝒫ℓ(ℛ1
2, ℛ2

2, ℛ3
2, … , ℛ𝑑

2), the coefficient vector 𝑢 =

(𝑢1, 𝑢2, … , 𝑢𝛽), which corresponding to the block ℒ[𝑗,𝑘], 

can be found in GNR-enumeration by the following 

probability [1]:  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑(∀𝑗 ∈ [1, 𝑑], ∑ 𝑢𝑖
2 ≤ ℛ𝑗

2𝑗
𝑖=1 ) =  

Vol𝒫ℓ(ℛ2
2,ℛ4

2,…,ℛ𝑑
2)

Vol𝒫ℓ(1,1,1,…,1)
.                             (22) 

In practice, assuming such this case for bounding 

function ℛ does not corrupt the generality of discussion, 

and just introduces some partial approximations. For 

bounding function ℛ which does not satisfy these 

constraints (i.e., ℛ1 = ℛ2, …, ℛ𝑑−1 = ℛ𝑑  where 0 ≤

ℛ1 ≤ ℛ3 ≤ ⋯ ≤ ℛ𝑑−1 and 𝛽 = 2ℓ), the probability of 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑  can be approximated as follows [1]: 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑(∀𝑗 ∈ [1, 𝑑], ∑ 𝑢𝑖
2 ≤ ℛ𝑗

2𝑗
𝑖=1 ) ≈

⌈
𝑑

2
⌉ ! ∫ ∫ …∫ 𝑑𝑦

⌈
𝑑

2
⌉

ℛ𝑑
2

𝑦
⌈
𝑑
2⌉
=𝑦
⌈
𝑑
2⌉−1

…𝑑𝑦2
ℛ4
2

𝑦2=𝑦1
𝑑𝑦1

ℛ2
2

𝑦1=0
.          (23) 

Also, to have a better estimation, a partial modification 

of this approximation is defined as follows: 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑(∀𝑗 ∈ [1, 𝑑], ∑ 𝑢𝑖
2 ≤ ℛ𝑗

2𝑗
𝑖=1 ) ≈   

≈ ℓ! ×
Vol𝒫ℓ(ℛ2

2,…,ℛ2ℓ
2 )+Vol𝒫ℓ(ℛ1

2,…,ℛ2ℓ−1
2 )

2
  

≈ ℓ! ×
∑ ∫ …∫ 𝑑𝑦ℓ/2

ℛ2ℓ−𝑖
2

𝑦ℓ/2=𝑦ℓ/2−1
…𝑑𝑦1

ℛ2−𝑖
2

𝑦1=0
1
𝑖=0

2
.          (24) 

D.  Complementary Concepts 

The definition of static success probability is the same 

as the original definition of success probability when 

enumeration radius 𝑅 is set to 𝜆1 as follows [12]:  

Static success probability of bounding function: For any 

lattice block of ℒ[𝑗,𝑘] = [𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘], initial 

enumeration radius 𝑅 = 𝜆1 and bounding function ℛ, the 

static success probability of 𝑝𝑠𝑢𝑐𝑐(ℛ) is defined as the 

probability of finding solution vector 𝑣 (with length of 𝜆1) 

after GNR pruning by bounding function ℛ in 

enumeration tree. 

The first version of static success probability is 

formulated exactly similar to (15) as follows [12]:  

𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤0(ℒ[1,𝑑], ℛ, 𝑅) = 𝑝𝑠𝑢𝑐𝑐(ℛ) = Pr𝑢∽𝐵𝑎𝑙𝑙𝑑(∀𝑗 ∈

[1, 𝑑], ∑ 𝑢𝑖
2 ≤ ℛ𝑗

2𝑗
𝑖=1 ).                   (25)  

Note: Following expressions are equivalent in this 

paper: “Success probability”, “Static success probability”, 

“Success probability of GNR pruned enumeration”, 

“Success probability of bounding function”. 

In other side, by using Rogers’ theorem, dynamic 

success frequency can be defined as follows [12]:   

Dynamic success frequency of bounding function. For any 

lattice block of ℒ[𝑗,𝑘] = [𝑏𝑗 , 𝑏𝑗+1, … , 𝑏𝑘], initial 

enumeration radius 𝑅 = 𝑟FAC × GH(ℒ) and bounding 

function ℛ with static success probability 𝑝𝑠𝑢𝑐𝑐(ℛ), there 

are the number of 𝑟FAC
𝛽/2 solution vectors in 𝑛-

dimensional ball with radius of 𝑅, consequently the 

frequency of solution vectors 𝑣 in enumeration tree 

(where ‖𝑣‖ ≤ 𝑅) after GNR pruning by ℛ is estimated by 

𝑝𝑠𝑢𝑐𝑐(ℛ) ×
𝑟FAC

𝛽

2
; 

The dynamic success frequency is formulated as follows 

[12]:  

𝑓𝑠𝑢𝑐𝑐
𝑛𝑒𝑤0(ℒ[1,𝑑], ℛ, 𝑅) = 

𝐶𝑅𝑜𝑔𝑒𝑟 ×
𝑟FAC

𝛽

2
× 𝑝𝑠𝑢𝑐𝑐

𝑛𝑒𝑤0(ℒ[1,𝑑], ℛ, 𝑅).               (26) 

Note: As suggested in [12], this paper sets 𝐶𝑅𝑜𝑔𝑒𝑟  to 1.      

Note: If this is assumed that there is no updating radius in 

GNR-enumeration, then the dynamic success frequency 

of bounding function can be assumed as the expected 

number of solutions visited in enumeration tree, else this 

dynamic success frequency is more than the expected 

number of solutions visited in GNR-enumeration.  

As discussed in [12], there are different 

asymptotical/experimental results which verify the 

convergence of the expected value of the best vectors of 

lattices with sufficiently big block sizes to GH(ℒ[𝑗,𝑘]). 

Based on experimental tests by Chen and Nguyen [1] to 

compare the final solution norm of enumeration with 

value of GH(ℒ[𝑗,𝑘]), depending on the starting index 𝑗 of 

a local block for one round of BKZ, following cases are 

observed:  

• For the first lattice blocks in rounds of BKZ, the final 

solution norm is significantly lower than GH(ℒ[𝑗,𝑘]). 

The behaviour of solution norm in running of BKZ is 

named “head concavity phenomenon” in BKZ, which 

is discussed in [2].  

• For the last lattice blocks in rounds of BKZ (tail of GSO 

norms), the GSO norms are significantly larger than 

GH(ℒ[𝑗,𝑘]). This behaviour of solution norm is named 

as “tail convexity” in [12].  

• For the middle lattice blocks in rounds of BKZ which 

includes the most of the enumeration calls, the 

solution norms are mostly bounded as follows [1]:  

0.95 GH(ℒ[𝑗,𝑘]) ≤ ‖𝑣‖ ≤ 1.05 GH(ℒ[𝑗,𝑘]).           (27) 

This third behaviour of BKZ, can be named as “random 

manner of middle lattice blocks”.  

To the best of our knowledge, this test in [1] is 

performed with some block sizes of 𝛽 ≤ 70. There are 

other experimental/asymptotical results on the expected 

norm of final solution vector which briefly are counted in 

Section 2.7 from [12].  
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In fact, the probability distribution of best solution 

norm for a lattice basis/block is stated in Chen’s thesis 

[16] as following theorem [2]:  

Theorem 1. For random lattice ℒ1 with rank 𝑛 and unit 

volume, the distribution of 𝑉𝑛(1). 𝜆1(ℒ1)
𝑛 converges to 

distribution of Expo(1/2) as 𝑛 → ∞.    

The random variable of 𝜆1(ℒ) for lattices with rank 𝑑 

can be sampled by following relation [2]:  

𝜆1(ℒ) ← (
X Vol(ℒ)

𝑉𝑑(1)
)
1/𝑑

,  where X ← Expo (
1

2
).         (28)  

Note: Theorem 1 can be considered only for full-

enumeration or a GNR-enumeration pruned by a 

bounding function with success probability ≈ %100, not 

for any GNR pruned enumeration.  
There is a brief, but sufficient survey of the norm of 

full/pruned enumerations in Section 2.7 from [12].  

At this point, some necessary concepts from [12] which 

are needed in our analysis are counted as follows: 

• Cutting point. The enumeration cut point index is 

defined as the last GSO norm index Cut where 

‖𝑏Cut
∗ ‖2 ≤ 𝑅2ℛ𝑑−Cut+1

2  and 2 ≤ Cut ≤ 𝑑. 

• Last non-zero index of ℊ. The projected vector 𝑏ℊ
∗ ∈

{𝑏1
∗, … , 𝑏𝑑

∗} which is eliminated after inserting the 

enumeration solution 𝑣, has the GSO norm of ‖𝑏ℊ
∗‖ ≤

‖𝑣‖; The coefficient 𝑤ℊ is always the last non-zero 

coefficient in vector of 𝑤 for lattice block of ℒ[1,𝑑], as 

follows (see Theorem 2 in [12]):  

𝑤ℊ = 𝑦ℊ = 1.                                   (29) 

• For a GNR-enumeration with radius 𝑅 = 𝑟FAC ×

GH(ℒ[1,𝑑]) over lattice block of ℒ[1,𝑑] with quality 𝑞, 

sufficiently big block size 𝑑 and cut point index Cut, 

the probability distribution of ℊ for the solution 

vectors 𝑣 returned by this enumeration, can be 

estimated by our non-exact approximate formula of 

(27) in [12] or can be estimated by our exact formula 

of (44) in Lemma 8 from [12]; 

• The norm of solution vector 𝑣 returned by a pruned 

enumeration with radius factor of 𝑟FAC and success 

probability 𝑝𝑠𝑢𝑐𝑐(ℛ) =
2

𝑟FAC
Cut over lattice block ℒ𝛽 

can be sampled by (30) (see Lemma 2 from [12]):    

      ‖𝑣‖ = √1 + rand[0…1] (𝑟FAC
Cut − 1)

Cut
× GH(ℒCut),    

where 𝑟FAC = 𝑅/GH(ℒCut).             (30) 

• If the norm of shortest vector in lattice block ℒ𝛽 is less 

than enumeration radius 𝑅, then the norm of solution 

vector 𝑣 which is returned by a GNR pruned 

enumeration with radius factor of 𝑟FAC and static 

success probability P over lattice block ℒ𝛽, can be 

sampled by (31):   

‖𝑣‖ = 

{
 
 
 
 

 
 
 
 X

1/Cut GH(ℒCut),   where X ← Expo (
1

2
) ,        if P ≈ 1                                                     

√1 + rand[0…1] (
2

P
− 1)

Cut
× GH(ℒCut),             if 

2

𝑟FAC
Cut
≤ P < 1                                  

√1 + rand[0…1](𝑟FAC
Cut − 1)

Cut
× GH(ℒCut), if P <

2

𝑟FAC
Cut
 & rand

[0…
2

𝑟FAC
Cut]

≤ P 

 Un_Successfull,                                                     if P <
2

𝑟FAC
Cut
 & rand

[0…
2

𝑟FAC
Cut]

> P 

     

where 𝑟FAC = 𝑅/GH(ℒCut).                    (31) 

Remark 1. For an input lattice block ℒ[1,𝑑] and 

enumeration radius 𝑅, by using the concept of cutting 

point “Cut”, the formula of (36) in Lemma 2 from [12] and 

the formula of (37) in Lemma 3 from [12], are revised to 

formula of (30) and (31) by setting ℒCut with dimension of 

Cut and GSO basis of 𝐵[1,Cut]
∗ = [‖𝑏1

∗‖, … , ‖𝑏Cut
∗ ‖] instead 

of ℒ𝛽 with dimension of 𝛽 and GSO basis of 𝐵[1,𝛽]
∗ =

[‖𝑏1
∗‖, … , ‖𝑏𝛽

∗‖]. 

Our Contributions 

The estimations of GNR-enumeration cost (by relation 

(19)) and the success probability of GNR-bounding 

function (by relation (15)) are defined in [1] under 

Heuristic 2. Unfortunately, paper [1] only considers one 

type of pruning in these estimations which is defined by 

condition of (20). In fact, the condition of (20) is used to 

determine the possibility and probability of laying a 

partial solution candidate in the corresponding cylinder-

intersection by bounding function of ℛ. Here, three more 

types of pruning are introduced which are ignored in 

former estimations of success probability and 

enumeration cost. These pruning types include following 

cases: 

• Pruning by concept of full-enumeration success 

probability. This type of pruning is discussed and 

analysed in third section (Part A); Also, we propose the 

concept of optimal enumeration radius to eliminate 

this type of pruning while the cost of enumeration is 

held minimized; 

• Pruning by ignoring the enumeration tree levels of 

“𝒍 = 𝟏 to 𝒅 − 𝐂𝐮𝐭”. This type of pruning is observed if 

Cut < 𝑑; We discuss massively on this concept in [12]; 

In third section (Part D), we propose a simple 

technique to eliminate this type of pruning by 

introducing a mapping technique which can be 

included in generating GNR bounding function to 

force Cut = 𝑑;    

• Pruning by finding a final solution in GNR 

enumeration tree levels of 𝒍 = 𝒅 − 𝐂𝐮𝐭 + 𝟐 to 𝒅. In 

fact, this item is not a real pruning, but since it 

prevents from opening the child nodes of an 

enumeration tree node which includes some final 

solutions, this is considered as pruning; Moreover, it is 

impossible to eliminate this type (of pruning) at all, 

since this is an intrinsic phase in enumeration 
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function, unless we force the enumeration function to 

abort the function after finding the first final solution 

vector, such as the pseudo-code of Algorithm 2 in [13]; 

In fact, if dynamic success frequency would be small 

(e.g., 𝑓0 ≈ 𝑂(1)), then aborting enumeration function 

after first finding of final solution is reasonable, but for 

big value of dynamic success frequency 𝑓0, this is 

expected that enumeration function updates radius 

after each success in finding solution and then 

continues to traverse the remain of the enumeration 

tree (similar to the pseudo-code of Algorithm 9 in [1]).    

By introducing these three types of pruning plus the 

cylinder-intersection pruning by (20), the estimations of 

success probability and enumeration cost are revised 

respectively in third section (Part B) and third section 

(Part C).   

A.  Definition of Optimal Enumeration Radius 

By using the definition of Hermite’s constant in second 

section (Part A), in worst case of the full-enumeration, the 

optimal enumeration radius can be assumed as 𝑅 =

√𝛾𝑛vol(ℒ)
1/𝑛 [13], while in this section, first definition of 

optimal enumeration radius is introduced in average-

case. The enumeration radius 𝑅 in [1] is defined as follows 

(by some partial modification): 

𝑅 = {
min(√Υ GH(ℒ[𝑗,𝑘]), ‖𝑏𝑗

∗‖),   𝑖𝑓 𝑘 − 𝑗 + 1 ≥ 30

‖𝑏𝑗
∗‖,                                           otherwise              

,         (32) 

where √Υ is the initial radius parameter. For block sizes 

of 𝛽 = 𝑘 − 𝑗 + 1 ≥ 30, value of 𝑟FAC is defined as follows 

(by using relation (16) and (32)): 

𝑟FAC =
min(√Υ GH(ℒ[𝑗,𝑘]),‖𝑏𝑗

∗‖)

GH(ℒ[𝑗,𝑘])
.                         (33) 

The main problem in choosing enumeration radius is to 

find the smallest radius which is not smaller than the 

shortest vector in the input lattice block. For this end, 

Chen and Nguyen claim that, the radius parameter of Υ in 

practice can be selected as √Υ = √1.1 ≈ 1.05 (see [1]), 

but to the best of our knowledge, this value is estimated 

only by some experimental tests over BKZ with block size 

𝛽 < 70 (see Fig. 3 in [1]). By using Theorem 1, the optimal 

enumeration radius can be defined by the concept of full-

enumeration success probability. A full-enumeration with 

initial radius 𝑅 intrinsically prunes enumeration by using 

enumeration radius (i.e., the use of an enumeration 

radius is concretely a type of pruning). Following lemma 

formally defines the success probability of full-

enumeration: 

Lemma 1. For given lattice block ℒ𝛽 with block size of 𝛽, 

the success probability of a full-enumeration with initial 

radius 𝑅 can be defined by (34):   

𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) = 1 − 𝑒

−
𝑟FAC

𝛽

2 .                     (34) 

Proof. By using (9), (15), (16) and (28), this success 

probability of 𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) for lattice block ℒ𝛽 is 

estimated as follows (for X ← Expo(1/2)):    

𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) = prob(𝜆1(ℒ𝛽) < 𝑅) = prob(X <

𝑟FAC
𝛽) = 1 − 𝑒−

𝑟FAC
𝛽

2 .             

Since the success probability of full-enumeration is not 

noted in former studies, these studies (former studies) 

always assumed implicitly to use 𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) = 1. 

For a typical lattice block ℒ𝛽, the ideal enumeration radius 

would be 𝑅 = 𝜆1(ℒ𝛽) which defines the radius factor of 

𝑟FAC by using the tight bound (upper-bound and lower-

bound) of 𝑟FAC =
𝜆1(ℒ𝛽)

GH(ℒ𝛽)
. As mentioned, former 

estimation of enumeration radius in (27) uses 

experimental tests to estimate the bound of 𝑟FAC in 

average-case (see Fig. 3 in [1]). Theorem 2 introduces an 

exact definition of this bound.    

Theorem 2. For given number X from random lattice 

blocks, the effective upper-bound/lower-bound of 𝑟FAC =
𝜆1(ℒ𝛽)

GH(ℒ𝛽)
 can be estimated in average-case as follows:  

𝑟FACmin ≤ 𝑟FAC ≤ 𝑟FACopt,                       (35) 

where 

 𝑟FACopt = √−2 ln(1 − popt)
𝛽

 and 

𝑟FACmin = √−2 ln(1 − pmin)
𝛽

 and 

pmin = 1/X and popt = 1 − 𝜀. 

Proof. The lower-bound and upper-bound for 𝑟FAC =
𝜆1(ℒ𝛽)

GH(ℒ𝛽)
 are formally defined based on relation (34), as 

follows:  

Minimum hopeful radius parameter (𝑟FACmin). For given 

number X of random lattice blocks, the minimum radius 

parameter leads to success probability of pmin =

𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) =

1

X
 for full-enumeration over these 

number of X blocks where 𝑅 = 𝑟FACmin × GH(ℒ𝛽) (i.e., 

only one of the full-enumerations over these X blocks 

probably returns the best solution).   

Optimal radius parameter (𝑟FACopt). For given number of 

X random lattice blocks, the minimum radius parameter 

leads to success probability of popt = 𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) =

1 − 𝜀 for full enumeration over these X blocks where 𝑅 =

𝑟FACopt × GH(ℒ𝛽) (i.e., all of full-enumerations over 

these X blocks return the best solution).    

𝑟FACmin ≤ 𝑟FAC =
𝜆1(ℒ𝛽)

GH(ℒ𝛽)
≤ 𝑟FACopt.   

By expanding the definitions of 𝑟FACopt and 𝑟FACmin by 

relation (34) in Lemma 1: 
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√−2 ln(1 − pmin)
𝛽

≤ 𝑟FAC =
𝜆1(ℒ𝛽)

GH(ℒ𝛽)
≤ √−2 ln(1 − popt)

𝛽 .    

Note: The optimal radius parameter 𝑟FACopt 

corresponds with optimal enumeration radius as 𝑅opt =

𝑟FACopt × GH(ℒ𝛽). 

Remark 2. The random manner of lattice blocks ℒ[𝑗,𝑘] in 

BKZ algorithm is observed only for Hdown ≤ 𝑗 ≤ Tup 

where “Hdown” represents the maximum index in head 

concavity and “Tup” represents the minimum index in tail 

convexity; So for each round of BKZ algorithm (or BKZ-

simulation), the number of X random lattice blocks can be 

assumed as X = Tup − Hdown + 1;     

Our estimation results by formula of (35) for block sizes 

of 50 ≤ 𝛽 ≤ 240 are shown in fourth section (Part A). In 

actual running of BKZ, simulation of BKZ, also our 

reasoning and proofs, the value of 𝑟FAC is assumed as a 

variable between 1 to √Υ, therefore the success 

probability of full-enumeration would be mostly 

𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) ≥ 39% (see our estimations by formula 

of (35) for block sizes of 50 ≤ 𝛽 ≤ 240 in Table 1 and 

Table 2 from fourth section (Part A)). Also, to have better 

sense about ignoring full-enumeration success probability 

in former studies, note to following example:  

Chen and Nguyen use the enumeration radius of 𝑅 =

𝐺𝐻(ℒ[𝑗,𝑘]) in estimation of upper-bound for extreme 

pruned enumeration cost in Table 5 at [1], while by 

using our reasoning in this section, all these extreme 

numerations fail to find best solution with probability 

≈ 61%, which can be penalized by increasing these 

estimated costs with factor of at most 
100

39
≈ 21.36. At 

result, when the value of 𝑟𝐹𝐴𝐶  is variable between 1 to 

√𝛶, the effect of full-enumeration success probability 

can be ignored in asymptotical analysis of cost 

estimation. 

B.  Revised Estimation of Enumeration Success Prob. 

This is worthy of mentioning that the GSO partial 

solution candidates in level 𝑙 from GNR pruned-

enumeration tree are only limited to those enumeration 

tree nodes which satisfy “bounding condition” at level 𝑙, 

which is defined in (20) and the probability of this 

condition is referred in this paper as Pr𝑢∽𝐵𝑎𝑙𝑙𝑙  (also see 

this condition in line 10 from Algorithm 2 in [13] or line 16 

from Algorithm 9 in [1]). Moreover, the final solutions are 

GSO partial candidates in level 𝑙 = 𝑑, and the probability 

of this condition is referred generally as success 

probability 𝑝𝑠𝑢𝑐𝑐 . In fact, this section tries to revise the 

probability of this condition as Pr𝑢∽𝐵𝑎𝑙𝑙𝑙  (or 𝑝𝑠𝑢𝑐𝑐) to be 

more exact. By assuming Heuristic 2, this section 

introduces an exact estimation of success probability in 

following lemma: 

Lemma 2. Under Gaussian Heuristic and Heuristic 2, for 

an input lattice block of ℒ[1,𝑑] = [𝑏1, 𝑏2, … , 𝑏𝑑] with 

shortest vector of 𝑣 with norm of ‖𝑣‖ = 𝜆1(ℒ[1,𝑑]), the 

success probability of finding this solution vector 𝑣 by 

GNR-enumeration with enumeration radius 𝑅 ≥ ‖𝑣‖ can 

be estimated by (36): 

𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅) = 

∑ [Prob(ℊ = 𝒿) × 𝑝𝑠𝑢𝑐𝑐(1
𝒿, 𝑅, ℒ𝒿) × Pr𝑢∽𝐵𝑎𝑙𝑙𝒿−1 (∀𝑡 ∈

Cut
𝒿=2

[𝑑 − 𝒿 + 2, 𝑑], ∑ 𝑢𝑖
2𝑡

𝑖=𝑑−𝒿+2 ≤
𝑅2ℛ𝑡

2−‖𝑏𝒿
∗‖
2

𝑅2−‖𝑏𝒿
∗‖
2 )].                  (36) 

Proof. Under assumption of Heuristic 2, the success 

probability can be estimated by the idea proposed in 

relation of (15). Also, since 𝑤ℊ = 1 (by using Theorem 2 in 

[12]), for ℊ = 1, this is only needed to determine whether 

the first vector of block ℒ[1,𝑑] as 𝑏1
∗ has the norm of 

𝑤ℊ‖𝑏ℊ
∗‖ = ‖𝑏1

∗‖ ≤ 𝑅 or not? The probability of this case 

as 𝑣 = 𝑏1
∗, with respect to all other linear combinations of 

𝑣 by using vectors of {𝑏1
∗, 𝑏2

∗, … , 𝑏Cut
∗ } is zero, so ℊ = 1 is 

ignored in (36). By using our definition of “Cutting Point”, 

the probability of visiting GSO partial solution candidates 

in level 𝑙 from GNR pruned-enumeration tree for given 

bounding function ℛ and lattice block ℒ[1,𝑑] with cut point 

of Cut, can be estimated as follows: 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤1 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = Cut) ≈  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙 (∀𝑡 ∈ [𝑑 − Cut + 2, 𝑙],
𝑤Cut
2  ‖𝑏Cut

∗ ‖
2

𝑅2
+

∑ 𝑢𝑖
2𝑡

𝑖=𝑑−Cut+2 ≤ ℛ𝑡
2),                  (37)    

where 𝑑 − Cut + 2 ≤ 𝑙 ≤ 𝑑. 

The relation (37) assumes that last non-zero index for 

all partial (and final) solutions is ℊ = Cut. Let’s try to 

estimate the probability of finding the partial solution 

vectors which are limited to the ones with any possible 

last non-zero index of ℊ = 𝒿 ≤ Cut. For this end, 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤1  in (37) can be modified into (38):   

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤1 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = 𝒿 ≤ Cut) ≈  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙 (∀𝑡 ∈ [𝑑 − ℊ + 2, 𝑙],
𝑤ℊ
2 ‖𝑏ℊ

∗‖
2

𝑅2
+∑ 𝑢𝑖

2𝑡
𝑖=𝑑−ℊ+2 ≤ ℛ𝑡

2),             

where 𝑑 − ℊ + 2 ≤ 𝑙 ≤ 𝑑.                        (38) 

Remark 3. By our definition of cutting point of Cut and last 

non-zero index of ℊ ≤ Cut (see Section 3.2.1 and Section 

3.2.2 from [12]), this is clear that the condition of 

“
𝑤ℊ
2 ‖𝑏ℊ

∗‖
2

𝑅2
=
 ‖𝑏ℊ

∗‖
2

𝑅2
≤ ℛ𝑑−ℊ+1

2 ” is always expected to be 

“True”, therefore the probability of visiting GSO partial 

solution candidates in level 𝑙 = 𝑑 − ℊ + 1 can be defined 

as follows:  

   Pr𝑢∽𝐵𝑎𝑙𝑙𝑙=𝑑−ℊ+1
𝑛𝑒𝑤1 (ℒ[1,𝑑], ℛ, 𝑅, ℊ) =  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙=𝑑−ℊ+1 (
𝑤ℊ
2 ‖𝑏ℊ

∗‖
2

𝑅2
≤ ℛ𝑑−ℊ+1

2 ) = 1.      (39)      
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By using 𝑤ℊ = 1 (which is in Theorem 2 from [12]):  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤1 (ℒ[1,𝑑], ℛ, 𝑅, 𝑙, ℊ = 𝒿) ≈      

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙 (∀𝑡 ∈ [𝑑 − ℊ + 2, 𝑙], ∑ 𝑢𝑖
2𝑡

𝑖=𝑑−ℊ+2 ≤ ℛ𝑡
2 −

‖𝑏ℊ
∗‖
2

𝑅2
),                                

where 𝑑 − ℊ + 2 ≤ 𝑙 ≤ 𝑑.                                    (40) 

At this point, we use the definition of last non-zero index 
of ℊ (in Section 3.2.1 from [12]) in sampling of random 
vector 𝑢 from 𝐵𝑎𝑙𝑙𝑙 with radius of unit-length. By only 
focusing on the GSO partial solution candidates in level 𝑙 
with any possible last non-zero index of ℊ = 𝒿, GNR-
enumeration opens the child nodes of these partial 
solutions (unless, at last level 𝑙 = 𝑑 which returns these 
final solutions, and comes back to previous level of 
enumeration tree to find the other solutions). The 
direction of visiting nodes in a GNR-enumeration tree is 
from the last index of GSO block to the first one. 
Accordingly, by using Lemma A.1 in [1] and considering 
this fact that the effective radius of surrounding unit ball 
of dimension 𝒟 = 𝑑 is reduced into a ball of dimension 

𝒟 = 𝑙 − 𝑑 + ℊ − 1 with radius of 1 −
‖𝑏ℊ
∗‖
2

𝑅2
, the 

estimation of Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤1  in (40) can be revised into 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤2  as follows:  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤2 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = 𝒿) ≈

𝑉𝑜𝑙𝒫ℓ(ℛ𝑑−ℊ+2
2 −

‖𝑏ℊ
∗ ‖
2

𝑅2
,…,ℛ𝑙

2−
‖𝑏ℊ
∗ ‖
2

𝑅2
)

𝑉𝑜𝑙𝒫ℓ(1−
‖𝑏ℊ
∗ ‖
2

𝑅2
,…,1−

‖𝑏ℊ
∗ ‖
2

𝑅2
)

≈   

𝑉𝑜𝑙𝒫ℓ(
𝑅2ℛ𝑑−ℊ+2

2−‖𝑏ℊ
∗ ‖
2

𝑅2−‖𝑏ℊ
∗ ‖
2 ,…,

𝑅2ℛ𝑙
2−‖𝑏ℊ

∗ ‖
2

𝑅2−‖𝑏ℊ
∗ ‖
2 )

𝑉𝑜𝑙𝒫ℓ(1,1,…,1)
≈     

Pr𝑢∽𝐵𝑎𝑙𝑙𝒟 (∀𝑡 ∈ [𝑑 − ℊ + 2, 𝑙], ∑ 𝑢𝑖
2𝑡

𝑖=𝑑−ℊ+2 ≤
𝑅2ℛ𝑡

2−‖𝑏ℊ
∗‖
2

𝑅2−‖𝑏ℊ
∗‖
2 ) ≈                               

(41) 

⌈
𝒟

2
⌉ ! × Vol𝒫ℓ(T1, … , T⌈𝒟/2⌉) ≈  

⌈
𝒟

2
⌉ ! × ∫ …∫ 𝑑𝑦⌈𝒟/2⌉

T⌈𝒟/2⌉
𝑦⌈𝒟/2⌉=𝑦⌈𝒟/2⌉−1

…𝑑𝑦1
T1
𝑦1=0

,                 (42) 

where T𝑖 =
𝑅2ℛ2⌈(𝑑−ℊ+2)/2+𝑖⌉

2 −‖𝑏ℊ
∗‖
2

𝑅2−‖𝑏ℊ
∗‖
2  and   

1 ≤ 𝒟 = 𝑙 − 𝑑 + ℊ − 1 ≤ ℊ − 1 and   

𝑑 − ℊ + 2 ≤ 𝑙 ≤ 𝑑. 

Note: All the notations with formats of Pr𝑢∽𝐵𝑎𝑙𝑙…, 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤…  and 𝑝𝑠𝑢𝑐𝑐  in this paper show the probability 

value and obviously are upper-bounded by 1.   

The pseudo-code of estimator for Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤2  in relations 

of (41) and (42) as “Our estimator of success probability” 

is proposed in Algorithm 1:  

Algorithm 1: Estimation of probability of Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤2  in relation 

(41)  

𝐈𝐧𝐩𝐮𝐭: Bounding func. ℛ, enum radius 𝑅, GSO norms [‖𝑏1
∗‖,… , ‖𝑏𝑙

∗‖],  

level 𝑙, total block size 𝑑, last non zero index of ℊ. 

  1: for(𝑡 = 𝑑 − ℊ + 2,… , 𝑙) ℛ′′𝑡−𝑑+ℊ−1
2

←

min (
𝑅2ℛ𝑡

2−‖𝑏ℊ
∗‖
2

𝑅2−‖𝑏ℊ
∗‖
2 , 1) ;/∗ 𝑠𝑒𝑒 (41) ∗/  

  2: 𝒟 = 𝑙 − 𝑑 + ℊ − 1;  

  3: for(𝑘 = 0,1){//𝑏𝑒𝑔𝑖𝑛 for1  

  4:     C ← 1;//𝐶 ∈ ℝ[𝑋] 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙   

  5:     for(𝑗 = 𝒟,𝒟 − 2,… ,2){//𝑏𝑒𝑔𝑖𝑛 for2 

        C ← ∫ C(𝑡) 𝑑𝑡
𝑥

𝑡=0
;  C ← C(ℛ′′𝑗−𝑘

2 ) − C(𝑥); }//

𝑒𝑛𝑑 for2  

  6:     𝑝𝑘 ← C(0) × ⌈
𝒟

2
⌉ !;/∗ 𝑠𝑒𝑒 (42) ∗/}//𝑒𝑛𝑑 for1  

𝐎𝐮𝐭𝐩𝐮𝐭: (𝑝1 + 𝑝2)/2 as the success probability 

 

By applying the probability of last non-zero index as 

Prob(ℊ = 𝒿) by using Lemma 8 in [12], and our proposed 

concept of full-enumeration success probability (see (34) 

in Lemma 1 at third section (Part A)), our revised 

estimation of the probability of finding the GSO partial 

solution candidates in level 𝑙, with any possible last non-

zero index of ℊ = 𝒿, can be defined as follows:  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = 𝒿) ≈ Prob(ℊ = 𝒿) ×

𝑝𝑠𝑢𝑐𝑐(1
𝒿, 𝑅, ℒ𝒿) × Pr𝑢∽𝐵𝑎𝑙𝑙𝑙

𝑛𝑒𝑤2 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = 𝒿) ≈     (43) 

Prob(ℊ = 𝒿) × 𝑝𝑠𝑢𝑐𝑐(1
𝒿, 𝑅, ℒ𝒿) × Pr𝑢∽𝐵𝑎𝑙𝑙𝒟 (∀𝑡 ∈

[𝑑 − 𝒿 + 2, 𝑙], ∑ 𝑢𝑖
2𝑡

𝑖=𝑑−𝒿+2 ≤
𝑅2ℛ𝑡

2−‖𝑏𝒿
∗‖
2

𝑅2−‖𝑏𝒿
∗‖
2 ),                   (44) 

where 1 ≤ 𝒟 = 𝑙 − 𝑑 + ℊ − 1 ≤ ℊ − 1 and 

𝑑 − ℊ + 2 ≤ 𝑙 ≤ 𝑑. 

Now, the expected value of the probability of finding 

the GSO partial solution candidates in level 𝑙 (by 

considering whole indices of 2 ≤ ℊ ≤ Cut) can be 

estimated as follows: 

E[Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, 2 ≤ ℊ ≤ Cut)] ≈ 

{
∑ Pr𝑢∽𝐵𝑎𝑙𝑙𝑙

𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = 𝒿)
Cut
𝒿=𝑑−𝑙+2 , for 𝑑 − Cut + 2 ≤ 𝑙 ≤ 𝑑

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙0=𝑑−Cut+2
𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = Cut), for 𝑙 = 𝑑 − Cut + 1.       

                                

(45)   

Note: For level of 𝑙 = 𝑑 − Cut + 1 in (45), the 

probability in this level is equal to the probability of 

Pr𝑢∽𝐵𝑎𝑙𝑙𝑙=𝑑−Cut+2
𝑛𝑒𝑤3  at level of 𝑙 = 𝑑 − Cut + 2;  

Note: Since 𝒟 = 𝑙 − 𝑑 + 𝒿 − 1 ≥ 1 in (44), therefore 

the index of 𝒿 in (45) starts from 𝒿 = 𝑑 − 𝑙 + 2, instead of 

index of 𝒿 = 2; 

Finally by using (45), our revised estimation of success 

probability of bounding function ℛ, as the expected value 

of the probability of finding final solutions in level 𝑙 = 𝑑 
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(by considering whole indices of 2 ≤ ℊ ≤ Cut) can be 

estimated as follows:  

𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅) ≈ E[Pr𝑢∽𝐵𝑎𝑙𝑙𝑙=𝑑

𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, 2 ≤

ℊ ≤ Cut)].                             

Finally this lemma (Lemma 2) is proved.     

Since our estimation of success probability by relation 

(36) in Lemma 2, is not easy to work and analyze, Remark 

4 introduces a suitable formula which approximates the 

success probability.     

Remark 4. Our estimation of the success probability in 

Lemma 2 can be approximated by (46): 

𝑝𝑠𝑢𝑐𝑐
Approx1

(ℒ[1,𝑑], ℛ, 𝑅) = (∑ Prob(ℊ = 𝒿)Cut
𝒿=1 ) ×

𝑝𝑠𝑢𝑐𝑐(1
Cut, 𝑅, ℒCut) × Pr𝑢∽𝐵𝑎𝑙𝑙𝑙=𝑑

𝑛𝑒𝑤2 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = Cut).  

                         (46) 

As mentioned in second section (Part D), dynamic 

success frequency shows the expected number of 

solutions in enumeration tree (by assumption of no 

updating radius). By using formula (21) in paper [12], the 

success probability of 𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1 in (36) can be changed into 

dynamic success frequency of 𝑓𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1 as follows:  

𝑓𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅) ≈ 𝐶𝑅𝑜𝑔𝑒𝑟

𝑟FAC
Cut

2
𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅),               

where 𝑟FAC =
𝑅

GH(ℒ[1,Cut])
.                         (47) 

Note: As suggested in [12], this paper sets 𝐶𝑅𝑜𝑔𝑒𝑟  to 1.      

Accordingly, by using (47), the sampling method for 

computing the number of solutions (showing by the 

notation of 𝐾) in a typical GNR-enumeration with 

dynamic success frequency of 𝑓𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1 = 𝑓0 can be defined 

as follows: 

𝐾 = {
⌈𝑓0⌉,        if rand[0…1] ≤ 𝑓0 − ⌊𝑓0⌋

⌊𝑓0⌋,        otherwise.                       
               (48) 

C.  Revised Estimation of Enumeration Cost 

This section proposes following algorithm to estimate 

the total nodes of GNR-enumeration tree. This algorithm 

includes the concepts of all four pruning types, along with 

the process of updating radius. Lemma 3 formally 

introduces our revised estimation of GNR-enumeration 

cost by using Algorithm 2. Besides the better estimation 

of enumeration cost, Algorithm 2 can be used as a 

sampling method of solution norm too, similar to Lemma 

3 in [12].      

Note: The array of “Solution” defined in line 9 of 

Algorithm 2, includes the number of 𝐾 entries, in the way 

that each of these entries has two fields: “index” (as the 

index of that leaf node in enumeration tree) and “norm” 

(as the norm of final solution in that leaf node). The 

notation of “Solution[𝑖]#index” and 

“Solution[𝑖]#norm” in Algorithm 2 respectively 

represent the index and norm of final solution in leaf node 

𝑖.   

Algorithm 2: Enumeration cost with updating radius 
(enum_cost_UpdateR) 

𝐈𝐧𝐩𝐮𝐭: GSO norms 𝐵[1,𝑑]
∗ = [‖𝑏1

∗‖, … , ‖𝑏𝑑
∗‖] of ℒ[1,𝑑],  

 Bounding function ℛ, enum radius 𝑅, parameter "abort". 

  1: Cut = GETCUT(𝐵[1,𝑑]
∗ , ℛ, 𝑅);  

  2: gh = GH(ℒ[1,Cut]); 𝑟FAC =
𝑅

GH(ℒ[1,Cut])
;   

  3: 𝑓0 = 𝑓𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅);//by formula (47)  

  4: 
𝐾 = {

⌈𝑓0⌉,        if rand[0…1] ≤ 𝑓0 − ⌊𝑓0⌋

⌊𝑓0⌋,        otherwise                        
; //

by formula (48) 

  5: 𝑁new1 = 0;  

  6: for(𝑙 = 𝑑 − Cut + 1,… , 𝑑){/∗begin for1∗/  

  7:     𝐻𝑙
new = E[Pr𝑢∽𝐵𝑎𝑙𝑙𝑙

𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, 2 ≤ ℊ ≤ Cut)] ×

𝐻𝑙;  

    /∗by using (45) where 𝐻𝑙 is defined in (11).∗/ 

  8:     𝑁new1+= 𝐻𝑙
new; }/∗end for1∗/  

  9: Solution ∶= array[1…𝐾] of Struct {index, norm};  

10: for(𝑡 = 1,… , 𝐾){//begin for2  

11:     loop{𝑗 ← randINT[1…𝑁new1]; }   

12:     until(∀ 1 ≤ 𝑖 < 𝑡: Solution[𝑖]#index ≠ 𝑗);   

    //uniform random selection without substitution 

13:     Solution[𝑡]#index ← 𝑗; 

14:     Solution[𝑡]#norm ← 

    √1+ rand[0…1](𝑟FAC
Cut − 1)

Cut
× gh; 

    /∗see (30) by Remark 1∗/}//end for2   

15: Sort(array = "Solution", key = "index");   

/∗ Sorting of array of "Solution" based on  

"key = index" in an increase order ∗/  

16: 𝑅new ← 𝑅;  lastidx = 0; 𝑁new2 ← 0; 

17: for(𝑡 = 1,… , 𝐾){//begin for3   

18:     if(Solution[𝑡]#norm < Rnew){//begin if2   

19:         for(𝑙 = 𝑑 − Cut + 1,… , 𝑑){//begin for4 

20: 
            𝑁new2+=

Solution[𝑡]#index−lastidx

𝑁new1
𝐻𝑙
new (

𝑅new

𝑅
)
𝑙
; 

        }//end for4    

21:     Rnew ← Solution[𝑡]#norm; Lastidx = 𝑡;  

22:     if(abort = true) return [𝑁new2, 𝑅new];  

23: }}//end if2//end for3  

24: for(𝑙 = 𝑑 − Cut + 1,… , 𝑑){//begin for5  

25: 
    𝑁new2+=

𝑁new1−lastidx

𝑁new1
𝐻𝑙
new (

𝑅new

𝑅
)
𝑙
; 

    /∗for last update of radius up to end∗/}//end for5   

𝐎𝐮𝐭𝐩𝐮𝐭: [𝑁new2, 𝑅new]./∗ 𝑁new2 is returned 

as the total enumeration cost and 𝑅new is returned 

as the sampled norm of enumeration solution∗/ 

Note: For better speedup in running-time of Algorithm 

2, “Insertion Sort” can be used instead of line 12, so that 
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the repeated indices can be checked and eliminated easily 

by “Insertion Sort”.   

Lemma 3. For an input lattice block ℒ[1,𝑑], bounding 

function ℛ and enumeration radius 𝑅, under Gaussian 

Heuristic and Heuristic 2, by assuming that each node at 

the same level of GNR-enumeration tree includes same 

number of child nodes, Algorithm 2 samples the norm of 

final solution, also it estimates the total nodes of GNR 

enumeration after being pruned by four proposed types 

of pruning and updating the enumeration radius after 

each success of finding solution.   

Proof. To prove this lemma, this is needed to show that 

the concept of four types of pruning (which are proposed 

at the beginning of third section) and also updating radius 

are considered collectively by Algorithm 2, in estimation 

of the total nodes of GNR-enumeration (also sampling the 

norm of final solution of GNR-enumeration);  

The function of GETCUT in line 1 from Algorithm 2 

returns the cut point of bounding function ℛ with 

enumeration radius 𝑅, for an input lattice block (i.e., the 

same operations as lines 11 to 16 from Algorithm 3 in 

[12]). The line 2 form Algorithm 2 works based on Remark 

1. Dynamic success frequency and number of final 

solutions in GNR-enumeration tree with no updating 

radius, are respectively defined in lines of 3 and 4 in 

Algorithm 2.  

Lines of 5 to 8 estimate the total nodes of GNR-

enumeration tree after four types of pruning (which are 

proposed at the beginning of third section) as follows: 

𝑁𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅) =

∑ E[Pr𝑢∽𝐵𝑎𝑙𝑙𝑙
𝑛𝑒𝑤3 (ℒ[1,𝑑], ℛ, 𝑅, 2 ≤ ℊ ≤ Cut)] × 𝐻𝑙

𝑑
𝑙=𝑑−Cut+1 ,                   

where 𝐻𝑙  is defined in (11).                     (49) 

To complete this proof, updating radius should be 

considered in revising our estimation of 𝑁new1 to be more 

exact. For this end, we should describe the assumption 

that each node at the same level of GNR-enumeration 

tree includes same number of child nodes. This is clear 

that GNR-enumeration is a pre-order tree search. The 

root of this tree which corresponds with 𝑏Cut
∗ , against the 

ordinary trees, has two nodes with coefficient of 𝑤Cut =

0 or 𝑤Cut = 1. This assumption is illustrated with a simple 

example as follows:  

Lets assume that for an input lattice block of ℒ[1,6] =

{𝑏1
∗, 𝑏2

∗, 𝑏3
∗, 𝑏4

∗, 𝑏5
∗, 𝑏6

∗} with block size of 𝑑 = 6, this 

enumeration tree has the depth of 5 (i.e., 𝐶𝑢𝑡 = 5). 

Also assume the following number of nodes at each 

level after four types of pruning (which is computed in 

line 7 from Algorithm 2): 𝐻𝑙=2
𝑛𝑒𝑤 = 2, 𝐻𝑙=3

𝑛𝑒𝑤 = 4, 

𝐻𝑙=4
𝑛𝑒𝑤 = 8, 𝐻𝑙=5

𝑛𝑒𝑤 = 5, 𝐻𝑙=6
𝑛𝑒𝑤 = 3; The total number of 

nodes in pre-order search (with no update of radius) is 

𝑁𝑛𝑒𝑤1 = ∑ 𝐻𝑙
𝑛𝑒𝑤𝑑

𝑙=𝑑−𝐶𝑢𝑡+1 = 22. Now by the 

assumption that each node at the same level of GNR-

enumeration tree includes same number of child 

nodes, each nodes in root (corresponding with 𝑙 = 2 

and GSO vector of 𝑏5
∗) has 

𝐻𝑙=3
𝑛𝑒𝑤

𝐻𝑙=2
𝑛𝑒𝑤 = 2 child nodes, each 

nodes in level 𝑙 = 3 has 
𝐻𝑙=4
𝑛𝑒𝑤

𝐻𝑙=3
𝑛𝑒𝑤 = 2 child nodes, each 

nodes in level 𝑙 = 4 has 
𝐻𝑙=5
𝑛𝑒𝑤

𝐻𝑙=4
𝑛𝑒𝑤 = 0.625 child nodes, 

each nodes in level 𝑙 = 5 has 
𝐻𝑙=5
𝑛𝑒𝑤

𝐻𝑙=6
𝑛𝑒𝑤 = 0.6 child nodes, 

and the nodes in level 𝑙 = 6 are leaf nodes;  

By this example, we introduce an outline of our main 

assumption in Lemma 3. In fact, we use this assumption 

to determine the approximate number of nodes at each 

level which should be visited between two specific nodes 

in pre-order search of GNR-enumeration tree. For this 

case, again the previous example can be used, and it is 

asked to determine the approximate number of nodes at 

each level which are visited after 5th node up to 14th node 

in pre-order search. There are 9 nodes which should be 

visited after node of 𝑖 = 5 to reach the node of 𝑗 = 14, so 

by using our main assumption, the number of nodes at 

each level 𝑙, which should be visited between these two 

specific nodes of 𝑖 and 𝑗, can be estimated by 
𝑗−𝑖

𝑁𝑛𝑒𝑤1
𝐻𝑙
new 

(e.g., for level 𝑙 = 4, this number of node is ≈ 3. 27̅̅̅̅ );  

Three states are considered for output of this 

algorithm:    

• If parameter of “abort” would be “true”, then 

Algorithm 2 (at line 22) returns the total nodes of 

enumeration as “Solution[1]#index”, and samples 

the solution norm as “Solution[1]#norm”:  

𝑁new2 =

∑
Solution[𝑡=1]#index−lastidx

𝑁new1
𝐻𝑙
new (

𝑅new

𝑅
)
𝑙

𝑑
𝑙=𝑑−Cut+1 =

Solution[𝑡 = 1]#index,     

where 𝑅new = 𝑅 and lastidx = 0.    

• Also, if expected number of final solutions would be 

𝐾 = 0, then lines of 17 to 23 are not performed, and 

lines of 24 and 25 are only performed and finally this 

algorithm returns the total nodes of enumeration as 

“𝑁new1” and samples the solution norm as “𝑅”;      

• After sampling the solution indices in pre-order search 

of GNR-enumeration in lines of 10 to 15 from 

Algorithm 2, by using our proposed idea, the number 

of enumeration nodes, after finding a solution and 

before finding next solution (lines 19 to 20 from 

Algorithm 2) or finishing the search of enumeration 

tree (lines 24 to 25 from Algorithm 2), are estimated. 

Also, by using the factor of (
𝑅new

𝑅
)
𝑙

 in lines 20 and 25 

from Algorithm 2, we apply the process of updating 

radius in estimation of total nodes of enumeration (in 

the way that it is discussed for our example in this 

proof). Moreover, this is clear that the final solution 

norm which is returned by GNR-enumeration is equal 
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to the last update of enumeration radius (as last 

setting of 𝑅new in Algorithm 2).           

D.  Revised Generation of Bounding Function 

To find better solution vector, it is reasonable to run 

enumeration function over bigger block sizes (i.e., cutting 

point of Cut < 𝑑 is not pleasant). Also, by forcing Cut =

𝑑, it is easier to generate of a bounding function with an 

intended success probability by relation (36) in Lemma 2. 

Moreover, by forcing Cut = 𝑑, some other functions, 

relations, propositions and formulations in BKZ-

simulation can be simplified too. Following lemma 

formally defines our technique to force Cut = 𝑑: 

Lemma 4. The bounding function ℛ with dimension 𝑑 

with our revised success probability defined by (36) can 

be generated as follows:  

ℛ𝑖+1
2 ← (1 −

‖𝑏𝑑
∗‖
2

𝑅2
)ℛ𝑖

′2 + 
‖𝑏𝑑
∗‖
2

𝑅2
,                     (50) 

where 1 ≤ 𝑖 ≤ 𝑑 − 1 and ℛ1
2 ←

‖𝑏𝑑
∗‖
2

𝑅2
 and 

𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅) ≈ 𝑝𝑠𝑢𝑐𝑐(ℛ

′) × 𝑝𝑠𝑢𝑐𝑐(1
𝑑 , 𝑅, ℒ𝑑) and 

bounding function ℛ′ with dimension 𝑑 − 1 and 

𝑝𝑠𝑢𝑐𝑐(ℛ
′) defined by (15). 

Proof. Assume that the bounding function of ℛ′ with 

dimension 𝑑 − 1 in this lemma is defined as follows: 

ℛ𝑖
′2 =

𝑅2ℛ𝑖+1
2 −‖𝑏𝑑

∗‖
2

𝑅2−‖𝑏𝑑
∗‖
2 ,          1 ≤ 𝑖 ≤ 𝑑 − 1. 

The corresponding success probability of ℛ′ is defined 

by (15), as follows: 

𝑝𝑠𝑢𝑐𝑐(ℛ
′) = Pr𝑢∽𝐵𝑎𝑙𝑙𝑑−1(∀ 𝑖 ∈ [1, 𝑑 − 1], ∑ 𝑢𝑙

2𝑖
𝑙=1 ≤ ℛ𝑖

′2) =              

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑−1 (∀ 𝑖 ∈ [1, 𝑑 − 1], ∑ 𝑢𝑙
2𝑖

𝑙=1 ≤
𝑅2ℛ𝑖+1

2 −‖𝑏𝑑
∗‖
2

𝑅2−‖𝑏𝑑
∗‖
2 ) =  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑−1 (∀ 𝑡 ∈ [2, 𝑑], ∑ 𝑢𝑙
2𝑡

𝑙=1 ≤
𝑅2ℛ𝑡

2−‖𝑏𝑑
∗‖
2

𝑅2−‖𝑏𝑑
∗‖
2 ) ⇒  

By using (41): 

𝑝𝑠𝑢𝑐𝑐(ℛ
′) = Pr𝑢∽𝐵𝑎𝑙𝑙𝑙=𝑑

𝑛𝑒𝑤2 (ℒ[1,𝑑], ℛ, 𝑅, ℊ = Cut) =

Pr𝑢∽𝐵𝑎𝑙𝑙𝒟=𝑙−𝑑+Cut−1 (∀𝑡 ∈ [𝑑 − Cut +

2, 𝑙], ∑ 𝑢𝑖
2𝑡

𝑖=𝑑−Cut+2 ≤
𝑅2ℛ𝑡

2−‖𝑏Cut
∗ ‖

2

𝑅2−‖𝑏Cut
∗ ‖

2 ).     

Because of ℛ1
2 =

‖𝑏𝑑
∗‖
2

𝑅2
 (see relation (50)), the cutting 

point is Cut = 𝑑, and summation of ∑ Prob(ℊ = 𝒿)Cut=𝑑
𝒿=1  

equals to 1. Also, since enumeration radius is not 

changed, and Gaussian Heuristic of ℒ[1,𝑑] is close to 

Gaussian Heuristic of ℒ[1,𝑑−1] (by relation (5)) as 

GH(ℒ[1,𝑑−1]) ≈ GH(ℒ[1,𝑑]), so the enumeration radius 

factor 𝑟FAC is not changed nearly for ℒ[1,𝑑−1] and ℒ[1,𝑑]. 

Accordingly, by using (34) and Remark 4:  

𝑝𝑠𝑢𝑐𝑐(ℛ
′) × 𝑝𝑠𝑢𝑐𝑐(1

𝑑, 𝑅, ℒ𝑑) = 𝑝𝑠𝑢𝑐𝑐
Approx1

(ℒ[1,𝑑], ℛ, 𝑅) ≈

𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅). 

This proof is completed.  

By using Lemma 4, Remark 5 generates the 

extreme/non-extreme bounding function with given 

dynamic success frequency 𝑓0 which is estimated by (47).   

Remark 5. The bounding function ℛ with dimension 𝑑 and 

given dynamic success frequency 𝑓0 estimated by (47), 

can be generated by proposed three steps in Fig. 1:  

 

 

Fig. 1: Steps of Generating bounding function ℛ with 
dimension 𝑑 and success frequency 𝑓0 estimated by (47). 

Results and Discussion 

In this section, our test results show the 

simulation/experimental outcomes of our contributions 

in this paper. The tests in this paper use the random 

instances of SVP lattice challenges in the sense of 

Goldstein and Mayer [17], [18]. Also, two libraries of fplll 

library [19] and NTL library [20] are used for these tests. 

All the implementations and simulations are compiled 

with MSVC x64 bit C++. These tests use the following 

hardware platform: ASUS motherboard series Z97-K, 

Intel® Core™ i7-4790K processor with the base frequency 

of 4 GHz, 16 GB RAM; also, the running times are provided 

only for a single real-core. 

A.  Our Estimations for Parameter of √𝛶 

As mentioned, former studies usually use the initial 

enumeration radius parameter of √Υ = 1.05, but 

Theorem 2 defines the optimal initial radius parameter 

√Υ (as optimal initial radius factor 𝑟FAC) and a bound for 

the norm of shortest vector of lattice blocks in average-

case. Our definition in Theorem 2 can be used dynamically 

to compute optimal enumeration radius in actual running 

of BKZ-algorithm (or BKZ-simulation). By using relation 

(34) in Lemma 1, the success prbability of full-

enumeration for block sizes of 50 ≤ 𝛽 ≤ 240 in different 

values of initial radius parameter √Υ (as initial radius 

factor of 𝑟FAC) is shown in Table 1 and Table 2.  

Note: The success probability of full-enumeration in 

former studies is set to 1.    

 

(a) Set the success probability as 𝑝0 = 𝑓0
2

𝑟FAC
𝑑;

(b) Generate bounding function ℛ′ with dimension 𝑑 − 1
and success probability 𝑝0

′ =
𝑝0

𝑝𝑠𝑢𝑐𝑐 1
𝑑,𝑅,ℒ𝑑

which is estimated 

by definition of (15) (using former techniques, such as 
Algorithm 5 from [1] or using our proposed generators of 

bounding functions in [24] or using well-defined families of 
bounding functions, including piecewise-linear pruning);

(c) Un-mapp ℛ′ to the requested bounding function ℛ by 
using (50) in Lemma 4.
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Table 1: Success probability of full-enumeration for 50 ≤ 𝛽 ≤ 90 in different values of 𝑟FAC

𝐫𝐚𝐝𝐅𝐚𝐜 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 

𝜷=50 0.00 0.01 0.01 0.02 0.04 0.06 0.10 0.17 0.26 0.39 0.56 0.74 0.89 0.97 1 

𝜷=60 0.00 0.00 0.01 0.01 0.02 0.04 0.08 0.14 0.24 0.39 0.60 0.81 0.95 0.99 1 

𝜷=70 0.00 0.00 0.00 0.01 0.01 0.03 0.06 0.11 0.22 0.39 0.63 0.86 0.98 1 1 

𝜷=80 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.09 0.20 0.39 0.67 0.91 1 1 1 

𝜷=90 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.18 0.39 0.71 0.95 1 1 1 
 

Table 2: Success probability of full-enumeration for 100 ≤ 𝛽 ≤ 240 in different values of 𝑟FAC 

𝐫𝐚𝐝𝐅𝐚𝐜 0.95 0.96 0.97 0.98 0.99 1 1.002 1.004 1.006 1.008 1.01 1.012 1.014 1.016 1.018 1.02 1.03 

𝜷=100 0.00 0.01 0.02 0.06 0.17 0.39 0.46 0.53 0.60 0.67 0.74 0.81 0.87 0.91 0.95 0.97 1 

𝜷=120 0.00 0.00 0.01 0.04 0.14 0.39 0.47 0.55 0.64 0.73 0.81 0.88 0.93 0.97 0.99 1 1 

𝜷=140 0.00 0.00 0.01 0.03 0.12 0.39 0.48 0.58 0.69 0.78 0.87 0.93 0.97 0.99 1 1 1 

𝜷=160 0.00 0.00 0.00 0.02 0.10 0.39 0.50 0.61 0.73 0.83 0.91 0.97 0.99 1 1 1 1 

𝜷=180 0.00 0.00 0.00 0.01 0.08 0.39 0.51 0.64 0.77 0.88 0.95 0.99 1 1 1 1 1 

𝜷=200 0.00 0.00 0.00 0.01 0.06 0.39 0.53 0.67 0.81 0.91 0.97 1 1 1 1 1 1 

𝜷=220 0.00 0.00 0.00 0.01 0.05 0.39 0.54 0.70 0.85 0.94 0.99 1 1 1 1 1 1 

𝜷=240 0.00 0.00 0.00 0.00 0.04 0.39 0.55 0.73 0.88 0.97 1 1 1 1 1 1 1 

 

Also for block sizes of 50 ≤ 𝛽 ≤ 240, our proposed 

bound of radius factor √Υ, which is defined by formula of 

(35), is shown in Table 3.    
 

Table 3: Our proposed lower-bound/upper-bound for initial 

radius factor √Υ for 50 ≤ 𝛽 ≤ 240 with assumption of 100 
middle random lattice blocks 

 

Block Size 𝐫𝐚𝐝𝐅𝐚𝐜𝐦𝐢𝐧 𝐫𝐚𝐝𝐅𝐚𝐜𝐨𝐩𝐭 

𝜷 = 𝟓𝟎 0.925 1.045 

𝜷 = 𝟔𝟎 0.937 1.038 

𝜷 = 𝟕𝟎 0.946 1.032 

𝜷 = 𝟖𝟎 0.952 1.028 

𝜷 = 𝟗𝟎 0.958 1.025 

𝜷 = 𝟏𝟎𝟎 0.962 1.022 

𝜷 = 𝟏𝟐𝟎 0.968 1.019 

𝜷 = 𝟏𝟒𝟎 0.972 1.016 

𝜷 = 𝟏𝟔𝟎 0.976 1.014 

𝜷 = 𝟏𝟖𝟎 0.979 1.012 

𝜷 = 𝟐𝟎𝟎 0.981 1.011 

𝜷 = 𝟐𝟐𝟎 0.982 1.01 

𝜷 = 𝟐𝟒𝟎 0.984 1.009 

By assuming the number of 100 middle random lattice 

blocks in BKZ running, Table 3 introduces the optimal 

initial radius parameter of 𝑟FACopt for this number of 

random lattice blocks in middle of BKZ with full-

enumeration success probability of popt =

𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) = 0.99. Also, Table 3 introduces the 

minimum radius parameter 𝑟FACmin for this number of 

random lattice blocks in middle of BKZ with full-

enumeration success probability of pmin =

𝑝𝑠𝑢𝑐𝑐(1
𝛽 , 𝑅, ℒ𝛽) = 0.01 (see our discussions in third 

section (Part A)). By these estimations, the values of 

𝑟FACopt in Table 3 can be used instead of initial radius 

parameter of √Υ = 1.05. 

B.  Test Results for Our Revision of Success Probability 

By definition of cutting point in [12], this is found that 

if this point (cutting point) would be less than the block 

size, then in some specific cases (e.g., the demanded 

success probability is extremely small or the input block is 

much reduced), former studies (such as [1], [13]) may 

generate bounding functions with some success 

probabilities which unintentionally becomes less than 

intended one! To show the importance of this case, a test 

is introduced to show that GNR-enumeration with 

extremely small success probability generated by [1], [13] 

over strong-reduced bases (nearly HKZ-reduced bases) 
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can be actually smaller than estimated one by relation 

(15). This test uses following studies for comparison: 

• The estimation of success probability by Chen-Nguyen 

[1] in (25),   

• The estimation of dynamic success frequency by Aono 

et al. [1], [3] in (26),  

• Monte-Carlo estimation of success probability [13] by 

condition of (20). 

This test uses following bounding functions: full-

enumeration, some bounding functions with no known 

families (for success probabilities of 0.25, 0.5, 0.6, 0.7, 0.8, 

0.9, 0.95 which are estimated by Monte-Carlo), linear-

pruning (with success probability of 0.01) and five 

piecewise-linear bounding function with parameters of 

“a = 0.4”, “a = 0.3”, “a = 0.2”, “a = 0.1”, “a = 0.05”. 

The entries of these bounding function plotted on Fig. 2; 

The success probability of these bounding functions is 

defined by (15) which uses Monte-Carlo estimation.  

 

 

Fig. 2: Some bounding functions with different success 
probabilities. 

The quality of randomization, LLL-reduction, and 

nearly HKZ-reduction for 20 random lattice bases in the 

sense of Goldstein and Mayer [17], [18] in dimension of 

𝑛 = 60 is illustrated in Fig. 3; In this test, for 

randomization of lattice blocks, the re-randomization 

strategy of fplll library [19] is used, which works by 

permuting basis vectors and the triangular 

transformation matrix with coefficients of {−1,0,1}, also 

for LLL reduction the parameter of 𝛿 = 0.99 is set, finally 

for nearly HKZ reduction, this paper uses BKZ𝛽=60 from 

NTL library [20].  

The quality of these three types of reduction are 

shown by GSO norms of ‖𝑏𝑖
∗‖2 which are plotted in log2 

form in Fig. 3.  

 

Fig. 3: Quality of randomized/LLL-reduced/nearly HKZ-reduced 
basis with dimension 60. 

For determining the cutting point in Fig. 4, the entries 

of bounding function (i.e., ℛ𝑖
2 for 1 ≤ 𝑖 ≤ 60) are scaled 

by multiplying with squared value of enumeration radius 

(i.e., in the form of 𝑅2ℛ𝑖
2). The initial radius parameter in 

this test is set to Υ = 1.13, so the squared value of 

enumeration radius would be 𝑅2 = 1.13 × GH2(ℒ[1,60]). 

This is worthy of noting that the indices of entries in 

bounding function ℛ𝑖
2 correspond with the inverse of 

indices in squared GSO norm of ‖𝑏𝑖
∗‖2 (i.e., in Fig. 4, the 

value of 𝑅2ℛ𝛽−𝑖+1 corresponds with ‖𝑏𝑖
∗‖2). The values 

of squared GSO norm of ‖𝑏𝑖
∗‖2 and values of 𝑅2ℛ𝛽−𝑖+1 in 

Fig. 4 are plotted in form of log2 (the parameter of 

“GH^2” in Fig. 4 represents the squared value of the 

shortest vector norm estimation in (5) by Gaussian 

Heuristic).  

 

 

 
 

Fig. 4: Different qualities of basis and different bounding 
functions with scaled entries of 𝑅2 × ℛ𝛽−𝑖+1 in dimension 60 

to find the cutting point. 
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Fig. 4 shows that the BKZ60-reduced bases are nearly 

cut with linear pruning at index of Cut =58, cut with 

piecewise-linear with parameter a = 0.4 at index of 

Cut =57, cut with piecewise-linear by parameter of a =

0.3 at index of Cut =54, cut with piecewise-linear by 

parameter of a = 0.2 at index of Cut =26, cut with 

piecewise-linear by parameter of a = 0.1 at index of 

Cut =20, and cut with piecewise-linear by parameter of 

a = 0.05 at index of Cut =17; Other bounding functions 

in Fig. 4 have cutting point of Cut =60 for GSO norms of 

three types of reduced basis. In Table 4, our test results 

show the comparison of our revised estimation of success 

probability in (36) and our revised estimation of dynamic 

success frequency in (47) with some former estimations 

including: success probability by Chen-Nguyen technique 

[1] (see relation (25)), dynamic success frequency by Aono 

et al. [3] (see relation (26)), and static success probability 

by Monte-Carlo estimator with condition of (20) [13]. By 

using the initial radius parameter of Υ = 1.13, the count 

of solutions in full-enumeration tree would be estimated 

as ≈
𝑟FAC
𝛽

2
≈
(√Υ)

𝛽

2
≈
(√1.13)

60

2
≈ 19.6;  

 

 

 

Table 4: Comparison of our revised estimation of success probability and dynamic success frequency with former estimations in [1], 
[3], [13] over nearly HKZ-reduced bases in dimension 60 

 

 Cut 
Point 

𝒑𝒔𝒖𝒄𝒄 by 
Monte Carlo 
[13] 

𝒑𝒔𝒖𝒄𝒄 by Chen-
Nguyen [1] 

𝒇𝒔𝒖𝒄𝒄 by 
Aono et al. 
[3] 

𝒑𝒔𝒖𝒄𝒄 by our 
estimator of (36) 

𝒇𝒔𝒖𝒄𝒄 by our 
estimator of (47) 

PieceWise[a=0.05] 17 - 2−44.6 2−40.3 0 0 

PieceWise[a=0.1] 20 - 2−30.5 2−26.2 0 0 

PieceWise[a=0.2] 26 2−19.8 2−17.4 2−13.1 0 0 

PieceWise[a=0.3] 54 2−12.9 2−10.7 0.012 2−19.8 2−16 

PieceWise[a=0.4] 57 0.0024 0.01 0.195 2−11.8 0.005 

Linear-pruning 58 0.01 0.036 0.7 0.003 0.046 

BF[𝒑𝒔𝒖𝒄𝒄=0.25] 60 0.25 0.48 9.4 0.4 7.8 

BF[𝒑𝒔𝒖𝒄𝒄=0.5] 60 0.5 0.82 16 0.77 15.1 

BF[𝒑𝒔𝒖𝒄𝒄=0.6] 60 0.6 0.9 17.6 0.87 17 

BF[𝒑𝒔𝒖𝒄𝒄=0.7] 60 0.7 0.95 18.6 0.93 18.3 

BF[𝒑𝒔𝒖𝒄𝒄=0.8] 60 0.8 0.98 19.1 0.96 18.9 

BF[𝒑𝒔𝒖𝒄𝒄=0.9] 60 0.9 0.993 19.4 0.98 19.2 

BF[𝒑𝒔𝒖𝒄𝒄=0.95] 60 0.95 0.995 19.5 0.99 19.3 

Full-Enum. 60 1 1 19.6 1 19.6 

However, using 𝑟FAC ≤ 1 is not a common practice, but 

in final rounds of BKZ-reduction with high block sizes, this 

may be observed! Therefore by using the concepts of full-

enumeration success probability in third section (Part A), 

if the enumeration radius factor in this test reaches to 

𝑟FAC ≈ 0.98, this is expected that all the numerical results 

in column of “𝑝𝑠𝑢𝑐𝑐  by our estimator of (36)” and “𝑓𝑠𝑢𝑐𝑐  by 

our estimator of (47)” are decreased by factor of 0.01 (see 

Table 1 and Table 2 in fourth section (Part A)). As shown 

in Table 4, when the input basis (or lattice block) is 

strongly reduced (near to HKZ-reduced) and the success 

probability of bounding function is extremely small (near 

to extreme pruning), the actual value of success 

probability and dynamic success frequency can be 

decreased asymptotically. This test focuses on moderate 

block sizes (𝛽 = 60), while for bigger block sizes, this 

problem is relaxed automatically! As the block sizes are 

increased, even for extreme-pruned bounding functions 

over HKZ-reduced lattice blocks, the cutting point stays 

around the size of 𝛽, so this special case (which makes the 
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value of success probability dropped asymptotically) 

cannot be observed for high block size! However for some 

special setting, this can be seen even for high block sizes 

yet; For example, Fig. 5 shows the average shape of 7 HKZ-

reduced bases with dimension 200 and different 

piecewise-linear bounding functions. As shown in Fig. 5, 

the cutting points of all the bounding functions nearly are 

equal to 200, but piecewise-linear bounding function by 

parameter of “a=0.01”, with extreme pruning and 

estimated success probability ≈ 2−246 by relation (25), 

has the cutting point of Cut = 84, and consequently the 

estimated success probability and dynamic success 

frequency of it would be zero by our formulas in (36) and 

(47)! 
 

 

Fig. 5: Different shapes of quality of basis and different 
bounding functions with scaled entries of 𝑅2ℛ𝛽−𝑖+1 in 

dimension 200 to find the cutting point. 

C.  Test Results for Our Revision of Enumeration Cost 

In this section, the exactness of our revised estimation 

of GNR-enumeration cost by Algorithm 2 is compared 

with Chen-Nguyen estimation of GNR-enumeration cost 

in Algorithm 8 of Appendix A from [1] (see relation (23) 

and (19)). For actual implementation of GNR-pruned 

enumeration function, the pseudo-code in Appendix B 

from [13] is used, but after each success of the 

enumeration function, the enumeration is not aborted, 

rather, the best solution and enumeration radius are 

updated (similar to the pseudo-code in Appendix B from 

[1]). The cost of experimental running of GNR-

enumeration is determined by using a counter in actual 

enumeration function which counts the number of 

enumeration tree nodes. This test uses piecewise-linear 

bounding function with different success probabilities. 

The bounding functions which are used in this test, use 

mapping technique (see Lemma 4 and Remark 5 in third 

section (Part D)). The initial enumeration radius factor in 

this test is set to Υ = 𝑟FAC = 1.2; Table 5 shows our 

numerical results for this comparison. In Table 5, 

parameter of “𝑓𝑠𝑢𝑐𝑐” represents the Dynamic Success 

Frequency and parameter of “𝑝𝑠𝑢𝑐𝑐” represents the 

success probability. This test uses some random lattice 

basis of dimension 70 in the sense of Goldstein and Mayer 

[17], [18].   

Note: Although floating point arithmetic is known to 

cause some stability problems during LLL reduction, 

based on the experiences in [13], such problems during 

enumeration (even up to the dimension of 110) are not 

seen.  

Table 5: Comparison of our revised estimation of GNR-enumeration cost (in Algorithm 2) with the cost estimation proposed by [1] 
and the cost computed in experimental running of enumeration 
  

        Enum. Cost by compared cases 

  

Success Frequency                              .    

& Success Probability  

Enumeration cost by 

experimental running 

Enumeration cost by our 

estimator in Algorithm 2  

Enumeration cost by Chen-

Nguyen in [1] 

𝒇𝒔𝒖𝒄𝒄=0.01        &   𝒑𝒔𝒖𝒄𝒄=𝟐
−𝟐𝟒 29.5 28.4 212.2 

𝒇𝒔𝒖𝒄𝒄 =0.1         &   𝒑𝒔𝒖𝒄𝒄=𝟐
−𝟐𝟏 210.2 211.35 214.21 

𝒇𝒔𝒖𝒄𝒄=1              &   𝒑𝒔𝒖𝒄𝒄=𝟐
−𝟏𝟕 211 213.5 216.82 

𝒇𝒔𝒖𝒄𝒄=𝟏𝟎
𝟏         &   𝒑𝒔𝒖𝒄𝒄=𝟐

−𝟏𝟒 212.4 215.7 220.04 

𝒇𝒔𝒖𝒄𝒄=𝟏𝟎
𝟐         &   𝒑𝒔𝒖𝒄𝒄=𝟐

−𝟏𝟏 214.6 218.68 223.9 

𝒇𝒔𝒖𝒄𝒄=𝟏𝟎
𝟑         &   𝒑𝒔𝒖𝒄𝒄=𝟐

−𝟕 218 221.28 228.52 

𝒇𝒔𝒖𝒄𝒄=𝟏𝟎
𝟒         &   𝒑𝒔𝒖𝒄𝒄=0.06 223.3 223.78 234.63 

𝒇𝒔𝒖𝒄𝒄=𝟏𝟎
𝟓         &   𝒑𝒔𝒖𝒄𝒄=0.57 236.47 234.45 247.81 

𝒇𝒔𝒖𝒄𝒄=130964   &   𝒑𝒔𝒖𝒄𝒄=0.75 239.67 237.12 250.2 
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As shown in Table 5, this is clear that, the cost results 

by our proposed estimator of GNR-enumeration cost in 

Algorithm 2 are closer to the cost determined in 

experimental running of enumeration, than the closeness 

of enumeration cost by Chen-Nguyen estimator (in 

Algorithm 8 from Appendix A in [1]) to this experimental 

running cost. 

Conclusions 

BKZ algorithm has a determinative role in security 

analysis of lattice-based cryptographic primitives, 

therefore the total cost of BKZ and quality of output basis 

should be computed exactly to be used in parameter 

selection of these primitives. Although the exact manner 

of BKZ algorithm with small block sizes can be studied by 

practical running of BKZ, this manner for higher block 

sizes (e.g., 𝛽 ≥ 100) should be simulated. Designing a 

BKZ-simulation with GNR-pruned enumeration needs to 

some necessary building-blocks which includes definition 

of enumeration radius, generation of bounding function, 

estimation of success probability, LLL simulation, 

estimation of GNR enumeration cost, sampling method 

for enumeration solution, simulation of updating GSO. 

This paper tries to introduce some exact definition of 

optimal enumeration radius, generation of bounding 

function, estimation of success probability and GNR 

enumeration cost. Our contributions and results in this 

paper are described as follows:     

• Formal definition of optimal enumeration radius. By 

definition of full-enumeration success probability in 

this paper, the optimal value for radius parameter √Υ 

(as initial radius factor 𝑟FAC) and corresponding bound 

for solution norm of full-enumeration are defined 

exactly in Theorem 2 in average case (see our 

estimations in fourth section (Part A)). This definition 

can be used dynamically to compute optimal 

enumeration radius in BKZ simulation and even actual 

running of BKZ algorithm. In other sides, former 

studies on BKZ-simulation don’t use optimal version of 

the radius parameter of 𝑟FAC. Paper [1] uses as an 

invariant factor just based on some limited 

experimental observations (see Figure 3 in [1]), paper 

[3] uses non-exact assumption of GSA to determine 

𝑟FAC dynamically for each block size (see relation (9) in 

[3]), and paper [2] uses no new idea to make the 

exactness of radius factor better (to the best of our 

knowledge). 

Test Results. Against the success probability of full-

enumeration in former studies which is set to 1, our 

exact estimation of success probability in full-

enumeration, for some practical range of block sizes 

of 50 ≤ 𝛽 ≤ 240, is shown in this paper for different 

values of 𝑟FAC based on our proposed theorem 

(Theorem 2). Also for block sizes of 50 ≤ 𝛽 ≤ 240, 

our better bound of radius factors of √Υ defined by 

Theorem 2, is introduced in this paper.  

• Revised estimation of success probability for GNR 

bounding function. The former studies [1]-[3] use the 

efficient idea by [1] to estimate the success probability 

of GNR-enumerations (see formulas (15), (23) and 

(24)); In fact, the estimation by [1] only considers the 

pruning type by condition of (20) for cylinder-

intersection of bounding function; This paper 

proposes to consider three more types of pruning in 

estimation of success probability (see our discussions 

at the beginning of third section); All of these four 

types of pruning are applied collectively in our 

estimation of success probability in relation (36); Our 

results in fourth section (Part B) shows non-negligible 

gap of our exact estimation of (36) from former 

estimations in some cases. 

Test Results. Our revised estimation of success probability 

(for GNR bounding function) in our test results on 

(nearly) HKZ-reduced bases in dimension 60, shows 

non-negligible gap from former estimations by some 

main former studies of [1], [3], [13]. Also to have 

better sense, this paper shows the shape of bounding 

functions with different success probabilities and the 

shapes of quality of randomized/LLL-reduced/nearly-

HKZ-reduced bases with dimension 60 (also 200) and 

the corresponding cutting points.  

• Revised cost estimation of GNR-enumeration. The 

former studies [1]-[3] use the efficient idea by [1] to 

estimate the cost of GNR-enumerations (see formulas 

(19), (23) and (24)); Similar to success probability, the 

cost estimations in [1] only consider the pruning type 

by condition of (20); Our paper considers all of four 

proposed types of pruning in estimation of GNR-

enumeration cost along with the process of updating 

enumeration radius in Algorithm 2; Our results in 

fourth section (Part C) shows the exactness of the 

estimation by Algorithm 2 against the former studies. 

Test Results. Our results show that the cost results by our 

proposed estimator of GNR-enumeration cost in 

Algorithm 2 are closer to the cost determined in 

experimental running of enumeration, than the 

difference of enumeration cost results by Chen-

Nguyen estimator in Algorithm 8 from Appendix A in 

[1] against the experimental cost results.  

• A novel technique in generation of bounding 

function. By using Lemma 4, this is possible to 

generate a bounding function including cutting point 

of Cut = 𝑑 (see Remark 5); In former studies [1]-[3], if 

the simulation tries to generate bounding functions 

with much small success probability, this is possible 

that the success probability of this bounding functions 

unintentionally becomes much less than intended one 



Revised Estimations for Cost and Success Probability of GNR-Enumeration 

J. Electr. Comput. Eng. Innovations, 11(2): 459-480, 2023                                                                         477 
 

or even zero (because of ignoring the cutting points 

which are less than the block size, i.e., Cut < 𝑑; see 

our results and discussions in fourth section (Part B)).           

This is worthy of noting that if we use another SVP-

solver instead of GNR-enumeration (e.g., sieving 

algorithm in [22], enumeration by integrating sparse 

orthogonalized integer representations in [23], etc.), 

none of our contributions can be used in BKZ algorithm or 

BKZ-simulation! 

Future Works. Three of our proposed components in this 

paper (include optimal enumeration radius, generation of 

bounding function and estimation of success probability) 

can be used in actual running of BKZ-algorithm, such as 

our technique of “BKZ with Progressive Success 

Probabilities”[21], [25] which massively generates 

bounding functions with different success probabilities, 

and consequently introduce new lattice-reduction 

security estimates to fix the problem of non-exactness in 

bit-security estimations of current cryptography schemes 

(e.g., [26]-[28]), so this is worthy of re-estimating their bit-

securities by our revised components. Also Algorithm 2 in 

this paper samples the norm of final solution which can 

be used in our revised method for sampling coefficient 

vector of GNR-enumeration solution in [29]. Moreover, 

the authors suggest the formal verification and proof of 

Algorithm 2 corresponding with each claims in Lemma 3, 

by some theorem provers such as Isabelle/HOL (see our 

similar works in [30]). At the end, nearly all components 

and concepts introduced in this paper can be used in 

design of new BKZ-simulation with better exactness, and 

consequently it is expected to use this new BKZ-

simulation in introducing new lattice-reduction security 

estimates (as bit-security level by reduction). 
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Abbreviations  

ℒ(𝑏1…𝑏𝑛) A lattice by basis vectors of 𝑏1…𝑏𝑛  

ℒ(𝐵) A lattice by basis matrix of 𝐵  

ℒ[𝑗,𝑘]  A lattice by GSO-projected basis 

vectors of 𝜋𝑗(𝑏𝑗)…𝜋𝑗(𝑏𝑘) 

det 𝐵 Determinant of basis matrix of 𝐵 

𝜆1(ℒ) First Successive-Minima of lattice ℒ 

‖𝑣‖ Euclidean norm of lattice vector 𝑣  

SVP Shortest Vector Problem 

LLL Lenstra-Lenstra-LovÃasz algorithm 

BKZ Block Korkin-Zolotarev algorithm 

𝛽  Input parameter of Lattice block size 

𝑑  Lattice block size in running BKZ 

which is varied from 𝛽 to 2  

BKZ60  BKZ algorithm with block size 𝛽 = 60 

HKZ Hermite-Korkine-Zolotarev 

algorithm 

GSA Geometric Series Assumption 

Enum Enumeration 

Vol(ℒ(𝐵)) Volume of lattice ℒ(𝐵) 

𝐵𝑎𝑙𝑙𝑛(𝑅) 𝑛-dimensional sphere with radius 𝑅 

Vol(𝐵𝑎𝑙𝑙𝑛(𝑅))  Volume of 𝐵𝑎𝑙𝑙𝑛(𝑅)  

𝑉𝑛(𝑅) Volume of 𝐵𝑎𝑙𝑙𝑛(𝑅) 

Γ(𝑥) Gamma function with parameter 𝑥 

GH(ℒ) The estimation of value of 𝜆1(ℒ) by 

Gaussian Heuristic of lattice ℒ 

GSO Gram-Schmidt Orthogonal 

𝐵[1,𝑑]
∗  GSO basis of lattice ℒ[1,𝑑] as 

[𝑏1
∗, 𝑏2

∗, … , 𝑏𝑑
∗ ] 

GSO norms 𝐵[1,𝑑]
∗   The norms of ‖𝑏1

∗‖, … , ‖𝑏𝑑
∗‖  

𝜋𝑖(𝑏𝑖) 𝑖-th vector of GSO basis of 𝐵∗ 

𝑏𝑖
∗ Another notation for 𝜋𝑖(𝑏𝑖) 

𝜇𝑖,𝑗  GSO coefficient of 𝑖, 𝑗 as 𝜇𝑖,𝑗 =
𝑏𝑖𝑏𝑗

∗

‖𝑏𝑗
∗‖
2 

Gamma(𝑥; 𝑘, 𝜃) Gamma distribution function 

Expo(𝑥; ℷ) Exponential distribution function 
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1𝑥  A vector with length of 𝑥 whose all 

entries are 1 

GNR Gamma-Nguyen-Regev (pruning) 

𝜋𝑗(𝑏𝑗 , … , 𝑏𝑘)  The projected form of the lattice 

block of [𝑏𝑗 , … , 𝑏𝑘] whose vectors 

are projected on the vectors of 

(𝑏1, … , 𝑏𝑗−1) 

ℒ(𝑏𝑗 , … , 𝑏𝑘)  Another notation for 𝜋𝑗(𝑏𝑗 , … , 𝑏𝑘) 

𝑁  Number of total nodes of full-

enumeration tree 

𝑁΄  Total number of nodes in GNR 

pruned enumeration tree  

𝐻𝑙   Gaussian Heuristic prediction of 

number of nodes at level 𝑙 in full-

enumeration tree 

𝐻𝑙
′  Gaussian Heuristic prediction of 

number of nodes at the level 𝑙 in GNR 

pruned enumeration tree 

𝑅  Radius of n-dimensional ball in 

enumeration tree 

𝐶𝑅1…𝑅𝑙   𝑙-dimensional cylinder-intersection 

with radii of [𝑅1, … , 𝑅𝑙] 

ℛ  Vector of ℛ = [ℛ1, ℛ2, … , ℛ𝛽] as the 

bounding function 

𝑝𝑠𝑢𝑐𝑐(ℛ) Success probability of bounding 

function ℛ  

𝜸𝒏 Hermite’s constant 

𝐏𝐫𝒖∽𝑩𝒂𝒍𝒍𝒅  Probability of visiting GSO partial 

solution candidates in level 𝑙 from 

GNR enumeration tree by assuming 

vector 𝑢 is chosen uniformly 

distributed from 𝑑-dimensional ball 

of the radius 1  

𝐏𝐫𝒖∽𝑩𝒂𝒍𝒍𝒍
𝒏𝒆𝒘𝟏   Our revised version of  

Pr𝑢∽𝐵𝑎𝑙𝑙𝑑  including cut point of Cut  

𝐏𝐫𝒖∽𝑩𝒂𝒍𝒍𝒍
𝒏𝒆𝒘𝟐    A minor revision of Pr𝑢∽𝐵𝑎𝑙𝑙𝑙

𝑛𝑒𝑤1  

𝐏𝐫𝒖∽𝑩𝒂𝒍𝒍𝒍
𝒏𝒆𝒘𝟑   Our revised version of Pr𝑢∽𝐵𝑎𝑙𝑙𝑙

𝑛𝑒𝑤2  with 

any last non-zero index of ℊ = 𝒿  

𝒑𝒔𝒖𝒄𝒄
𝐀𝐩𝐩𝐫𝐨𝐱𝟏

(𝓛[𝟏,𝒅], 𝓡, 𝑹) Our approximation of success 

probability 𝑝𝑠𝑢𝑐𝑐
𝑛𝑒𝑤1(ℒ[1,𝑑], ℛ, 𝑅) 

𝒓𝐅𝐀𝐂  Radius parameter, defined as 
𝑅

𝐺𝐻(ℒ)
    

𝐕𝐨𝐥(𝑪𝑹𝟏,…,𝑹𝒍)  Volume of cylinder-intersection of 

𝐶𝑅1,…,𝑅𝑙  

𝑽𝑹𝟏,…,𝑹𝒍   Another notation for Vol(𝐶𝑅1,…,𝑅𝑙)  

𝓟𝓵(𝒕𝟏, … , 𝒕𝓵)  A polytope with radii of 𝑡1, … , 𝑡ℓ  

𝐕𝐨𝐥𝓟𝓵(𝒕𝟏, … , 𝒕𝓵)  Volume of polytope 𝒫ℓ(𝑡1, … , 𝑡ℓ)  

𝒑𝒔𝒖𝒄𝒄
𝒏𝒆𝒘𝟎(𝓛[𝟏,𝒅], 𝓡, 𝑹) Original version of success 

probability (the equivalent notation 

for 𝑝𝑠𝑢𝑐𝑐(ℛ))  

𝒑𝒔𝒖𝒄𝒄
𝒏𝒆𝒘𝟏(𝓛[𝟏,𝒅], 𝓡, 𝑹)  Our version of success probability   

𝒇𝒔𝒖𝒄𝒄(𝓛[𝟏,𝒅], 𝓡, 𝑹) Original dynamic success frequency 

𝒇𝒔𝒖𝒄𝒄
𝒏𝒆𝒘𝟎(𝓛[𝟏,𝒅], 𝓡, 𝑹) The equivalent notation for 𝑓𝑠𝑢𝑐𝑐   

𝒇𝒔𝒖𝒄𝒄
𝒏𝒆𝒘𝟏(𝓛[𝟏,𝒅], 𝓡, 𝑹)  Our revised version of dynamic 

success frequency  

𝑪𝑹𝒐𝒈𝒆𝒓  An abstract parameter (not a real 

parameter) in 𝑓𝑠𝑢𝑐𝑐
𝑛𝑒𝑤, and is set to 1 

√𝚼  Initial radius parameter 

𝐩𝐦𝐢𝐧  Success probability of full-enum. 

corresponding with 𝑟FACmin 

𝐩𝐨𝐩𝐭  Success probability of full-enum. 

corresponding with 𝑟FACopt  

𝒓𝐅𝐀𝐂𝐦𝐢𝐧  Minimum hopeful radius parameter 

𝒓𝐅𝐀𝐂𝐨𝐩𝐭  Optimal radius parameter  

𝑹𝐨𝐩𝐭  Optimal enumeration radius 

𝐇𝐝𝐨𝐰𝐧  Maximum index in head concavity 

𝐓𝐮𝐩  Minimum index in tail convexity 

𝐫𝐚𝐧𝐝𝐈𝐍𝐓[𝒙…𝒚]  Return a uniformly random integer 

number between 𝑥 to 𝑦 

𝐫𝐚𝐧𝐝[𝒙…𝐲]  Return a uniformly random real 

number between 𝑥 to 𝑦 

𝓰  Last non-zero coefficient index in 

coefficient vector 𝑤 (see [12]) 

𝒘  A Coefficient Vector defined for GNR 

enumeration solution [12] 

𝐂𝐮𝐭  GNR enum cut point index (see [12])  

𝐏𝐫𝐨𝐛(𝓰 = 𝓳)  Probability distribution of ℊ for 

solution vectors of 𝑣 (see [12]) 

𝐄[𝐗]  Expected value of X 
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𝑲  Sampled number of solutions in 

GNR-enumeration function 

𝑵𝒏𝒆𝒘𝟏(𝓛[𝟏,𝒅], 𝓡, 𝑹) Total nodes of GNR-enumeration 

tree after four types of pruning 

𝑯𝒍
𝐧𝐞𝐰  Gaussian Heuristic prediction of 

nodes count at level 𝑙 of GNR 

enumeration tree (line 7 in 

Algorithm 2). 

𝑵𝒏𝒆𝒘𝟐(𝓛[𝟏,𝒅], 𝓡, 𝑹) Total nodes of GNR-enumeration 

tree after four types of pruning and 

aborting after finding first solution  

𝐚  The parameter of piecewise-linear 

bounding function  
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