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 Background and Objectives: Subsampling methods allow sampling signals at 
rates much lower than Nyquist rate by using low-cost and low-power analog-
to-digital converters (ADC). These methods are important for systems such 
as sensor networks that the cost and power consumption of sensors are the 
core issue in them. The Chinese remainder theorem (CRT) reconstructs a 
large integer (input frequency) from its multiple remainders (aliased or 
under-sampled frequencies), which are produced from under-sampling or 
integer division by several smaller positive integers. Sampling frequencies can 
be reduced by approaches based on CRT. 
Methods: The largest dynamic range of a generalized Chinese remainder 
theorem for two integers (input frequencies) has already been introduced in 
previous works. This is equivalent to determine the largest possible range of 
the frequencies for a sinusoidal waveform with two frequencies which the 
frequencies of the signal can be reconstructed uniquely by very low sampling 
frequencies. In this study, the largest dynamic range of CRT for any number 
of integers (any number of frequencies in a sinusoidal waveform) is proposed. 
It is also shown that the previous largest dynamic range for two frequencies 
in a waveform is a special case of our proposed procedure.  
Results: A procedure for multiple frequencies detection from reminders 
(under-sampled frequencies) is proposed and maximum tolerable noises of 
under-sampled frequencies for unique detection is obtained. The numerical 
examples show that the proposed approach, in some cases, can gain 11.5 
times higher dynamic range than the conventional methods for a multi-
sensor under-sampling system. 
Conclusion: Other studies introduced the largest dynamic range for the 
unique reconstruction of two frequencies by CRT. In this study, the largest 
dynamic ranges for any number of frequencies are investigated. Moreover, 
tolerable noise is also considered.  
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Introduction 

The Chinese Remainder Theorem (CRT) is a well-known 

research topic, which reconstructs a large positive integer 

from its remainders [1]-[3]. Nowadays, CRT is widely used 

in different applications including signal processing, image 

processing, etc. In our previous works, the high range of 

frequency is estimated by sensors with a very low 

sampling rate [1], [2]. In [4], the CRT algorithm is used to 

achieve range estimation of multiple targets in a pulse 

Doppler radar when the measured ranges are overlapped 

with noise error. An approach based on CRT is introduced 
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in [5] to estimate frequencies when a signal is under 

sampled by multiple under-sampling frequencies.  

In [6], the statistical model of CRT-based multiple 

parameter estimation is investigated, and two approaches 

are introduced to address the problems of ambiguity 

resolution in parameter estimation.  

A method based on CRT is introduced in [7] to estimate 

the direction of arrival (DOA) of the signal. This algorithm 

has less complexity with similar precision in comparison 

with other algorithms for DOA estimation.  

In [8], CRT and non-orthogonal multiple access (NOMA) 

techniques are introduced for unmanned aerial vehicle 

(UAV) relay networks to improve communication 

between transmitter and receiver.  

A combination of CRT with Haar Wavelet Transform 

was proposed as a watermarking technique in [9] to hide 

information.  

The Haar Wavelet Transform has been used for 

imperceptibility, and CRT provides the security of the 

watermarked image. A reversible sketch data structure 

based on CRT was proposed in [10] to compress and fuse 

big data network traffic. In [11], a novel CRT-based 

conditional privacy was introduced to keep an 

authentication scheme for securing vehicular 

authentication.  

In this work, the CRT can help the trusted authorities to 

generate and broadcast group keys to the network 

vehicles.  

In [12], the authors proposed a multiple secret image-

sharing scheme by CRT and Boolean exclusive-OR 

operation.  

A robust and secure data-hiding method in the 

Tchebichef domain is presented based on CRT [13]. The 

efficiency of the algorithm was confirmed by 

implementing the algorithm over different images.  

Power efficiency is one of the critical design factors in 

wireless sensor network systems. In such systems, it is 

possible to digitalize received analog signal by sensors 

with very low frequencies and use CRT for manipulation 

and reconstruction of the frequencies of the main signal. 

In [14] a low-frequency power efficient digital signal 

processing architecture for mathematic operations based 

on CRT was designed and implemented.  

A packet forwarding scheme based on CRT was 

developed for wireless sensor networks in [15]. The 

advantages of this scheme are energy efficiency, low 

computational complexity and high reliability.  

In [16], an approach based on the frequency domain 

sparse common support and CRT was developed for 

frequency determination of multiple sinusoidal signals 

when the sampling rate even less than Nyquist rate. 

Authors in [17] proposed an approach to reconstruct the 

multiple frequencies of a sinusoidal waveform from 

aliased frequencies by the CRT approach. 

In all these researches the dynamic range for 

unambiguously reconstruction integers (e.g. frequencies), 

which are divided by a set of modules (e.g. sampling 

frequencies) from their remainders (e.g. aliased 

frequencies) is important.  

The higher dynamic range for a set of modules means 

the possibility to reconstruct the larger range of integers 

un-ambiguously by remainder of integers from those 

modules. Thus, any improvement in the dynamic range 

will lead to more efficient schemes in many applications 

[3].  

The dynamic range for the unique determination of an 

integer (frequency) 𝑁1 with modules (sampling 

frequencies) 𝛤 = {𝑚1, 𝑚2, . . . , 𝑚𝛾} is the least common 

multiple (lcm) of modules i.e., 𝑑 = 𝑙𝑐𝑚(𝑚1, 𝑚2, . . . , 𝑚𝛾) 

[5], [18]. A dynamic range for the unique determination of 

two integers (frequencies) 𝑁1 and 𝑁2 can be obtained as 

𝑑 = 𝑚𝑖𝑛
𝐼1,𝐼2

{𝑚𝑎𝑥{ 𝐼1, 𝐼2}} where 𝐼1 ∪ 𝐼2 = 𝛤 [19]. The first 

generic dynamic range for reconstruction of multiple 

integers (more than two integers (frequencies)) from their 

modules was introduced in [20].  

A sharpened dynamic range for 𝜌 integers (𝜌 = 1,2, . ..) 

was presented as 𝑑 = 𝑚𝑖𝑛
𝐼1,...,𝐼𝜌

{𝑚𝑎𝑥{ 𝐼1, . . . , 𝐼𝜌}} where 

∪

𝑖=1
𝜌

𝐼𝑖 = 𝛤 in [19]. Dynamic ranges for multiple integers 

when there are conditions over integers are presented in 

in [21], [22].  

The largest dynamic range for two integers is obtained 

as 𝑑 = 𝑚𝑖𝑛
𝐼1,𝐼2

{𝐼1 + 𝐼2} where 𝐼1 ∪ 𝐼2 = 𝛤 in [23] and the 

maximum tolerable error for two integers was discussed 

in [24] and it is applied in  [25] for the direction of arrival 

(DOA) of two sources and in [26], [27] was used for secret 

image sharing by the modular operation. 

Most of the previous studies discussed the un-

ambiguous dynamic range for two integers (frequencies) 

or assumed conditions for integers (frequencies) [21], 

[22], [28] that will be discussed with details in the 

background section while we present a close form 

relationship of the largest dynamic range for multiple 

integers (frequencies) without condition on them. 

Furthermore, we show that the largest dynamic range for 

reconstruction of two integers (frequencies) is a special 

case of our work.  

The presentation is organized as follows. Related works 

with theoretical background is discussed in Background 

section.  

A proposition for finding the maximum possible range 

for unique reconstruction of any number of input 

frequencies from under-sampled frequencies is 

introduced in Proposed Approach section. Furthermore, 

the proposed proposition is specified for two and three 

input frequencies in corollaries, the maximum tolerable 

noise for the maximum possible range is obtained and a 
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procedure for reconstruction is also introduced in the 

Proposed Approach section.  

Different numeric examples to verify the effectiveness 

of the proposed approaches are introduced in the 

Simulation Results section.  

Finally, the work is concluded in the Conclusion section. 

Background 

Consider a complex waveform without noise as follows 

[23]: 

(1) 𝑥(𝑡) = ∑𝐴𝑙𝑒
𝑖(2𝜋𝐹𝑙𝑡+𝜑𝑙)

𝜌

𝑙=1

+ 𝑤(𝑡) 

where 𝐴𝑙’s are unknown nonzero complex coefficients 

and 𝐹𝑙’s ; 1 ≤ 𝑙 ≤ 𝜌are multiple unknown frequencies in 

Hz that should be determined. The ( )w t is additive white 

Gaussian noise.  

Consider   sensors in a wireless sensor network with 

𝛤 = {𝑓𝑠1, 𝑓𝑠2, . . . , 𝑓𝑠𝛾} ; 𝛾 ≥ 2 sampling rates as Fig. 1 in 

which all may be much less than the unknown frequencies 

i.e. 𝑓𝑠𝑖 << 𝐹𝑙 ; 𝑖 = 1, . . . , 𝛾 ; 𝑙 = 1, . . . , 𝜌[1], [2]. 

 

 

 
 

Fig. 1: A multi-sensor system for the determination of 
frequencies by information fusion from sensors. 

 
Assume these sampling frequencies are co-prime i.e. 

𝑀 = 𝑙𝑐𝑚(𝑓𝑠1, 𝑓𝑠2, . . . . , 𝑓𝑠𝛾) = 𝑓𝑠1𝑓𝑠2. . . . 𝑓𝑠𝛾 and without 

loss of generality assume 𝑓𝑠1 < 𝑓𝑠2 <. . . . < 𝑓𝑠𝛾that lcm is 

the least common multiplier.  

Then, the multiple under-sampled waveforms by 

sampling frequency 𝑓𝑠𝑟 ; 𝑟 = 1, . . . , 𝛾 are given by [23]: 

𝑥𝑓𝑠𝑟(𝑛) = ∑𝐴𝑙𝑒
2𝜋𝑗𝐹𝑙𝑛/𝑓𝑠𝑟

𝜌

𝑙=1

; 𝑛 ∈ ℤ (2) 

Using the 𝑓𝑟-point discrete Fourier transform (DFT) to 

𝑥𝑓𝑠𝑟(𝑛), relation (2) can be written as: 

𝐷𝐹𝑇𝑓𝑠𝑟 (𝑥𝑓𝑠𝑟
(𝑛)) [𝑘] =  ∑𝐴𝑙𝛿(𝑘 − 𝑓𝑢(𝑙,𝑟)),

𝜌

𝑙=1

 

1 ≤ 𝑟 ≤ 𝛾 

(3) 

where 𝛿(𝑘) is equal to 1 when 𝑘 = 0 and others 𝛿(𝑘) =

0. The 𝑓𝑢(𝑙,𝑟)is remainder (under-sampled frequency) of 𝐹𝑙 

with module (sampling frequency) 𝑓𝑠𝑟 i.e. 𝑓𝑢(𝑙,𝑟) =

𝐹𝑙 𝑚𝑜𝑑 𝑓𝑠𝑟.  

Thus, following under-sampled frequencies set 

𝑆𝑟(𝐹1, . . . , 𝐹𝜌) can be written.  

𝑆𝑟(𝐹1, . . . , 𝐹𝜌) = ∪

𝑙=1
𝜌

{𝑓𝑢(𝑙,𝑟)}, 

𝑟 = 1, . . . , 𝛾 
(4) 

Consider 𝐹𝑚𝑎𝑥  be an upper bound of input 

frequencies when all input frequencies less than 𝐹𝑚𝑎𝑥  

(i.e., 𝐹𝑙 ≤ 𝐹𝑚𝑎𝑥 , 𝑙 = 1, . . . 𝜌) can be uniquely 

reconstructed from their remainders. Some works have 

been done to determine 𝐹𝑚𝑎𝑥  for unambiguous 

reconstruction of multiple integers (multiple frequencies) 

from their remainders sets where we briefly review them 

in the sequel.  

Proposition 1 [29], [30]: A large dynamic range 

(𝐹𝑚𝑎𝑥 ) for unique determination 𝐹𝑙, 𝑙 = 1, . . . 𝜌 when 

under-sampled with 𝑓𝑠𝑖 , 𝑖 = 1, . . . , 𝛾 is 𝐹𝑚𝑎𝑥 =

𝑚𝑎𝑥( 𝜐, 𝑓𝑠𝛾) where 𝜐 = 𝑚𝑖𝑛
1≤𝑟1≤...𝑟𝜂≤𝛾

𝑙𝑐𝑚{𝑓𝑠(𝑟1), . . . , 𝑓𝑠(𝑟𝜂)} 

that 𝛾 = 𝜂𝜌 + 𝜃 for some 0 ≤ 𝜃 < 𝜌. 

A proposed majority method for the determination 

multiple integers from their moduli introduced in [19] as 

follows: 

Proposition 2 [19]: A large dynamic range for multiple 

integers (multiple frequencies) is 𝐹𝑚𝑎𝑥 =

𝑚𝑖𝑛
𝐼1∪...∪𝐼𝜌=𝛤

𝑚𝑎𝑥{∏ 𝑓𝑠𝑖 ,𝑓𝑠𝑖∈𝐼1 . . . , ∏ 𝑓𝑠𝑖𝑓𝑠𝑖∈𝐼𝜌 } where 𝐼𝑖 , 𝑖 =

1, . . . , 𝜌is the partition of set 𝛤 = {𝑓𝑠1, . . . 𝑓𝑠𝛾} in to 𝜌 

disjoint set where 𝐼1 ∪. . .∪ 𝐼𝜌 = 𝛤 and 𝐼𝑖 ∩ 𝐼𝑗 = 𝜑 for 1 ≤

𝑖 ≠ 𝑗 ≤ 𝜌 and 𝐼𝑖  can be an empty set. 

Proposition 3 [23]: For two integers 𝜌 = 2 as {𝐹1, . 𝐹2} 

with moduli 𝛤 = {𝑓𝑠1, . . . 𝑓𝑠𝛾} the largest dynamic range 

for unambiguous reconstruction from remainders is 

𝐹𝑚𝑎𝑥 = 𝑚𝑖𝑛
𝐼1,𝐼2

{𝑙𝑐𝑚(𝐼1) + 𝑙𝑐𝑚(𝐼2)} = 𝑚𝑖𝑛
𝐼1,𝐼2

{∏ 𝑓𝑠𝑟𝑓𝑠𝑟∈𝐼1 +

∏ 𝑓𝑠𝑟𝑓𝑠𝑟∈𝐼2
} where 𝐼1 ∪ 𝐼2 = 𝛤. 

The largest dynamic range for single integer (𝜌 = 1) is 

lcm of all moduli i.e. 𝐹𝑚𝑎𝑥 = 𝑙𝑐𝑚(𝑓𝑠1 , . . . , 𝑓𝑠𝛾). It can be 

inferred from Proposition 1-3 that the dynamic range for 

multiple integers, in general, is less than lcm of all 

modules.  

Thus, some works [22], [28] tried to achieve maximal 

possible range similar to single integer i.e lcm  of all 
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moduli.  

To do this, they used some conditions on the multiple 

integers (input frequencies) or /and moduli (under-

sampling frequencies) that was reviewed briefly at the 

following.  

Proposition 4: If 𝐹𝜌 − 𝐹1 < 𝑓𝑠1/2 then 𝐹𝑚𝑎𝑥 =

𝑙𝑐𝑚(𝑓𝑠1 , . . . , 𝑓𝑠𝛾) = ∏ 𝑓𝑠𝑖
𝛾
𝑖=1 .  

Note that this paper achieves lcm  of all moduli while 

the condition 𝐹𝜌 − 𝐹1 < 𝑓𝑠1/2 is admitted. 

Proposition 5 [22]: If 𝐹𝜌 − 𝐹1 < 𝑓𝑠1, 𝐺𝐶𝐷(𝜌, 𝑓𝑠𝑖) = 1; 

1 ≤ 𝑖 ≤ 𝛾 − 1 and 𝜌2 − 𝜌(𝑓𝑠1 + 𝑙) + (𝑙 − 1)𝑓𝑠𝜌 > 0 for 

2 ≤ 𝑙 ≤ 𝜌 then 𝐹𝑚𝑎𝑥 = 𝑙𝑐𝑚(𝑓𝑠1 , . . . , 𝑓𝑠𝛾) = ∏ 𝑓𝑠𝑖
𝛾
𝑖=1  

where 𝑓𝑠1 <. . . < 𝑓𝑠𝛾 and GCD is the greatest common 

division.  

Note that in this case, the difference between two 

disjoint integers (input frequencies) should be less than 

the minimum sampling frequency 𝑓𝑠1 (i.e. 𝐹𝜌 − 𝐹1 < 𝑓𝑠1) 

while for Proposition 4, it is 𝑓𝑠1/2.  

A multiple frequencies determination for narrow 

bandwidth signals when the maximum difference 

between input frequencies (multiple integers) are less 

than the maximum sampling frequency (moduli) i.e. 𝐹𝜌 −

𝐹1 < 𝑓𝑠𝛾 was also proposed in [21].  

Proposed Approaches 

Lemma 1 [23]: If two input frequencies sets 𝑋 =

{𝐹1, . . . , 𝐹𝜌} and 𝑌 = {𝐹1
′ , . . . , 𝐹𝜌

′} have the same remainder 

sets, i.e. 𝑆𝑟(𝑋) = 𝑆𝑟(𝑌), then the minimum of these 

integers would be zero, i.e.  𝑚𝑖𝑛{ 𝑋 ∪ 𝑌} = 0, and the 

maximum of these integers would be 𝑚𝑎𝑥{ 𝑋 ∪ 𝑌} =

𝐹𝑚𝑎𝑥  that 𝐹𝑚𝑎𝑥  is a large dynamic range. 

The order of remainders of each modulus is not known 

from output of DFT [19].  

In other words if the ordered remainders set of 

multiple integers for thr  modulus be 𝑆𝑟(𝐹1, . . . , 𝐹𝜌) =

∪

𝑙=1
𝜌

{𝑓𝑢(𝑙,𝑟)}, 𝑟 = 1, . . . , 𝛾 then received the remainders set 

from output of DFT is 𝑆𝑟
′ (𝐹1

′ , . . . , 𝐹𝜌
′) = ∪

𝑙=1
𝜌

{𝑡𝑢(𝛿𝑟(𝑙),𝑟)}, 𝑟 =

1, . . . , 𝛾 where 𝛿𝑟 is an arbitrarily chosen onto mapping 

from index set 𝑇 = {1, . . . , 𝜌} to the indices of elements in 

𝑆𝑟(𝐹1, . . . , 𝐹𝜌). Note that when 𝛿𝑟(𝑙) = 𝑖 we have 

𝑡𝑢(𝛿𝑟(𝑙),𝑟) = 𝑡𝑢(𝑖,𝑟) = 𝑓𝑢(𝑖,𝑟).  

It means 
thl  remainder of modulus r  in ordered set 

of DFT, i.e. 𝑆𝑟
′ , corresponding to the 𝑖𝑡ℎ integer, i.e. 𝐹𝑖, (See 

Table. 1).  
 

 

 

Table 1: Assigning the remainders from remainder set of each 

modulus to integers 

 

Integer

s 
Mod 1sf  Mod 2sf  

...  
Mod sf   

'
1F  1( (1),1)ut   

2( (1),2)ut   ...  
( (1), )ut    

'
2F  1( (2),1)ut   

2( (2),2)ut   ...  
( (2), )ut    

...  ...  ...  ...  ...  

'F  1( ( ),1)ut    
2( ( ),2)ut    ...  

( ( ), )ut     

 

We try to find integers 𝐹𝑙
′ based on its remainders 

𝑡𝑢(𝛿𝑟(𝑙),𝑟), 𝑟 = 1, . . . , 𝛾  (see Table. 1). The relationship 

between an integer 𝐹𝑖  and its remainders is as follows:   

𝑓𝑢(𝑖,𝑟) = 𝐹𝑖mod𝑓𝑠𝑟 = 𝐹𝑖 − 𝑘𝑖,𝑟𝑓𝑠𝑟 (5) 

where 𝑘𝑖,𝑟 ∈ {0,1, . . . , ⌊𝐹𝑚𝑎𝑥 /𝑓𝑠𝑟⌋}.  

The relationship between moduli 𝑓𝑠𝑟 ; 𝑟 = 1, . . . , 𝑝 and 

𝑓𝑢(𝑙,𝑟)
′  as the remainder of 𝐹𝑙

′ is as follows:  

𝑓𝑢(𝑙,𝑟)
′ = 𝐹𝑙

′mod𝑓𝑠𝑟 = 𝐹𝑙
′ − 𝑘𝑙,𝑟

′ 𝑓𝑠𝑟 (6) 

Proposition 6: Assume two frequencies sets 𝑋 =

{𝐹1, . . . , 𝐹𝜌} and 𝑌 = {𝐹1
′ , . . . , 𝐹𝜌

′} have the same under-

sampled (remainder) sets i.e. 𝑆𝑟(𝑋) = 𝑆𝑟(𝑌) with 

sampling frequencies (moduli) 𝑓𝑠𝑟 , 𝑟 = 1, . . . , 𝛾. Now 

assume from all   remainders for each 𝐹𝑖 ∈ 𝑋 and 𝐹𝑙
′ ∈ 𝑌 

there are 𝛼(𝑙,𝑖) ; 𝑙 = 1, . . . , 𝜌 ; 𝑖 = 1, . . . , 𝜌 common 

remainders (same remainders) with moduli 𝑓
𝑠𝑟ℎ

(𝑙,𝑖) ; ℎ =

1, . . . , 𝛼(𝑙,𝑖) between 𝐹𝑖 ∈ 𝑋 and 𝐹𝑙
′ ∈ 𝑌. Then the 

difference value between 𝐹𝑖 ∈ 𝑋 and 𝐹𝑙
′ ∈ 𝑌 is as follows: 

𝐹𝑙
′ − 𝐹𝑖 = 𝑘𝑙,𝑖𝑙𝑐𝑚( ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)) ;  

𝑘𝑙,𝑖 ∈ {0, ±1, . . . , ± ⌊𝐹𝑚𝑎𝑥

/𝑙𝑐𝑚(𝑓
𝑠𝑟1

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖) )⌋} 

     (7) 

Proof of Proposition 6: There are 𝛼(𝑙,𝑖) same 

remainders between 𝐹𝑙
′ and 𝐹𝑖  thus difference between 

these 𝛼(𝑙,𝑖)remainders should be zero i.e. 𝑓
𝑢(𝑙,𝑟ℎ

(𝑙,𝑖)
)

′ −

𝑓
𝑢(𝑖,𝑟ℎ

(𝑙,𝑖)
)
= 0 ; ℎ = 1, . . . , 𝛼(𝑙,𝑖). By considering (5) and (6) 

we have 𝑓
𝑢(𝑖,𝑟ℎ

(𝑙,𝑖)
)

′ − 𝑓
𝑢(𝑖,𝑟ℎ

(𝑙,𝑖)
)
= 𝐹𝑙

′ − 𝐹𝑖 − 𝑘
𝑙,𝑟ℎ

𝑙𝑖
′′ 𝑓

𝑠𝑟ℎ
(𝑙,𝑖) = 0 

where 𝑘𝑙,𝑟
′′ ∈ {0, ±1, . . . , ±⌊𝐹𝑚𝑎𝑥 /𝑓𝑠𝑟⌋}. So, it is possible 

to have following relationships: 



Determination of the Maximum Dynamic Range of Sinusoidal Frequencies in A Wireless Sensor Network with Low Sampling Rate 

J. Electr. Comput. Eng. Innovations, 11(2): 419-432, 2023                                                                          423 
 

𝐹𝑙
′ − 𝐹𝑖 = 𝑘

𝑙,𝑟1
(𝑙,𝑖)

′′ 𝑓
𝑠𝑟1

(𝑙,𝑖)

=. . . = 𝑘
𝑙,𝑟ℎ

(𝑙,𝑖)
′′ 𝑓

𝑠𝑟ℎ
(𝑙,𝑖) =. . . = 𝑘

𝑙,𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖)
′′ 𝑓

𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖) = 𝛬 
(8) 

From (8) it is obvious that  𝛬 should be multiple of 𝛼𝑙𝑖  

moduli frequencies, i.e. 𝛬/𝑓
𝑠𝑟ℎ

(𝑙,𝑖) = 𝑘
𝑙,𝑟ℎ

(𝑙,𝑖)
′′ ; ℎ =

1, . . . , 𝛼(𝑙,𝑖). Therefore, the smallest value that dividable to 

all moduli frequencies 𝑓
𝑠𝑟1

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟ℎ

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖)  is the 

least common multiple (lcm) of them i.e. 

𝑙𝑐𝑚(𝑓
𝑠𝑟1

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟ℎ

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖) ). Thus, 𝛬 is multiple of 

𝑙𝑐𝑚 of 𝛼𝑙𝑖  moduli frequencies i.e. 𝛬 =

𝑘𝑙,𝑖𝑙𝑐𝑚(𝑓
𝑠𝑟1

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟ℎ

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖) ). From Lemma 1 it is 

clear that 𝐹𝑙
𝑖 , 𝐹𝑖 ∈ [0, 𝐹𝑚𝑎𝑥 ] thus 𝛬 = 𝐹𝑙

′ − 𝐹𝑖 =

𝑘𝑙,𝑖𝑙𝑐𝑚( ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)) ; 𝑘𝑙,𝑖 ∈ 

{0, ±1, . . . , ± ⌊𝐹𝑚𝑎𝑥 /𝑙𝑐𝑚(𝑓
𝑠𝑟1

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖) )⌋}. 

Proposition 7: Assume a set of 𝜌 frequencies (integers) 

as𝑋 = {𝐹1, . . . , 𝐹𝜌} from under-sampled frequencies 

(remainders) with sampling frequencies (moduli) 𝑓𝑠𝑟 , 𝑟 =

1, . . . , 𝛾 can be reconstructed unambiguously when 

𝑚𝑎𝑥( 𝑋) < 𝐹𝑚𝑎𝑥  where 𝐹𝑚𝑎𝑥  is called the largest 

dynamic range.  

The largest dynamic range for 𝜌 integers from 

remainders (frequencies) with moduli (sampling 

frequencies) 𝑓𝑠𝑟 , 𝑟 = 1, . . . , 𝛾 can be obtained as follows: 

𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥( {𝐹1, . . . , 𝐹𝜌})| 

∑∑ |𝐹𝑙
′ − 𝐹𝑖 − 𝑘𝑙,𝑖𝑙𝑐𝑚( ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖))| = 0

𝜌

𝑖=1

𝜌

𝑙=1

 
   (9) 

; ∪

𝑖=1
𝜌

[ ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)] = 𝛤, 𝑙 = 1, . . . , 𝜌 

where 𝑌 = {𝐹1
′ , . . . , 𝐹𝜌

′} have the same remainders sets as 

𝑋 with moduli 𝑓𝑠𝑟 , 𝑟 = 1, . . . , 𝛾, 𝑌 ≠ 𝑋 and based on 

proposition 6 for each 𝐹𝑖 ∈ 𝑋 and 𝐹𝑙
′ ∈ 𝑌 there are 

𝛼(𝑙,𝑖) ; 𝑙 = 1, . . . , 𝜌 ; 𝑖 = 1, . . . , 𝜌 common remainders 

(same remainders) with moduli 𝑓
𝑠𝑟ℎ

(𝑙,𝑖) ; ℎ = 1, . . . , 𝛼(𝑙,𝑖) 

between 𝐹𝑖 ∈ 𝑋 and 𝐹𝑙
′ ∈ 𝑌. Since, 𝑋 and 𝑌 have the same 

reminders.  

Thus, common remainder between 𝐹𝑖 ∈ 𝑋 and all 𝐹𝑙
′𝑠 ∈

𝑌 and compartment sampling frequencies 𝑓
𝑠𝑟ℎ

(𝑙,𝑖) ; ℎ =

1, . . . , 𝛼(𝑙,𝑖) should be 𝛤 i.e. ∪

𝑙=1
𝜌

[ ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)] = 𝛤. Similar 

relation is existing between 𝐹𝑙
′’s∈ 𝑌 and all 𝐹𝑖’s∈ 𝑋 i.e. 

∪

𝑖=1
𝜌

[ ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)] = 𝛤. 

 

Proof of Proposition 7: Consider two different sets 𝑋 =

{𝐹1, . . . , 𝐹𝜌} and 𝑌 = {𝐹1
′ , . . . , 𝐹𝜌

′} have the same remainder 

sets with moduli 𝑓𝑠𝑟 , 𝑟 = 1, . . . , 𝛾 where 𝑚𝑎𝑥(𝑋) ≤

𝐹𝑚𝑎𝑥  and 𝑚𝑎𝑥( 𝑌) ≤ 𝐹𝑚𝑎𝑥 . The 𝛼(𝑙, 𝑖) is the number 

of common remainders between 𝐹𝑙
′ and 𝐹𝑖  and 𝑘𝑙,𝑖 ∈

{0, ±1, . . . , ± ⌊𝐹𝑚𝑎𝑥 /𝑙𝑐𝑚(𝑓
𝑠𝑟1

(𝑙,𝑖) , . . . , 𝑓
𝑠𝑟𝛼(𝑙,𝑖)

(𝑙,𝑖) )⌋} and 𝛤 is 

the set of all moduli 𝛤 = ∪

𝑟=1
𝛾

𝑓𝑠𝑟. Thus each 𝐹𝑙
′ has 𝛼(𝑙, 𝑖) 

common remainder sets with 𝐹𝑖  that ∑ 𝛼(𝑙, 𝑖) = 𝛾
𝜌
𝑖=1  or 

∪

𝑖=1
𝜌

[ ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)] = 𝛤. Based on Proposition 6 the 

difference value is equal to (7). Thus, we can say 

( , )

( , )

'

,
1

( ) 0
l i

l i
h

l i l i srh
F F k lcm f



=
− −  = . This relation must be 

fulfilled for a 𝐹𝑙
′ and all 𝐹𝑖’s 𝑖 = 1, . . . , 𝜌 i.e. ∑ |𝐹𝑙

′ − 𝐹𝑖 −
𝜌
𝑖=1

𝑘𝑙,𝑖𝑙𝑐𝑚( ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖))| = 0. Furthermore, this relationship 

should be satisfied for all 𝐹𝑙’s 𝑙 = 1, . . . , 𝜌i.e. 

∑ ∑ |𝐹𝑙
′ − 𝐹𝑖 − 𝑘𝑙,𝑖𝑙𝑐𝑚( ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖))|
𝜌
𝑖=1

𝜌
𝑙=1 = 0. 

In the following the proposed procedure is introduced 

to obtain the largest dynamic range 𝐹𝑚𝑎𝑥  from (9). Note 

that when all under-sampling frequencies multiplied by 

constant c  (increased c  times) the lcm  of under-

sampling frequencies are also multiplied by c . Then, the 

maximum possible frequencies that satisfied (9) i.e. 

𝐹𝑚𝑎𝑥  will also be multiplied by c . 

Procedure 1: The procedure for determination of the 

largest dynamic range can be summarized as follows: 

Step 0: Initialize the largest dynamic range as 𝐹𝑚𝑎𝑥 =

𝐹𝑚𝑎𝑥
𝐼𝑛𝑖  in which 𝐹𝑚𝑎𝑥

𝐼𝑛𝑖  is greater than (e.g. ten times of) 

conventional dynamic range mentioned in proposition 2 

i.e. 𝐹𝑚𝑎𝑥
𝐼𝑛𝑖 >> 𝑚𝑖𝑛

𝐼1∪...∪𝐼𝜌=𝛤
 𝑚𝑎𝑥{∏ 𝑓𝑠𝑖 ,𝑓𝑠𝑖∈𝐼1 . . . , ∏ 𝑓𝑠𝑖𝑓𝑠𝑖∈𝐼𝜌 }.  

Step 1: Categorize moduli of 𝐹𝑙
′ (i.e. 𝛤 = {𝑓𝑠1, . . . 𝑓𝑠𝛾}) to 

𝜌 disjoint subsets as 𝑎(𝑙, 𝑖) = ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖) , 𝑖 = 1, . . . , 𝜌 . The 

𝛼(𝑙, 𝑖) is a set of common moduli between 𝐹𝑙
′ and 𝐹𝑖  and 

𝑎(𝑙, 𝑖) is common moduli between 𝐹𝑙
′s and all 𝐹𝑖’s. Since 

𝑎(𝑙, 𝑖) s is obtained by categorizing 𝛾 moduli of 𝐹𝑙
′, it is 

possible to write ∪

𝑖=1
𝜌

𝑎(𝑙,𝑖) = 𝛤, 𝑙 = 1, . . . , 𝜌. 

Step 2: Common compartment modules between 𝐹𝑙
′’s 

and 𝐹𝑖’s can be considered as a matrix: 
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𝐹1 . . . 𝐹𝑖 . . . 𝐹𝜌 

𝐹1
′

⋮
𝐹𝑙
′

⋮
𝐹𝜌
′ [
 
 
 
 
𝑎(1,1) . . . 𝑎(1,𝑖) . . . 𝑎(1,𝜌)

⋮ ⋮ ⋮ ⋮ ⋮
𝑎(𝑙,1) . . . 𝑎(𝑙,𝑖) . . . 𝑎(𝑙,𝜌)

⋮ ⋮ ⋮ ⋮ ⋮
𝑎(𝑝,1) . . . 𝑎(𝑝,𝑖) . . . 𝑎(𝑝,𝜌)]

 
 
 
 

 
                 (10) 

Based on Step 1 of the procedure each row is related 

to all 𝐹𝑙
′’s moduli. Thus, each row is chosen such that 

∪

𝑖=1
𝜌

𝑎(𝑙,𝑖) = 𝛤, 𝑙 = 1, . . . , 𝜌. Each column related to all 𝐹𝑖’s 

moduli. Thus, each column should check to be sure that 

∪

𝑙=1
𝜌

𝑎(𝑙,𝑖) = 𝛤 , 𝑖 = 1, . . . , 𝜌. If this condition is met, go to 

Step 3; otherwise, return to Step 1 and produce other 

possible moduli from  . 

Step 3: Based on (9) and representation 𝑎(𝑙,𝑖)in (10) 

following relationship can be written 

𝐹𝑙
′ − 𝐹𝑖 = 𝑘(𝑙,𝑖)𝑙𝑐𝑚(𝑎(𝑙, 𝑖)), 

𝑙 = 1, . . . , 𝜌𝑎𝑛𝑑𝑖 = 1, . . . , 𝜌 
   (11) 

According to lemma 1, the 𝐹1 should be zero. By 

considering 𝑖 = 1 in (11) and 𝐹1 = 0 we have the 

following relation: 

𝐹𝑙
′ = 𝑘(𝑙,1)𝑙𝑐𝑚(𝑎(𝑙, 1)), 𝑙 = 1, . . . , 𝜌         (12) 

Now, by substituting (12) in (11), the 𝐹𝑖’s for 𝑖 > 2 can 

be obtained as below: 

𝐹𝑖 = 𝑘(𝑙,1)𝑙𝑐𝑚(𝑎(𝑙, 1)) − 𝑘(𝑙,𝑖)𝑙𝑐𝑚(𝑎(𝑙, 𝑖)), 

𝑙 = 1, . . . , 𝜌𝑎𝑛𝑑𝑖 = 2, . . . , 𝜌 
(13) 

that 𝑘(𝑙,𝑖) ∈ {0, ±1, . . . , ±⌊𝐹𝑚𝑎𝑥 /𝑙𝑐𝑚(𝑎(𝑙, 𝑖))⌋}, 

𝑎(𝑙, 𝑖) = ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖) , 𝑖 = 1, . . . , 𝜌 and also it is assumed that 

𝐹𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥
𝑖𝑛𝑖 . 

Step 4: Based on (11), each 𝐹𝑙
′ with each 𝐹𝑖’s that has 

common moduli should meet 𝐹𝑙
′ = 𝑘(𝑙,𝑖)𝑙𝑐𝑚(𝑎(𝑙, 𝑖)) + 𝐹𝑖, 

similar relations should be met for each 𝐹𝑖. When two sets 

𝑋 = {𝐹1, . . . , 𝐹𝜌} and 𝑌 = {𝐹1
′ , . . . , 𝐹𝜌

′} are found so that 

satisfy conditions in (11), we can consider 𝑚𝑎𝑥( 𝑋) as final 

𝐹𝑚𝑎𝑥  and finish the process.  

Otherwise, choose a bigger 𝐹𝑚𝑎𝑥
𝐼𝑛𝑖  e.g. double of 

previous 𝐹𝑚𝑎𝑥
𝐼𝑛𝑖  and go to step 1. It is notable, Proposition 

7 presents a relationship to find the largest dynamic range 

(𝐹𝑚𝑎𝑥 ) numerically by procedure1 for any 𝜌 that not 

presented in the previous studies. However, procedure 1 

can be simplified for some cases include 𝜌 = 2 and 𝜌 = 3. 

By considering two integers, i.e. 𝜌 = 2, we show in 

Corollary 1 that the close form relationship for the largest 

dynamic range of two integers in [23] is a special case of 

proposed proposition 7. 

Corollary 1: The largest dynamic range (maximum 

possible range of frequency for unique detection) for 

proposed proposition 7 when 𝜌 = 2 (two frequencies) is 

𝐹𝑚𝑎𝑥 = 𝑚𝑖𝑛
𝐼1𝑈𝐼2=𝛤

{𝑙𝑐𝑚(𝐼1) + 𝑙𝑐𝑚(𝐼2)}.  

Proof of Corollary 1: For this case, the condition in (9) 

can be written as 

( , )

( , )

2 2
'

,
1

1 1

( ) 0
l i

l i
h

l i l i srh
l i

F F k lcm f



=
= =

− −  = . Thus, there 

are the following relationships: 

   (14) 

𝐹1
′ − 𝐹1 = 𝑘1,1𝑙𝑐𝑚( ∪

ℎ=1
𝛼(1,1)

𝑓
𝑠𝑟ℎ

(1,1)), 

𝐹1
′ − 𝐹2 = 𝑘1,2𝑙𝑐𝑚( ∪

ℎ=1
𝛼(1,2)

𝑓
𝑠𝑟ℎ

(1,2)), 

𝐹2
′ − 𝐹1 = 𝑘2,1𝑙𝑐𝑚( ∪

ℎ=1
𝛼(2,1)

𝑓
𝑠𝑟ℎ

(2,1)), 

𝐹2
′ − 𝐹2 = 𝑘2,2𝑙𝑐𝑚( ∪

ℎ=1
𝛼(2,2)

𝑓
𝑠𝑟ℎ

(2,2)) 

Let us show common compartment modules between 

𝐹𝑙
′’s and 𝐹𝑖’s as a matrix: 

𝐹1 𝐹2 

𝐹1
′

𝐹2
′ [

𝑎(1,1) 𝑎(1,2)

𝑎(2,1) 𝑎(2,2)
] 

  (15) 

where 𝑎(𝑙,𝑖) is the common disjoint moduli between 𝐹𝑙
′ and 

𝐹𝑖. Let’s consider community of all moduli as 𝛤 = ∪

𝑟=1
𝛾

𝑓𝑠𝑟. 

Thus, community between subsets of 𝐹1
′  i.e. 𝑎(1,1) and 

𝑎(1,2) in a row of mentioned matrix should be   i.e. 

𝑎(1,1) ∪ 𝑎(1,2) = 𝛤 similar for 𝐹2
′ , 𝐹1 and 𝐹2 there are 

𝑎(1,1) ∪ 𝑎(1,2) = 𝑎(2,1) ∪ 𝑎(2,2) = 𝑎(1,1) ∪ 𝑎(2,1) = 𝑎(1,2) ∪

𝑎(2,2) = 𝛤. These conditions are satisfied when 𝑎(1,1) =

𝑎(2,2) and 𝑎(1,2) = 𝑎(2,1). In other words, if all modules 𝛤 

are divided to two disjoint subsets 𝐼1 and 𝐼2 where 𝐼1 ∪

𝐼2 = 𝛤 then the matrix in (15) can be rewritten as: 

(16) 

𝐹1 𝐹2 

𝐹1
′

𝐹2
′ [

𝐼1 𝐼2
𝐼2 𝐼1

] 

Now, according to (14) and (16) and based on Lemma 

1 by considering 𝐹1 = 0 it can be written: 

𝐹1
′ = 𝑘1,1𝑙𝑐𝑚(𝐼1), 

𝐹2
′ = 𝑘2,1𝑙𝑐𝑚(𝐼2), 

𝐹1
′ − 𝐹2 = 𝑘1,2𝑙𝑐𝑚(𝐼2), 

𝐹2
′ − 𝐹2 = 𝑘2,2𝑙𝑐𝑚(𝐼1) 

     (17) 
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To satisfy both relations 𝐹2 = 𝑘1,1𝑙𝑐𝑚(𝐼1) −

𝑘1,2𝑙𝑐𝑚(𝐼2) and 𝐹2 = 𝑘2,1𝑙𝑐𝑚(𝐼2) − 𝑘2,2𝑙𝑐𝑚(𝐼1) in (14) it 

should satisfy 𝑘1,1 = 𝑘2,1 = 1 and 𝑘1,2 = 𝑘2,2 = −1. Thus, 

𝐹2 = 𝑙𝑐𝑚(𝐼1) + 𝑙𝑐𝑚(𝐼2) and the set of integers would be 

𝑋 = {0, 𝐹2} and 𝐹𝑚𝑎𝑥  is the minimum possible of 𝐹2, i.e. 

𝐹𝑚𝑎𝑥 = 𝑚𝑖𝑛
𝐼1𝑈𝐼2=𝛤

𝑚𝑎𝑥( 𝑋) = 𝑚𝑖𝑛
𝐼1𝑈𝐼2=𝛤

{𝑙𝑐𝑚(𝐼1) +

𝑙𝑐𝑚(𝐼2)}.  

This, shows proposition 3 is a special case of proposed 

proposition 7 when 𝜌 = 2. 

Corollary 2: The common moduli between 𝐹𝑙
′’s and 𝐹𝑖, 

i.e. 𝑎(𝑙,𝑖) = ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖) , for 𝜌 = 3 that admit the conditions 

in proposition 7 can be simplified as follows: 

1 2 3

'
1 (1,1) (1,2) (1,3)

'
2 (2,1) (2,2) (2,3)

'
(3,1) (3,2) (3,3)3

F F F

F a a a

F a a a

a a aF

 
 
 
 
    

1 2 3

'
1 1 2 3 6 4 5
'

2 3 4 2 5 1 6

'
5 6 1 4 2 33

F F F

F I I I I I I

F I I I I I I

I I I I I IF

   
 

  
 
    

 

                        (18) 

 

where 𝐼𝑖 , 𝑖 = 1, . . . ,6 are disjoint subsets and ∪

𝑖=1
6

𝐼𝑖 = 𝛤 =

∪

𝑟=1
𝛾

𝑓𝑠𝑟.  

Note that, corollary 2 substitute the steps 1 and 2 of 

procedure 1 for the calculation ( , )l ia ’s when 𝜌 = 3. 

Proof of Corollary 2: By considering the condition in 

(9), i.e. ∑ ∑ |𝐹𝑙
′ − 𝐹𝑖 − 𝑘𝑙,𝑖𝑙𝑐𝑚( ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖))|3
𝑖=1

3
𝑙=1 = 0, it is 

possible to write the following relations: 

        (19) 

𝐹1
′ − 𝐹1 = 𝑘1,1𝑙𝑐𝑚( ∪

ℎ=1
𝛼(1,1)

𝑓
𝑠𝑟ℎ

(1,1)), 

𝐹1
′ − 𝐹2 = 𝑘1,2𝑙𝑐𝑚( ∪

ℎ=1
𝛼(1,2)

𝑓
𝑠𝑟ℎ

(1,2)), 

𝐹1
′ − 𝐹3 = 𝑘1,3𝑙𝑐𝑚( ∪

ℎ=1
𝛼(1,3)

𝑓
𝑠𝑟ℎ

(1,3)),  

𝐹2
′ − 𝐹1 = 𝑘2,1𝑙𝑐𝑚( ∪

ℎ=1
𝛼(2,1)

𝑓
𝑠𝑟ℎ

(2,1)), 

𝐹2
′ − 𝐹2 = 𝑘2,2𝑙𝑐𝑚( ∪

ℎ=1
𝛼(2,2)

𝑓
𝑠𝑟ℎ

(2,2)), 

𝐹2
′ − 𝐹3 = 𝑘2,3𝑙𝑐𝑚( ∪

ℎ=1
𝛼(2,3)

𝑓
𝑠𝑟ℎ

(2,3)), 

𝐹3
′ − 𝐹1 = 𝑘3,1𝑙𝑐𝑚( ∪

ℎ=1
𝛼(3,1)

𝑓
𝑠𝑟ℎ

(3,1)), 

𝐹3
′ − 𝐹2 = 𝑘3,2𝑙𝑐𝑚( ∪

ℎ=1
𝛼(3,2)

𝑓
𝑠𝑟ℎ

(3,2)), 

𝐹3
′ − 𝐹3 = 𝑘3,3𝑙𝑐𝑚( ∪

ℎ=1
𝛼(3,3)

𝑓
𝑠𝑟ℎ

(3,3)) 

Similar to corollary 1, the common compartment 

modules between 𝐹𝑙
′’s and 𝐹𝑖’s can be shown as below 

matrix: 

     (20) 

1 2 3

'
1 (1,1) (1,2) (1,3)

'
2 (2,1) (2,2) (2,3)

'
(3,1) (3,2) (3,3)3

F F F

F a a a

F a a a

a a aF

 
 
 
 
  

 

The community of moduli in all rows and columns 

should be admitted 𝛤 = ∪

𝑟=1
𝛾

𝑓𝑠𝑟, as: 

𝑎(1,1) ∪ 𝑎(1,2) ∪ 𝑎(1,3)

= 𝑎(3,1) ∪ 𝑎(3,2) ∪ 𝑎(3,3)

= 𝑎(3,1) ∪ 𝑎(3,2) ∪ 𝑎(3,3)

= 𝑎(1,1) ∪ 𝑎(2,1) ∪ 𝑎(3,1)

= 𝑎(1,2) ∪ 𝑎(2,2) ∪ 𝑎(3,2)

= 𝑎(1,3) ∪ 𝑎(2,3) ∪ 𝑎(3,3)

= 𝛤 

   (21) 

 

To satisfy (21), the common moduli in matrix (20) can 

be expressed as follows: 

1 2 3

'
1 1 2 3 6 4 5
'

2 3 4 2 5 1 6

'
5 6 1 4 2 33

F F F

F I I I I I I

F I I I I I I

I I I I I IF

   
 

  
 
    

                       (22) 

where 𝐼𝑖 , 𝑖 = 1, . . . ,6 are disjoint subsets 𝐼𝑖 ⊂ 𝛤and 

∪

𝑖=1
6

𝐼𝑖 = 𝛤 = ∪

𝑟=1
𝛾

𝑓𝑠𝑟. Now, the value 𝑎(𝑙,𝑖) that satisfied (21) 

can be used in steps 3 and 4 of Procedure 1 to find 𝐹𝑚𝑎𝑥 . 

In fact, steps 1 and 2 of procedure 1 can be replaced by 

corollary 2 for calculation 𝑎(𝑙,𝑖)s when 𝜌 = 3.    

Procedure 2: The procedure of determination input 
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frequencies from their under-sampled frequencies for 

complex waveform. There are some similarities between 

the procedure of determination of frequencies from 

under sampled frequencies of a sinusoidal complex 

waveform (i.e. ∑ 𝐴𝑙𝑒
𝑖(2𝜋𝐹𝑙𝑡)𝑞

𝑙=1 + 𝑤(𝑡) ) and the 

determination of frequencies of real sinusoidal waveform 

(i.e. ∑ 𝐴𝑖 𝑐𝑜𝑠( 2𝜋𝐹𝑖𝑡 + 𝜑𝑖)
𝑞
𝑖=1 + 𝑤(𝑡)) in [2]. However, 

should consider the fact that the under-sampled 

frequencies of the real waveform and the complex 

waveform are different as follows [2]: 

(23) 

𝑓𝑢(𝑘,𝑗) = 

{

(−1)𝑣̄𝑘(𝐹𝑗 − 𝑚𝑘𝑗𝑓𝑠𝑘) ; 𝑣̄𝑘 ∈ {1,2}

Realwaveform

𝐹𝑗 − 𝑚𝑘𝑗𝑓𝑠𝑘Complexwaveform

 

Thus, as can see in Fig. 2 (b) the under-sampled frequency 

curve for complex waveforms is not continues and a few 

noises or changes in frequency (𝐹𝑗) can cause big change 

in 𝑓𝑢(𝑘,𝑗) and reduce 𝑓𝑢(𝑘,𝑗)from maximum to zero or vice 

versa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2:  Under-sampled frequency fu(k,j) as a function of jth 

analog input frequency 𝐹𝑗 ∈ [0, 𝐹𝑚𝑎𝑥 ) after sampling with 

the kth sampling frequency fsk from (a) real signal waveform and 
(b) complex signal waveform. 

 

Step 1: There are q frequencies that are sampled with 

p ADC’s, thus there are 𝑝 × 𝑞 under-sampled frequencies 

as 𝑓𝑢(𝑘,𝑗) ; 𝑘 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑞. However, the 

correspondences between 𝑞 input frequencies and the 𝑞 

outputs under-sampled frequencies are unknown.  

Thus, these 𝑝 × 𝑞 noisy under-sampled frequencies 

should be divided into q groups with p elements in each 

group as {𝑆1, . . . , 𝑆𝑗 , . . . , 𝑆𝑞} = {{𝑓𝑢(𝑖,1), 𝑖 =

1, . . . , 𝑝}, . . . , {𝑓𝑢(𝑖,𝑗), 𝑖 = 1, . . . , 𝑝}, . . . , {𝑓𝑢(𝑖,𝑞), 𝑖 =

1, . . . , 𝑝}} in which the set 𝑆𝑗 = {𝑓𝑢(𝑖,𝑗), 𝑖 =

1, . . . , 𝑝} ; 𝑗 = 1, . . . , 𝑞 denotes a noisy under-sampled 

frequencies set that corresponding to the 𝑗𝑡ℎ input 

frequency. 

Step 2: Determines the distance 𝐷𝐼𝑆𝑓̂𝑢(𝑖,𝑗)
 for each set 

of 𝑆𝑗 = {𝑓𝑢(𝑖,𝑗), 𝑖 = 1, . . . , 𝑝}, 𝑗 = 1, . . . , 𝑞 as belows: 

(24) 
𝐷𝐼𝑆𝑗 = 𝑚𝑎𝑥(𝐷𝐼𝑆𝑓̂𝑢(1,𝑗)

, . . . , 𝐷𝐼𝑆𝑓̂𝑢(𝑖,𝑗)
, 

. . . , 𝐷𝐼𝑆𝑓̂𝑢(𝑝,𝑗)
) 

where the procedure for the computing of 𝐷𝐼𝑆𝑓̑𝑢(𝑘,𝑗)
 and 

𝐹𝑒𝑠𝑡(𝑓̂𝑢(𝑘,𝑗))
 for each set of 𝑆𝑗  is described as follows: 

Step 1: Calculate the frequencies 𝐹̂𝑘
𝑡s in the band 𝐹̂𝑘

𝑡 ∈

[0, 𝐹𝑚𝑎𝑥 ] from 𝑓𝑢(𝑘,𝑗), when sampling frequency is skf

as below: 

    (25) 
𝐹̂𝑘

𝑡 = 𝑘̂𝑘
𝑡𝑓𝑠𝑘 + 𝑓𝑢(𝑘,𝑗) ;  

0 ≤ 𝑘̂𝑘
𝑡𝑓𝑠𝑘 < 𝐹𝑚𝑎𝑥 ; 𝑘̂𝑘

𝑡 = 0,1, . .. 

Step 2: Determine under-sampled frequencies 

𝑓𝑢𝑖
𝑡 ; 𝑖 = 1,2, . . . , 𝑝, 𝑖 ≠ 𝑘 related to 𝐹̂𝑘

𝑡’s when are 

sampled with sampling frequencies other than sampling 

frequency in step 1 i.e. 𝑓𝑠𝑖 ; 𝑖 = 1,2, . . . , 𝑝, 𝑖 ≠ 𝑘. 

(26) 𝐹̂𝑘
𝑡 = 𝑘̂𝑖

𝑡𝑓𝑠𝑖 + 𝑓𝑢𝑖
𝑡  

Step 3: Substitute 𝑓𝑢𝑖
𝑡 ; 𝑖 = 1,2, . . . , 𝑝, 𝑖 ≠ 𝑘 with 

their noisy under-sampled 𝑓𝑢(𝑖,𝑗) ; 𝑖 = 1,2, . . . , 𝑝, 𝑖 ≠ 𝑘 

in (26). Then calculate the following relationship: 

(27) 

𝐹̃𝑖
𝑡 = {𝐹̆𝑙

𝑡 |minimize
𝑙∈{1,2,3}

|𝐹̆𝑙
𝑡 − 𝐹̂𝑘

𝑡|}, 

𝐹̆1
𝑡 = 𝑘̂𝑖

𝑡𝑓𝑠𝑖 + 𝑓𝑢(𝑖,𝑗),  

𝐹̆2
𝑡 = (𝑘̂𝑖

𝑡 + 1)𝑓𝑠𝑖 + 𝑓𝑢(𝑖,𝑗) 

𝐹̆3
𝑡 = (𝑘̂𝑖

𝑡 − 1)𝑓𝑠𝑖 + 𝑓𝑢(𝑖,𝑗) 

Note that unlike the under-sampled frequencies of the 

real waveform in the complex waveform small changes 

caused by noise can make a big change in the under-

sampled frequencies as can be seen in Fig.2 (b). Thus, to 

substitute 𝑓𝑢𝑖
𝑡 s by 𝑓𝑢(𝑖,𝑗)s should consider the 𝑘̂𝑖

𝑡𝑓𝑠𝑖, (𝑘̂𝑖
𝑡 +

1)𝑓𝑠𝑖  and (𝑘̂𝑖
𝑡 − 1)𝑓𝑠𝑖.   

Step 4: Find the 𝑘̂𝑖
𝑡s that minimize the following 

relationship and name them as 𝑘̂𝑖
𝑡∗

:  

(28) 𝑘̂1
𝑡∗
, . . . , 𝑘̂𝑖

𝑡∗
, . . . , 𝑘̂𝑝

𝑡∗
= {𝑘̂1

𝑡 , . . . , 𝑘̂𝑖
𝑡 , . . . , 𝑘̂𝑝

𝑡 ;  

𝑚𝑖𝑛
𝑘̂1

𝑡 ,...,𝑘̂𝑖
𝑡,...,𝑘̂𝑝

𝑡
𝑚𝑎𝑥{ |𝐹̃1

𝑡 − 𝐹̃2
𝑡|, . . . , 

|𝐹̃1
𝑡 − 𝐹̃𝑝

𝑡|, . . . , |𝐹̃𝑖
𝑡 − 𝐹̃𝑖+1

𝑡 |, . . . , 

|𝐹̃𝑖
𝑡 − 𝐹̃𝑝

𝑡|, . . . , |𝐹̃𝑝−1
𝑡 − 𝐹̃𝑝

𝑡|}} ;  

Definition 1: The maximum distance (DIS) between the 
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frequencies 𝐹̃𝑖
𝑡in (27) related to 𝑓𝑢(𝑘,𝑗) ; 𝑘 = 1, . . . , 𝑝 is 

called 𝐷𝐼𝑆𝑓̂𝑢(𝑘,𝑗)
; 𝑓𝑢(𝑘,𝑗) ∈ 𝑆𝑗 and defined as follows: 

(29) 

𝐷𝐼𝑆𝑓̂𝑢(𝑘,𝑗)
=
𝛥

 

𝑚𝑎𝑥{ |𝐹̃1
𝑡 − 𝐹̃2

𝑡|, . . . , |𝐹̃1
𝑡 − 𝐹̃𝑝

𝑡|, . . . , 

|𝐹̃𝑖
𝑡 − 𝐹̃𝑖+1

𝑡 |, . . . , |𝐹̃𝑖
𝑡 − 𝐹̃𝑝

𝑡|, . . . , 

|𝐹̃𝑝−1
𝑡 − 𝐹̃𝑝

𝑡|} ;  

𝑘̂1
𝑡 = 𝑘̂1

𝑡∗
, . . . , 𝑘̂𝑝

𝑡 = 𝑘̂𝑝
𝑡∗

, 𝑖 = 1,2, . . . , 𝑝 

Step 5: The estimated input frequency is obtained by 

mean of the frequencies (𝐹̃𝑖
𝑡s) that minimize (28) as 

below:   

  (30) 
𝐹𝑒𝑠𝑡(𝑓̂𝑢(𝑘,𝑗))

= ∑𝐹̃𝑖
𝑡

𝑝

𝑖=1

/𝑝 ;  

𝑘̂1
𝑡 = 𝑘̂1

𝑡∗
, . . . , 𝑘̂𝑝

𝑡 = 𝑘̂𝑝
𝑡∗

, 𝑖 = 1,2, . . . , 𝑝, 

Step 3. Obtain the possible input frequencies for state of 

each set in 𝑆𝑗 ; 𝑗 = 1, . . . , 𝑞 as 𝐹𝑠𝑡𝑎𝑡𝑒(𝑛) =

{𝐹𝑒𝑠𝑡(𝑓̂𝑢(𝑖1,1)
∗ ), . . . , 𝐹𝑒𝑠𝑡(𝑓̂𝑢(𝑖𝑗,𝑗)

∗ ), . . . , 𝐹𝑒𝑠𝑡(𝑓̂𝑢(𝑖𝑞,𝑞)
∗ )} where 

𝐹𝑒𝑠𝑡(𝑓̂𝑢(𝑖𝑗,𝑗)
) was calculated in (30) and 𝑓𝑢(𝑖𝑗,𝑗)

∗  is ith under-

sampled frequency of jth input frequency which 

minimizes the defined distance in (29) i.e. 𝐷𝐼𝑆𝑓̂𝑢(𝑖𝑗,𝑗)
∗ = 

𝑚𝑖𝑛
𝑓̂𝑢(𝑖,𝑗)

(𝐷𝐼𝑆𝑓̂𝑢(1,𝑗)
, . . . , 𝐷𝐼𝑆𝑓̂𝑢(𝑝,𝑗)

).  

Step 4. Repeat steps 1 to 3 for all different states of 

dividing p q  under-sampled frequencies in to q groups 

with p elements in each group. In other words, steps 1 to 

3 should be carried out for 𝑛 = 1, . . . , (𝑝!)𝑞−1 different 

states.  

Find the state that has the minimum value of 𝐷𝐼𝑆𝑠𝑡𝑎𝑡𝑒(𝑛) 

as below:  

(31) 𝐷𝐼𝑆𝑠𝑡𝑎𝑡𝑒(𝑛∗) = 𝑚𝑖𝑛
𝑛

(𝐷𝐼𝑆𝑠𝑡𝑎𝑡𝑒(1), . . . , 

𝐷𝐼𝑆𝑠𝑡𝑎𝑡𝑒(𝑛), . . . . ) 

The correct input analog frequencies are obtained 

based on *n  in (31) as 𝐹𝑠𝑡𝑎𝑡𝑒(𝑛∗). 

Proposition 8: The maximum tolerable noise that 

multiple input frequencies 𝐹𝑖 ∈ [0, 𝐹𝑚𝑎𝑥 ] ; 𝑖 = 1, . . . , 𝜌 

from noisy under-sampled frequencies 𝑓𝑢(𝑟,𝑖) = 𝑓𝑢(𝑟,𝑖) +

𝜀(𝑟,𝑖), 𝑟 = 1, . . . , 𝛾 ; 𝑖 = 1, . . . , 𝜌, with sampling frequencies 

𝑓𝑠𝑟 , 𝑟 = 1, . . . , 𝛾 is 𝜀𝑚𝑎𝑥(𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) = 𝜒𝑚𝑖𝑛 /4. It is notable 

𝐹𝑚𝑎𝑥  is the largest possible range that obtained in 

proposition 7 and not a large range as the previous works.  

The noise of each under-sampled frequency (𝜀(𝑟,𝑖)) and 

the maximum noise of all under-sampled frequencies 

(𝜀𝑚𝑎𝑥 ) should be less than the maximum tolerable noise 

as 𝜀(𝑟,𝑖) ≤ 𝜀𝑚𝑎𝑥 ≤ 𝜀𝑚𝑎𝑥(𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) = 𝜒𝑚𝑖𝑛 /4. Where, 

in this proposition, the frequency 𝑓𝑢(𝑟,𝑖) is a noiseless 

under sampled frequency, 𝜀(𝑟,𝑖) is an additive noise, 

𝜀𝑚𝑎𝑥  is the maximum value of all 𝜀(𝑟,𝑖)’s and, 

(32) 

𝜒𝑚𝑖𝑛 = 4𝜀𝑚𝑎𝑥(𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) = 

𝑚𝑖𝑛
{𝑓𝑠𝑖1 ,𝑓𝑠𝑖2}⊂{𝑓𝑠1,𝑓𝑠2,...,𝑓𝑠𝛾} ;

𝑘𝑖1
′ ,𝑘𝑖2

′ ,

|𝑘𝑖1
′ 𝑓𝑠𝑖1−𝑘𝑖2

′ 𝑓𝑠𝑖2|≠0

|𝑘𝑖1
′ 𝑓𝑠𝑖1 − 𝑘𝑖2

′ 𝑓𝑠𝑖2| ;  

1 ≤ 𝑖1 < 𝑖2 ≤ 𝛾 

Note that, the 𝑘𝑖𝑡
′ , 𝑡 ∈ {1,2} are some integers in (32) 

can be selected as 𝑘𝑖𝑡
′ ∈ {0, ±1, . . . , ±𝑘𝑖𝑡

𝑚𝑎𝑥 }; (𝑘𝑖𝑡
𝑚𝑎𝑥 −

1)𝑓𝑠𝑖𝑡 < 𝐹𝑚𝑎𝑥 < 𝑘𝑖𝑡
𝑚𝑎𝑥 𝑓𝑠𝑖𝑡  or 𝑘𝑖𝑡

𝑚𝑎𝑥 = ⌈𝐹𝑚𝑎𝑥 /𝑓𝑠𝑖𝑡⌉ 

where 𝐹𝑚𝑎𝑥  is defined as (4). 

Proof of Proposition 8: Consider a frequency 𝐹 under-

sampled with 𝑟 = 1, . . . , 𝑝 sampling frequency as follows:  

(33) 𝐹 = 𝑘̄1𝑓𝑠1 + 𝑓𝑢(1,𝑗) =. . . = 

𝑘̄𝑟𝑓𝑠𝑟 + 𝑓𝑢(𝑟,𝑗) =. . . = 𝑘̄𝑝𝑓𝑠𝑝 + 𝑓𝑢(𝑝,𝑗) 

where 𝑘̄𝑟 is correct integer that relates noiseless under-

sampled frequency 𝑓𝑢(𝑟,𝑗) to 𝐹.  

Based on (29) the 𝐷𝐼𝑆𝑓̂𝑢(𝑘,𝑗)
 is the distance between 𝑝 

estimations of 𝐹𝑗 from 𝑝 available under-sampled 

frequencies i.e. 𝑆𝑗 = {𝑓𝑢(𝑟,𝑗), 𝑟 = 1, . . . , 𝑝}.  

Consider the distance |𝐹̃𝑖
𝑡 − 𝐹̃𝑙

𝑡| in 𝐷𝐼𝑆𝑓̂𝑢(𝑘,𝑗)
 in (29) as 

𝐷𝑖𝑙 = |𝐹̃𝑖
𝑡 − 𝐹̃𝑙

𝑡|.We prove that 𝐷𝑖𝑙 , for not incorrect 

chosen of is greater than 𝐷̄𝑖𝑙 = |𝐹̄̃𝑖
𝑡 − 𝐹̄̃𝑙

𝑡| where 𝐹̄̃𝑖
𝑡 and 𝐹̄̃𝑙

𝑡 

are the correct estimated frequency of 𝐹̃𝑖
𝑡 and 𝐹̃𝑙

𝑡, 

respectively. In other words 𝐹̄̃𝑖
𝑡 ; 𝑖 = 1, . . . , 𝑝 are 𝐹̃𝑖

𝑡 =

𝑘𝑖𝑓𝑠𝑖 + 𝑓𝑢(𝑖,𝑗) that 𝑓𝑢(𝑖,𝑗) is noisy under-sampled 

frequencies and 𝑘𝑖are equal to the correct one i.e. 𝑘̄𝑖 in 

(33) or 𝐹̄̃𝑖
𝑡 = 𝑘̄𝑖𝑓𝑠𝑖 + 𝑓𝑢(𝑖,𝑗).  

We have 𝑓𝑢(𝑖,𝑗) = 𝑓𝑢(𝑖,𝑗) + 𝜀(𝑖,𝑗), 𝑓𝑢(𝑙,𝑗) = 𝑓𝑢(𝑙,𝑗) + 𝜀(𝑙,𝑗), 

𝐹̃𝑖
𝑡 = 𝑘𝑖𝑓𝑠𝑟 + 𝑓𝑢(𝑟,𝑗) = 𝑘𝑖𝑓𝑠𝑖 + 𝑓𝑢(𝑖,𝑗) + 𝜀(𝑖,𝑗), 𝐹̃𝑙

𝑡 = 𝑘𝑙𝑓𝑠𝑙 +

𝑓𝑢(𝑙,𝑗) + 𝜀(𝑙,𝑗)and substituting 𝑓𝑢(𝑖,𝑗) − 𝑓𝑢(𝑙,𝑗) = 𝑘̄𝑗𝑓𝑠𝑗 −

𝑘̄𝑖𝑓𝑠𝑖  from (33) have the following equation:  

(34) 

𝐷𝑖𝑙 = |𝐹̃𝑖
𝑡 − 𝐹̃𝑙

𝑡| = 

|(𝑘𝑖 − 𝑘̄𝑖)𝑓𝑠𝑖 − (𝑘𝑙 − 𝑘̄𝑙)𝑓𝑠𝑙 + 𝜀(𝑖,𝑗) −

𝜀(𝑙,𝑗)| = |𝑘𝑖
′𝑓𝑠𝑖 − 𝑘𝑙

′𝑓𝑠𝑙 + 𝜀(𝑖,𝑗) − 𝜀(𝑙,𝑗)|   

Now, there are two states. For the correct estimation 

we have 𝑘𝑖 = 𝑘̄𝑖, 𝑘𝑙 = 𝑘̄𝑙 thus 𝑘𝑖
′ = 0 and 𝑘𝑙

′ = 0 and 𝐷𝑖𝑙 

in (34) can be rewritten: 

  (35) 
𝐷𝑖𝑙 = |𝜀(𝑖,𝑗) − 𝜀(𝑙,𝑗)| ≤ 2𝜀𝑚𝑎𝑥 ; 𝑓or the  

correct estimation  

For incorrect estimation 𝑘𝑖
′ ≠ 0 and 𝑘𝑙

′ ≠ 0. Thus, for 

the incorrect estimation can write: 

(36) 

𝐷𝑖𝑙 = |𝑘𝑖
′𝑓𝑠𝑖 − 𝑘𝑙

′𝑓𝑠𝑙 + 𝜀(𝑖,𝑗) − 𝜀(𝑙,𝑗)| ≥ 

|𝑘𝑖
′𝑓𝑠𝑖 − 𝑘𝑙

′𝑓𝑠𝑙| − |𝜀(𝑖,𝑗) − 𝜀(𝑙,𝑗)| ≥ 

|𝑘𝑖
′𝑓𝑠𝑖 − 𝑘𝑙

′𝑓𝑠𝑙| − 2𝜀𝑚𝑎𝑥    
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 Based on (32) we have |𝑘𝑟
′ 𝑓𝑠𝑟 − 𝑘𝑠

′ 𝑓𝑠𝑠| > 4𝜀𝑚𝑎𝑥 . 

Thus, for the incorrect estimation can write: 

(37) 
𝐷𝑟𝑠 ≥ 4𝜀𝑚𝑎𝑥 − 2𝜀𝑚𝑎𝑥 = 2𝜀𝑚𝑎𝑥 ;  
𝑓or the incorrect estimation 

When one of 𝐹𝑖 ′𝑠 is estimated incorrectly 𝐷𝑖𝑙 = |𝐹̃𝑖
𝑡 −

𝐹̃𝑙
𝑡| ≥ 2𝜀𝑚𝑎𝑥  in 𝐷𝐼𝑆𝑓̂𝑢(𝑘,𝑗)

then 
( , )

ˆ max2
u k jf

DIS  or 

can write: 

(38) 

( , )

( , )

ˆ max

ˆ max

2 for thecorrect

estimation

2 for theincorrect

estimation

u k j

u k j

f

f

DIS

DIS














 

It means by minimizing 𝐷𝐼𝑆𝑓̂𝑢(𝑘,𝑗)
in (29) as (31) when 

noises are less that 𝜀𝑚𝑎𝑥(𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) in (32) the frequencies 

can be determined uniquely. 

Results and Discussion 

A.  The Maximum Possible Dynamic Range of Under-
Sampling Frequency Detection 

 To demonstrate the proposed approach, consider the 

largest dynamic range for 𝜌 = 2 input frequencies 

(integers) with 𝛾 = 6 sensors and sampling frequencies 

(moduli) 𝛤 = ∪

𝑟=1
𝛾

𝑓𝑠𝑟 = {3,5,7,11,13,17}Hz. According to 

Proposition 1, the dynamic range is 𝐹𝑚𝑎𝑥 =

𝑚𝑖𝑛
1≤𝑟1≤...≤.𝑟3≤𝛾

𝑙𝑐𝑚{𝑓𝑠(𝑟1), . . . , 𝑓𝑠(𝑟3)} = 𝑙𝑐𝑚{3,5,7} = 105. 

From Proposition 2 the dynamic range is 𝐹𝑚𝑎𝑥 =

𝑚𝑖𝑛
𝐼1∪...∪𝐼𝜌=𝛤

𝑚𝑎𝑥{∏ 𝑓𝑠𝑖 ,𝑓𝑠𝑖∈𝐼1 . . . , ∏ 𝑓𝑠𝑖𝑓𝑠𝑖∈𝐼𝜌 } = 516 for 𝐼1 =

{3,11,17} and 𝐼2 = {5,7,13}. Based on (17) 𝐹1
′ =

𝑘1,1𝑙𝑐𝑚(𝐼1) and 𝐹2
′ = 𝑘2,1𝑙𝑐𝑚(𝐼2), and 𝐹2 can be obtained 

from two formulas 𝐹2 = 𝑘1,1𝑙𝑐𝑚(𝐼1) −𝑘1,2𝑙𝑐𝑚(𝐼2) and 

𝐹2 = 𝑘2,1𝑙𝑐𝑚(𝐼2) −𝑘2,2𝑙𝑐𝑚(𝐼1). Based on Procedure 1 the 

minimum possible value for 𝐹2 that satisfies both formulas 

are obtained when 𝑘1,1 = 1, 𝑘2,1 = 1, 𝑘2,1 = −1, 𝑘2,2 =

−1, 𝐼1 = {3,11,17}, and 𝐼2 = {5,7,13}. Thus, 𝐹1
′ = 561Hz, 

𝐹2
′ = 455Hz and 𝐹2 = 1016Hz. Two sets 𝑋 = {𝐹1, 𝐹2} =

{0,1016} and 𝑌 = {𝐹1
′ , 𝐹2

′ } = {561,455} have the same 

remainders and 𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥( 𝑋) = 1016Hz. Similarly, 

based on Corollary 1 we have 𝐹𝑚𝑎𝑥 = 𝑚𝑖𝑛
𝐼1𝑈𝐼2=𝛤

{𝑙𝑐𝑚(𝐼1) + 

𝑙𝑐𝑚(𝐼2)} where 𝐼1 = {3,11,17}, 𝐼2 = {5,7,13}, 𝐹𝑚𝑎𝑥 =

1016Hz. The dynamic range of two integers without 

conditions on them for the proposed approach and 

previous works has been shown in Table. 2.  

As discussed previously Proposition 3 [23] which is just 

for two integers is a special case of proposed proposition 

7 when 𝜌 = 2. 

 

 

Table. 2: The dynamic range for two frequencies (integers) 

 

Approach Dynamic 

range 

Proposition 1 [29], [30] 105 

Proposition 2 [19] 561 

Proposition 3 [17], [23], available just for 

two integers 

1016 

Proposition 7 (proposed approach) 1016 

 

Now, consider the largest dynamic range for 𝜌 = 3 

input frequencies (integers) for moduli 𝛤 =

{3,5,7,11,13,17}. Based on corollary 2 each six disjoint 

partitions of 𝛤 i.e. ∪

𝑖=1
6

𝐼𝑖 = 𝛤 in matrix form in (18) will 

satisfy (21) or, equivalently, admit the conditions 

∪

𝑖=1
𝜌

𝑎(𝑙,𝑖) = ∪

𝑖=1
𝜌

[ ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)] = 𝛤, 𝑙 = 1, . . . , 𝜌; ∪

𝑙=1
𝜌

𝑎(𝑙,𝑖) =

∪

𝑙=1
𝜌

[ ∪

ℎ=1
𝛼(𝑙,𝑖)

𝑓
𝑠𝑟ℎ

(𝑙,𝑖)] = 𝛤, 𝑖 = 1, . . . , 𝜌 in proposition 7. Now, 

the obtained 𝑎(𝑙,𝑖)’s by corollary 2 can be used in steps 3 

and 4 of Procedure 1 to find 𝐹𝑚𝑎𝑥  in the following. By 

considering initial largest dynamic range as 𝐹𝑚𝑎𝑥
𝐼𝑛𝑖 =

1000Hz in procedure 1, we have 𝐼1 = {𝑓𝑠4}, 𝐼2 =

{𝑓𝑠1, 𝑓𝑠3}, 𝐼3 = {𝑓𝑠5}, 𝐼4 = 𝜙, 𝐼5 = {𝑓𝑠2}, and 𝐼6 = {𝑓𝑠6}. 

Thus, based on (18) there is following relation: 

(39) 

 

1 2 3

'
1 (1,1) (1,2) (1,3)

'
2 (2,1) (2,2) (2,3)

'
(3,1) (3,2) (3,3)3

F F F

F a a a

F a a a

a a aF

 
 
 
 
  

 

 

1 2 3

'
1 4 1 3 5 6 5 6
'

2 5 1 3 2 4 6

'
2 6 4 1 3 53

{ , , }{ , } { , }

{ } { , , } { , }

{ , } { } { , , }

s s s s s s s

s s s s s s

s s s s s s

F F F

F f f f f f f f

F f f f f f f

f f f f f fF

 
 
 
  

 

The 𝑘(𝑖,𝑗)’s that satisfy (11) and (19) are as: 
 

 

 

 

 

 

 

 

 

 

 

Based on Step 3 of Procedure 1 the 𝐹1 = 0 and 𝐹1
′ −

𝐹1 = 𝑘(1,1)𝑙𝑐𝑚(𝑎(1,1)) = 𝑘(1,1)𝑙𝑐𝑚({𝑓𝑠4, 𝑓𝑠1, 𝑓𝑠3}) = 1 ×

(40) 

1 2 3

'
1 (1,1) (1,2) (1,3)

'
2 (2,1) (2,2) (2,3)

'
(3,1) (3,2) (3,3)3

1 1 131

25 3 3

4 30 2

F F F

F k k k

F k k k

k k kF

 
 

= 
 
  

− 
 

−
 
 − 
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𝑙𝑐𝑚({11,3,7}) = 231 and 𝐹1
′ = 231. Other frequencies 

also is obtained based on Procedure 1. For the obtained 

𝑋 = {𝐹1, 𝐹2, 𝐹3} = {0,10,886} and 𝑌 = {𝐹1
′ , 𝐹2

′ , 𝐹3
′ } =

{231,325,340}, the largest dynamic range is 𝐹𝑚𝑎𝑥 =

𝑚𝑎𝑥( 𝑋) = 886Hz which for all 𝐹𝑙
′’s and 𝐹𝑖’s should 

satisfies (11), i.e. 𝐹𝑙
′ − 𝐹𝑖 = 𝑘(𝑙,𝑖)𝑙𝑐𝑚(𝑎(𝑙, 𝑖)) ; 𝑙 =

1, . . . , 𝜌, 𝑖 = 1, . . . , 𝜌. As an example, for 𝐹2
′ − 𝐹3 =

𝑘(2,3)𝑙𝑐𝑚(𝑎(2,3)) we have 325 − 886 = −3 ×

𝑙𝑐𝑚({11,17}). It is notable that, the large dynamic range 

by previous studies based on proposition 2 is 𝐹𝑚𝑎𝑥 =

𝑚𝑖𝑛
𝐼1∪...∪𝐼𝜌=𝛤

𝑚𝑎𝑥{∏ 𝑓𝑠𝑖 ,𝑓𝑠𝑖∈𝐼1
. . . , ∏ 𝑓𝑠𝑖𝑓𝑠𝑖∈𝐼𝜌

}= 

𝑚𝑎𝑥{ 𝑙𝑐𝑚({3,17}), 𝑙𝑐𝑚({5,13}), 𝑙𝑐𝑚({7,11})} = 77. The 

dynamic range of three integers without conditions on 

them for the proposed approach and previous works has 

been shown in Table. 3. 
 
 

Table. 3: The dynamic range for three frequencies (integers) 

 

Approach Dynamic range 

Proposition 1 [19], [30] 17 

Proposition 2 [19] 77 

Proposition 7 (proposed approach) 886 

For previous works, the large dynamic range for 

unambiguous reconstruction of input frequencies is 

𝐹𝑚𝑎𝑥 = 77Hz while the larges dynamic range obtained 

by proposed approach is 𝐹𝑚𝑎𝑥 = 886 Hz that is 11.5 

times greater than the previous works. 

Assume a digital instance frequency measurement 

(DIFM) equipped to ADCs with sampling rates 𝛤 =

∪

𝑟=1
𝛾

𝑓𝑠𝑟 = {3,5,7,11,13,17} × 107 = {30,50,. 

70,110,130,170} × 𝑀𝐻𝑧what is the maximum possible 

range when 3 input frequencies come simultaneously? 

Before our work designer could claim designed DIFM 

guarantees reconstruction 3 simultaneous input 

frequencies uniquely until 77 × 107𝐻𝑧 = 770𝑀𝐻𝑧 now 

based on maximum upper bound obtained by proposed 

Proposition 7 can claim DIFM can reconstruct frequencies 

uniquely until886 × 107𝐻𝑧 = 8.86𝐺𝐻𝑧. For the user of 

DIFM is also important to know for a higher range of 

frequency can guarantee to reconstruct frequencies. 

B.   The Under-Sampling Frequency Estimation for Noisy 
Waveform 

This section, simulates the effect of noises on 

frequency estimations when sampling frequencies are 

very low.  

The simulations are conducted for appropriate and 

non-appropriate under-sampling frequencies. For the first 

simulation, the maximum bound of frequencies is 

considered as a large bound obtained in the previous 

works for 𝜌 = 3 input frequencies and low sampling 

frequencies 𝛤 = {3,5,7,11,13,17}Hz.  

A large bound as shown in Table. 3 for the previous 

works is 77 Hz. The maximum tolerable noise for this 

bound based on Theorem 2 of [2] for complex waveform 

(not real waveform) and for three input frequencies is 0.6.  

In this work, we could find the maximum possible range 

for unique detection of multiple frequencies when 

sampling with very low sampling frequencies in 

Proposition 7 that for mentioned sampling frequencies 

(i.e. 𝛤 ) is obtained 886Hz in the previous section. 

Simulations have been done for 100000 random 

frequencies per each upper bound of noise for under-

sampled frequencies. For the previous works a large 

obtained dynamic range that guarantee of unique 

detection was 77 Hz. Thus, random input frequencies are 

chosen in the range [0,77) in Fig. 3. The newly obtained 

upper bound frequency for unique detection of input 

frequencies is 886Hz. Consequently, random input 

frequencies are chosen in the range [0,886) in Fig. 4.  

The procedure for detection frequencies was 

introduced in Procedure 2. The maximum tolerable noise 

for the proposed approach for three input frequencies 

and 𝛤 under-sampling frequencies when 𝐹𝑚𝑎𝑥 = 886 

based on proposed Proposition 8 is 𝜀𝑚𝑎𝑥(𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) =
𝜒𝑚𝑖𝑛

4
=

2

4
= 0.25.  

Thus, for the proposed approach the maximum unique 

detectable frequencies and the maximum tolerable 

frequency noises are 886Hz and 0.25Hz against 77 Hz and 

0.6 Hz for the previous works. For non-appropriate under-

sampling frequencies like 𝛤𝑛𝑜𝑛−𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 =

{5,6,8,12,15,18}Hz that are greater than their 

counterpart sampling frequencies in 𝛤 but the maximum 

tolerable noise for this set and 𝐹𝑚𝑎𝑥 = 886 based on 

proposed Proposition 8 is 𝜀𝑚𝑎𝑥(𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) =
𝜒𝑚𝑖𝑛

4
=

0

4
=

0. Thus, for non-appropriate low sampling frequencies 

even without the noise we cannot detect frequencies 

uniquely as shown in Fig. 5. 

 
 

Fig. 3: Under-sampling frequency detection for noisy under-

sampled frequencies of multiple input frequencies within range 

[0,77) and appropriate sampling frequencies 𝛤. 
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Fig. 4: Under-sampling frequency detection for noisy under-

sampled frequencies of multiple input frequencies with range 

[0,886) (more than 11 times greater range than previous 

studies) and appropriate sampling frequencies 𝛤. 
 

 

 
Fig. 5: Under-sampling frequency detection for noisy under-

sampled frequencies for multiple input frequencies with range 

[0,886) and non-appropriate sampling frequencies 

𝛤𝑛𝑜𝑛−𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒. 
 

Conclusion 

This study proposed propositions and a procedure to 

find the largest possible dynamic range for frequencies in 

a sinusoidal waveform with any number of frequencies for 

the unambiguous reconstruction of the frequencies of the 

waveform with very low sampling rates.  

Furthermore, the proposed propositions were 

specified and simplified for waveforms with two and three 

frequencies and showed that the previous works for the 

maximum possible range for reconstruction frequencies 

of waveforms with two frequencies are a special case of 

our work.  

It has been shown that for some cases the proposed 

approach could achieve 11.5 times greater dynamic range 

for the unambiguous reconstruction the frequencies of an 

under-sampled waveform with very low sampling rates.  

A procedure for multiple frequencies detection from 

reminders (under-sampled frequencies) was proposed 

and maximum tolerable noises of under-sampled 

frequencies for unique detection were obtained. There 

are two main disadvantages when using of under-

sampling approaches.  

When error in under-sampled frequencies is more than 

tolerable noise the origin frequencies cannot be 

reconstructed uniquely.  

It is also necessary to have a computation unite to 

reconstruct origin frequencies from under-sampled 

frequencies. However, using the under-sampling 

approaches is obligatory in some situations such as the 

sampling rates of ADCs are very less than the range of 

frequencies or because of energy consumption or price 

cannot use more ADCs to cover a high range of 

frequencies. 

In this study, the maximum upper bound for any 

number of the input frequencies for complex waveform 

was investigated. In some applications, direct sampling 

from the real waveform is needed because of hardware 

limitations.  

The relation between actual frequencies and under-

sampled frequencies from under-sampled waveform 

different for complex sampling and real (direct) sampling. 

Finding the maximum upper bound for any number of 

input frequencies from directly under-sampled waveform 

(none complex waveform) is suggested for future work. 
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