
J. Electr. Comput. Eng. Innovations, 11(2): 253-262, 2023 

 

 

 

Doi: 10.22061/jecei.2022.9191.586                                                                            253 

 

Journal of Electrical and Computer Engineering Innovations 

(JECEI) 

Journal homepage: http://www.jecei.sru.ac.ir 

Research paper 

Model Predictive Control of Linear Induction Motor Drive with End 
Effect Consideration 

P. Hamedani 1,*, S. Sadr2 
1Department of Railway Engineering and Transportation Planning, University of Isfahan, Isfahan, Iran.  
2Department of Electrical Engineering, Tafresh University, Tafresh, Iran. 

 

Article Info                         Abstract 

 

Article History: 
Received 28 June 2022 
Reviewed 29 July 2022 
Revised 01 August 2022 
Accepted 22 October 2022  
 

 

Background and Objectives: Linear Induction Motors (LIMs) are favorite 
machines utilized in various industrial applications. But, due to the end effect 
phenomena, control of a LIM drive is more complicated than rotational machine 
drives. Therefore, selecting the proper control strategy for a LIM drive has been a 
significant challenge for the researchers.  
Methods: This paper concentrates on a new Model Predictive Control (MPC) of 
LIM drives which considers the end effect.  
Accordingly, the discrete-time model of the LIM with end effect is extracted, and 
the required flowchart used for the MPC of LIM drive has been presented in this 
paper. 
Results: To study the effectiveness of the suggested strategy, simulation results 
of a LIM drive with MPC are presented and compared to the traditional Indirect 
Field Oriented Control (IFOC) of LIM drive. Simulations have been carried out 
using Matlab. The end effect has been considered in the LIM model and control 
strategies. 
Conclusion: Simulation results validate that the suggested MPC of LIM drive 
yields excellent dynamic characteristics such as fast speed response with no 
overshoot. Moreover, in comparison to the traditional IFOC method, the 
suggested MPC strategy offers lower current ripple and lower electromagnetic 
force ripple, and therefore, it is suitable for industrial drive applications. 
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Introduction 

Linear electrical motors, including linear induction 

motors and linear synchronous motors (LSM), are 

popular machine types in different industries like 

electrical railway applications [1]-[12]. Linear induction 

machines, in comparison to synchronous counterparts, 

have a simple and robust structure, lower cost and 

maintenance, and self-starting thrust. These advantages 

make LIMs more prominent in industrial applications 

than SIMs [12].  

However, speed control of LIMs has more difficulties 

than SIMs [13]-[15]. Until now, different control 

strategies have been utilized for rotational induction 

motors, which can also be extended to LIMs, such as 

[16]-[17]: 

• Scalar control methods, for example constant V/f 

method  

• Field Oriented Control (FOC) methods 

• Direct Torque Control (DTC) technique 

• MPC 

FOC and DTC have been used in many industrial and 

domestic applications. However, they have some issues. 

To overcome these issues, new variations have been 

proposed, which usually complicate the implementation 
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of the control strategy in practice [18]. In the past 

decade, with the development of digital signal 

processors (DSPs), MPC has been proposed as an 

interesting solution [18]-[19].  

MPC approach needs the mathematical model of the 

system for predicting variables. A selected cost function 

is calculated for all possible switching states in each 

sampling time. Finally, the optimal switching states that 

minimize the cost function are chosen for firing the 

inverter switches in the next sampling time [18]-[21]. 

The main benefits of MPC are simple implementation 

and nonlinear solutions [18]-[20]. 

Although the PMC strategy has been a very popular 

control strategy for different electrical motor drives [22]-

[23], in the case of LIMs, only a few works have been 

done until now [24]. In [25] and [26], MPC of LIM drive 

has been reported. But in these papers, the end effect 

has been counted in the direct axis circuit model and in 

the quadrature axis circuit model, the end effect is not 

considered. But, to accurately model a LIM, the end 

effect should be taken into account in both d- and q-axis 

equivalent circuits [27]-[28]. Moreover, in [25] and [26], 

the delay compensation method has not been studied in 

the MPC algorithm. By applying the delay compensation 

method, delay time that arises because of the large 

number of calculations will be compensated and the 

current ripple will be improved [30]. 

Consequently, this paper aims to investigate a new 

strategy for predictive control of the LIM drive 

considering the end effect. To reduce the computational 

time delay, a delay compensation methodology is used 

in the MPC of the LIM drive. Moreover, in this work, 

MPC and IFOC of the LIM drive are discussed from their 

basic theoretical concepts. The performance of these 

strategies is compared under transient and steady-state 

conditions. The same parameters and operating 

conditions have been considered for both approaches to 

guarantee a fair comparison.   

The following sections of the paper will present the 

MPC strategy (including the discrete-time model of LIM 

and the MPC algorithm of LIM drive), the IFOC strategy 

(including the dynamic model of LIM and the vector 

control method of LIM drive), results, and the 

conclusion. 

Discrete-time Model of the LIM with End Effect 

In a three-phase LIM, the primary voltage equation 

can be written as follows: 

dt

d s
ssss

ψ
LiRV +=

          

                                                 (1) 

Table 1 provides the notation for parameters and 

variables used in this paper.  

The primary and secondary flux equations can be 

expressed as [21]: 

rmsss iLiLψ +=

          

                                                      (2) 

smrrr iLiLψ +=

          

                                                     (3) 
 

Table 1: Notation for parameters and variables 

 

symbol Description 

Vs Primary voltage vector 

is Primary current vector 

ψs Primary flux vector 

Rs Primary resistance matrix 

Ls Primary inductance matrix 

ir Secondary current vector 

ψr Secondary flux vector 

Lr Secondary inductance matrix 

Lm Magnetizing inductance matrix 

F Electromagnetic force 

τ Motor pole pitch 

k Sampling instant 

Ts Sampling time 

Rs Primary resistance  

Ls Primary inductance 

Rr Secondary resistance  

Lr Secondary inductance 

Lm Magnetizing inductance 

0mL  Magnetizing inductance at zero 
speed 

D  Motor length 

Vr  Motor speed 

λψ Weighting factor in cost function 

ωr Angular velocity of LIM 

ωe Angular velocity of reference frame 

λdr d-axis secondary flux 
 

The electromagnetic force can be described as [28]: 

 ssF iψIm
2

3




=

          

                                                     (4) 

in which sψ is the complex conjugate value of ψs. 

The discrete-time model of the LIM can be calculated 

from (1)-(2) using the Euler forward approximation [21]: 
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Fig. 1:  Block diagram of MPC for the LIM drive.  

 
To consider the end effect in the LIM model, the 

magnetizing inductance must be modified according to 

Duncan’s model [28]:   

( )( )QfLL mm −= 1
0

                                                           (10) 
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( ) ( ) QeQf Q /1 −−= ,  
rr

r

VL

RD
Q

.

.
                                     (11) 

Model Predictive Control of LIM drive 

Model predictive control of the LIM drive is 

performed in the α-β stationary reference frame. 

Therefore, Clark's transformation is utilized to convert a, 

b, and c primary voltage and currents to α and β primary 

voltage and currents [30]:  
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 VjVs +=V

  

 ,  ijis +=i                                       (13) 

in which f donates the voltage or current variables. 

Fig. 1 illustrates the diagram of the MPC-based LIM 

drive. A discrete PI controller with unti-windup produces 

the reference force, F*. The MPC diagram calculates the 

future values of primary flux and force utilizing (5)-(8). 

The predicted and command values of the primary flux 

and force are compared in a cost function. All possible 

switching conditions are considered. In a 2-level voltage 

source inverter, eight various switching combinations 

happen. The one that minimizes the cost function is 

selected as the next switching condition applied to the 

inverter.  

The cost function is considered as follows:  

)1()1( ** +−++−= kkFFg ss ψψ                          (14) 

The weighting factor is considered as the ratio of the 

rated force and rated stator flux: 

ns

nF




2
=                                                                          (15) 

To moderate the time delay that arises because of the 

high number of computations, the delay compensation 

methodology has been proposed [30]. This method 

calculates the predicted values in the next shifted 

forward sample time [30]: 
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Consequently, the cost function can be written as: 

)2()2( ** +−++−= kkFFg ss ψψ                          (20) 

Fig. 2 shows the flowchart for the MPC for LIM drive 

with delay compensation.  

Dynamic Model of the LIM with End Effect 

IFOC of the LIM drive is performed in the q-d 

synchronous rotational reference frame. Therefore, 

Park's transformation is utilized to convert a, b, and c 

variables to the q and d variables. Primary and secondary 

voltage equations are written as [29]:  

qsdseqssqs piRv  ++=                                                 (21) 

dsqsedssds piRv  +−=                                                 (22) 
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0)( =+−+= qrdrreqrrqr piRv                              (23) 

0)( =+−−= drqrredrrdr piRv                              (24) 

Primary and secondary flux linkage equations are written 

as [29]:  
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The LIM thrust can be written as: 
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Fig. 2:  Flowchart for MPC of the LIM drive. 
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IFOC of LIM Drive  

Fig. 3 shows the IFOC diagram for the LIM drive. To 

decouple the flux and the LIM force, the below 

assumption is made in this strategy [28]: 

0=qr    , 0=
dt

d qr
                                                          (30) 

As a result and by supposing 0== drqr vv , the slip 

frequency ( resl  − ), 
dr , and the LIM force can 

be computed as [28]: 
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The IFOC scheme is composed of two control loops. 

The outer loop controls the LIM speed using a PI 

controller and generates the reference q-axis current 

( *
qsi ). The inner loop controls the LIM phase currents 

using a hysteresis controller and produces the switching 

pulses of the inverter.  

The slip frequency (ωsl) and the reference d-axis 

current ( *
dsi ) are generated using (31) and (32), 

respectively.  

 

As shown in Fig. 3, ωsl and *
dsi  are calculated using 

gains K1 and K2 which depend on the end effect and 

machine velocity. 

Results and Discussion 

To investigate the effectiveness of the MPC of LIM 

drive with end effect, simulation results are provided in 

this section. The end effect is considered in the LIM 

model and MPC strategy. Moreover, the results are 

compared with the IFOC of LIM drive with the end effect. 

Simulations are implemented using Matlab. In both 

methods, the same parameters and conditions have 

been used for the simulations. Table 2 shows the 

simulation parameters. The utilized gains in the PI 

controller are Ki = Kp = 50. 

 
Table 2: Simulation Parameters of LIM drive. 

 

Phase voltage 220 V Rr 0.843 Ω 

Nominal current 93.65 A Ls 4.5 mH 

Power factor 0.4884 Lm 3 mH 

Poles 4 Lr 3.1 mH 

τ 0.1024 m λ*dr 0.24 Wb 

D 0.413 m M 29.34 kg 

Rs 0.049 Ω Rated Load 879 N 

 
 

Fig. 3:  Block diagram of IFOC for the LIM drive.  
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Fig. 4:  Speed response, electromagnetic force response, and phase current LIM drive with MPC method. 

 

 
Fig. 5:  Phase current ripple of LIM drive with MPC method.  

 
Fig. 6:  Electromagnetic force ripple of LIM drive with MPC method.  
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Fig. 7:  Speed response, electromagnetic force response, and phase current of LIM drive with IFOC.  
 

 
 

Fig. 8:  Phase current ripple of LIM drive with IFOC method.  
 

 
 

Fig. 9:  Electromagnetic force ripple of LIM drive with IFOC method. 
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At the start, a reference speed equal to 10 m/sec is 

applied, and it changes to -10 m/sec at t=3 sec. The LIM 

drive starts in no-load condition, and an external load is 

applied to the machine at t=1.5 sec. For the IFOC 

method, the hysteresis band has been taken equal to 0.5 

A.  

Fig. 4 illustrates the speed, electromagnetic force, and 

phase current of the LIM drive with the MPC method, 

respectively. Clearly, the actual LIM speed follows the 

reference speed in motoring and braking conditions. Fig. 

5 shows the phase current ripple of the LIM drive with 

the MPC method. Fig. 6 represents the electromagnetic 

force ripple of the LIM drive with MPC method.  

According to Fig. 6, the LIM force tracks the external 

load in motoring and braking conditions.  

Fig. 7 compares the speed, electromagnetic force, and 

phase current of the LIM drive with the IFOC method, 

respectively. Like the case of the MPC method, in the 

IFOC strategy, the actual LIM speed tracks the reference 

speed in motoring and braking conditions. Fig. 8 shows 

the phase current ripple of the LIM drive with the IFOC 

method. Fig. 9 represents the electromagnetic force 

ripple of the LIM drive with the IFOC method.   

Comparison of Fig. 4 with Fig. 7 manifest that both 

methods yield similar dynamic performance in the speed 

response. However, a comparison of Fig. 5 with Fig. 8 

shows that the MPC method has a lower current ripple. 

Moreover, a comparison of Fig. 6 with Fig. 9 

demonstrates that the MPC method has a lower 

electromagnetic force ripple. Table 3 shows the current 

ripple and force ripple of the MPC and IFOC methods.  

 
Table 3: Comparison of current ripple and force ripple in MPC 
and IFOC methods of LIM drive. 

 

  IFOC MPC 

Current ripple 

Vr* = 10 m/sec 3 A 2.5 A 

Vr* = -10 m/sec 5 A 3.5 A 

Force ripple 

Vr* = 10 m/sec 48 A 22 A 

Vr* = -10 m/sec 60 A 46 A 

 

Conclusion 

This work proposes the MPC strategy for LIM drives, 

considering the end effect. The discrete-time model of 

the LIM with end effect has been extracted, and the 

required flowchart utilized for the model predictive 

control of LIM drive has been presented. To evaluate the 

accuracy of the suggested strategy, MPC is compared to 

the traditional IFOC for the LIM drive.  

Simulation results manifest that the suggested model 

predictive control of LIM drive achieves perfect dynamic 

characteristics such as fast speed response with no 

overshoot. In addition, compared to the traditional 

indirect field-oriented control, the proposed model 

predictive control offers lower current ripple and lower 

electromagnetic force ripple.  
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