
J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 

 

 

 

Doi: 10.22061/JECEI.2022.8723.546            21 

 

Journal of Electrical and Computer Engineering Innovations 

(JECEI) 

Journal homepage: http://www.jecei.sru.ac.ir 

Research paper 

Reinforcement Learning-based Load Controller in IP Multimedia 
Subsystems 

M. Khazaei* 
Computer Engineering Department, Kermanshah University of Technology, Kermanshah, Iran. 

 

Article Info                      Abstract 

 

Article History: 
Received 29 January 2022 
Reviewed 07 March 2022 
Revised 22 April 2022 
Accepted 01 May 2022  

 

 

Background and Objectives: IP multimedia subsystems (IMS) have been introduced 
as the Next Generation Network (NGN) platform while considering Session 
Initiation Protocol (SIP) as the signaling protocol. SIP lacks a proper overload 
mechanism. Hence, this challenge causes decline in the multimedia QoS. The main 
propose of overload control mechanism is to keep the network throughput at the 
same network capacity with overload. 
Methods: NGN distributed with IMS is a complex innovative network consisting of 
interacting subsystems. Hence, multi-agent systems (MAS) receiving further 
attention for solving complex problems can solve the problem of overload in these 
networks. To this end, each IMS server is considered as an intelligent agent that 
can learn and negotiate with other agents while maintaining autonomy, thus 
eliminating the overload by communication and knowledge transfer between the 
agents. In the present research, using MAS and their properties, the intelligent hop 
by hop method is provided based on Q-learning and negotiation capability for the 
first time. 
Results: In the proposed method, parameters of overload controller are obtained 
by reinforcement learning. In order to check the validity of controller performance, 
a comparison is made with the similar method in which the optimal parameters are 
achieved based on trial and error. The result of the comparison confirms the 
validity of the proposed method. In order to evaluate the efficiency of the learner 
method, it is compared with similar and standard methods, for which the results 
are compared to show performance. The results show, the proposed method has 
approximately improved the throughput by 13%, the delay by 49% and the number 
of rejected sessions by 17% compare with methods, passing control messages 
through the network such as CPU occupancy methods. While compare with 
external controller methods like holonic, throughput is improved by 1% and the 
number of rejected requests is decreased by 10%, but delay is increased by 6% due 
to the convergence time of the learning and negotiation process. 
Conclusion: To overcome overload, complex IMS servers are considered as learner 
and negotiator agents. This is a new method to achieve the required parameters 
without relying on expert knowledge or person as well as, heterogeneous IMS 
entities can be inserted into the problem to complete study in future. 

 

Keywords: 
IMS  

SIP 

Overload 

Multi-agent system 

Reinforcement learning 

 

 

 

*Corresponding Author’s 
Email Address: 
m.khazaei@kut.ac.ir 

 

 

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 

Introduction 
Packet switching allows service providers to provide 

multimedia applications to their subscribers. The future 

approach of the telecommunications industry is towards 

NGN, in which all types of fixed and mobile access 

networks are integrated based on the IP platform. NGN 

can provide multimedia services based on the standard 

IMS platform. IMS has been used by most mobile 

https://dx.doi.org/10.22061/jecei.2022.8723.546
http://jecei.sru.ac.ir/
mailto:m.khazaei@kut.ac.ir
http://creativecommons.org/licenses/by/4.0/


M. Khazaei 
 

22  J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 
 

network operators since the third generation. In this 

regard, the SIP protocol has been adopted by 3GGP as 

the basic IMS architecture. Most cell phones and 

wireless devices support SIP as a multimedia session 

protocol [1]-[3]. 

SIP lacks a proper overload mechanism despite its 

positive features such as text-based, IP-based, data-

independent, relocation support, and end-to-end 

properties. It uses the retransmitting mechanism to deal 

with packet loss when running on the UDP protocol. This 

is done by keeping different timers for each request to 

be sent. When the relevant response is not received 

within a specified time, the requests will be resent, 

which makes the situation worse in case of overload [4]. 

When the SIP encounters an overload, the overload 

control mechanism is activated rejecting the new session 

request messages by sending a 503 response. In this 

method, the messages must first be analyzed to 

generate a rejection response for new requests. The 

capacity devoted by the server to analyze messages and 

generate reject responses is wasted. All the server 

capacity is spent on rejecting repeated requests in 

addition to the negative effect on the overload. 

Therefore, it is inevitable to design an efficient overload 

controller for IMS. The overload controller must be able 

to gather the information needed to decide about 

overload. Based on this information, it must determine 

the appropriate response to the overload and apply it to 

the network. Depending on the type of overload and the 

location of the controller, different methods and policies 

have been proposed to deal with the overload [5]. 

Due to the complexity and heuristic nature of the 

overload problem in IMS, approximate mathematical or 

heuristic methods are used in designing the controller 

leading to occasionally a huge deal of errors and not 

acceptable answers. Therefore, in this paper, a new 

machine learning method is proposed to design an 

overload controller. In this regard, IMS servers are 

considered as intelligent learning agents able to 

negotiate with other network agents. These agents learn 

the amount of tolerable load by interacting with the 

dynamic environment and through unsupervised trial 

and error, and they control the overload in the network 

by negotiating with other agents. 

In the following, the background and related works 

are given. Then, the proposed method is presented and 

the performance evaluation and analysis of the results 

are provided. Finally, deals with conclusions are 

presented. 

Related Backgrounds 

Since the papers’ objective is to design an overload 

controller based on intelligent agents in IMS, it is 

essential to explain the related concepts and works 

briefly. 

A.  Multi-Agent Systems (MAS) 

An agent is defined as a software or hardware located 

in the environment and acts autonomously to achieve its 

goals. The agent perceives the environment through its 

sensors and affects the environment through its 

stimulants. Everything around the agent except itself is 

called the agent environment. Today, the use of MAS to 

solve complex problems has received a huge deal of 

attention. MAS is made up of several agents trying to 

solve problems that are sometimes difficult and 

sometimes impossible to solve for a centralized and 

integrated system. On the other hand, communication is 

an important concept in MAS. Without communication, 

agents should rely only on decisions based on their 

observations, while communication enables agents to 

make more coordinated decisions. Negotiation is the 

dominant way to reach an agreement without the 

involvement of others to gain mutual benefit in common 

areas of interest to agents. A negotiation protocol is a 

set of rules that all agents know. In negotiation, an 

agreement is obtained when there is a common ground 

between the proposals. Agents have a personal 

preference for the outcome of the negotiation and may 

also have limitations on the use of the proposals [6], [7]. 

In learning the agents, there are problems for which 

scarce or incomplete resources exist for solving, thus, 

unsupervised learning has been considered. 

Reinforcement learning is unsupervised learning in 

which the system tries to optimize interaction with the 

dynamic environment through trial and error without 

specifying the action for the agent. Reinforcement 

learning is indeed to map different situations into 

actions to get the best results with the most reward. The 

two characteristics of "trial and error" and "reward with 

delay" are the most important characteristics of 

reinforcement learning [8]. 

Standard reinforcement learning, or Q-learning, is a 

model-independent method, in which the agent has no 

access to the transfer model. Q-learning based on 

Markov's decision-making process, with a delayed 

reward function, can learn the optimal policy. In this 

method, the agent estimates the pair (action, state) by 

continuous interaction with the environment as trial and 

error. The Q-learning steps are based on Algorithm 1. 

The algorithm starts from an initial state and reaches 

the goal state by performing a series of actions and 

receiving a reward. In this situation, the agent state is 

not changed with each action while not receiving any 

reward from the environment. The action can be 

selected by exploration and exploitation. Selection of 

action by exploration means selecting the action 

randomly regardless of the values in Q-Table. This may 

discover optimized actions not selected yet and add 



Reinforcement Learning-based Load Controller in IP Multimedia Subsystems 

 

J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023                                                                                23 
 

them to the table. In the exploitation form, the best 

action is selected based on Q-Table [9]. 
 

Algorithm 1: The Q-learning method algorithm 

Begin 
Q[states][actions]=0; 
S=Get_Current_State (); 
 
While (S! = absorption state) 
     a= Select_Action (); 
     r= Calculate_Reward (); 
     s/= Get_New_state (); 
     max=For_All_Possible_Action_Find _Max_Q (s/, a) (); 
     Q (s, a) =α*(r+max) +(1-α) *Q (s, a); 
     Update_Q_Table (); 
     S= s/; 
End While 
End 

 
In the Q-learning algorithm, α ϵ [0, 1] is the agent 

learning rate. A value of one causes the agent to 

consider only the most recent information, while zero 

leads the agent to have no learning. Parameter γ ϵ [0, 1] 

is called the discount factor. Zero means that the agent 

only considers the current reward, however, the values 

close to one cause the agent to wait a long time to reach 

a higher reward. When all pairs (action, state) are 

experienced repeatedly while reducing the learning rate 

over time, Q-learning converges with a probability of one 

to the optimal value of Q*(s,a). Some applications of 

reinforcement learning include continuity of services in 

IMS [10], [11], unsupervised learning in next-generation 

networks [12], [13], intelligent transportation systems 

and urban traffic control [9], [14], [15], management of 

wireless distributed sensor networks [16]-[18], and 

complex software systems [19]. 

B.  IP Multimedia Subsystems (IMS) 

Unlike traditional applications, the purpose of IMS is 

to integrate different types of multimedia services and 

applications and converge between wired, wireless, and 

mobile networks. Other features of IMS are control of 

sessions, development of services, Quality of services 

(QoS), and the possibility of calculating costs under a 

single standard. IMS is a packet switching network 

extending over the IP platform and has a three-tier 

architecture. The users connect to IMS using IP-based 

networks. The simplified IMS core architecture is shown 

in Fig. 1 [20], [21]. 

There are two databases in the IMS architecture 

including Home Subscriber Server (HSS) and Subscription 

Locator Function (SLF). HSS is the place for storing 

subscribers' information and related services, and SLF is 

used to find subscribers' HSS addresses. ASs provide 

multimedia value-added services. Call Session Control 

Functions (CSCF) are SIP proxy servers each with a 

specific function. Their common role is during the 

registration, session creation, and routing process. 

 

 

 

 

 

 

 

 
 
 

Fig. 1: The IMS core architecture. 

 

The servers can be configured stateful or stateless, 

depending on the situation and needs. The stateful 

server stores transaction information, however, in the 

stateless server, no transaction is created on the server, 

and the server is solely responsible for receiving and 

routing messages. P-CSCF is a stateful SIP server. This 

server is the first point of users’ contact with IMS. All 

user traffic is transferred to this server and also network 

traffic is transferred to users through this server. S-CSCF 

is also a stateful SIP server always located on a home 

network domain. This server is the central point of the 

IMS responsible for managing the registration process, 

routing, maintaining session status, and storing service 

information. All SIP signaling packets pass through the S-

CSCF to determine the next action by processing. I-CSCF 

is a stateless SIP server, contacting point of an operator 

to connect with subscribers within that operator. I-CSCF 

allocates an S-CSCF server based on the defined policies 

when registering by receiving information from the HSS. 

Another task of this server is to get the next step in 

routing through HSS as well as directing requests to the 

assigned S-CSCF or AS. 

While receiving the IP, the user receives the P-CSCF 

address and has to register in the IMS. After registration, 

the relevant P-CSCF knows the S-CSCF assigned to each 

user according to the response package. The S-CSCF also 

knows the P-CSCF to contact to reach the user. This 

information is used to establish the sessions. 

As shown in Fig. 2, when user A wants to make a 

session with user B through SIP, it sends an Invite to P-

CSCF. P-CSCS sends the packet to the S-CSCF assigned to 

A in the registration process. Based on ID B, S-CSCF finds 

the corresponding I-CSCF in domain B and delivers the 

package to it.  

By contacting the HSS, the I-CSCF finds the S-CSCF 

assigned to B and delivers the package to it. The S-CSCF, 

with the information obtained at the time of 

registration, delivers the Invite package to the P-CSCF 

and then to the B. After receiving Invite by B, the 

response is generated and sent to A of the same route as 

Invite reached. After exchanging messages, a session is 

formed between A and B [1]. 

DNS 

HSS User 

P-CSCF 

S-CSCF 

AS 

DNS 

I-CSCF 

SLF SIP 

Diameter 



M. Khazaei 
 

24  J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 
 

A SIP transaction is a request and all related 

responses exchanged between two adjacent SIP entities. 

Since in most cases the 503 mechanisms embedded in 

the SIP cannot cope with overload, an overload 

controller is inevitably required in IMS. The overload 

controller consists of three main components. The 

monitoring unit collects information from the specified 

parameters and provides them to the control function. 

The control function determines the policy and the 

amount of load received based on a defined algorithm 

and provides it to the stimulator unit, which rejects the 

overload based on the policies received [22], [23]. 

If all the controller components are on one server, 

this is called the internal method otherwise, it is termed 

external control. External controls are divided into two 

end to end and hop by hop categories.  

In the end to end method, the edge server is 

responsible for regulating the load sent to the 

overloaded server. The challenge in this method is how 

to inform the edge server about the server with overload 

and how the edge server detects the request passing 

through the overloaded server. In the hop by hop 

method, two tandem servers determine the amount of 

load sent from the server upstream to downstream by 

different policies [24], [25]. 

In the window policy, the downstream server allows 

the upstream server to send the request in the specified 

window size without receiving confirmation. The size of 

the window on the upstream server can be determined 

using incoming messages, acknowledgments, 503

messages, timers expire, or calls delay. The overloaded 

server can also dynamically and continuously estimate 

its response capacity and notify upstream servers as the 

number of windows available [24], [26]-[29]. A window-

based holonic mechanism (WHOC) is used holonic multi-

agent system to control and manage overload in SIP 

networks.  

Based on past observations, the normalized least 

mean square algorithm is used to estimate each agent 

window size. The size of the windows is adjusted in the 

way that no overload will occur in network paths, which 

could be fulfilled through using holonification properties, 

negotiation process and communications. WHOC offers 

an appropriate window size for edge servers to control 

the load from the beginning of the network and prevent 

network overload [30]. 

In the loss-based policy, the downstream server 

specifies the percentage of reduced load sent by the 

upstream servers. In this method, the rate of 

retransmissions can be reduced by modeling the 

interactions between the downstream and upstream 

servers as a controller [31]. Also, sometimes the 

upstream server predicts overload on the downstream 

server by methods such as 503 received message rates 

or uses mechanisms such as the leaky-buckets technique 

[32], [33]. Intelligent methods are provided to monitor 

the overloaded server and then prevent overload by 

classifying packets, intelligently deleting repeated 

packets, controlling active sessions and obtaining 

thresholds [34], [35].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Establishing a session between two users in two different IMS domains. 
 

In HOC, a loss-based mechanism is implemented to 

control overload, using multi-agent with holonic 

organization to implement a user perspective of fairness 

if possible. HOC uses a greedy method on the network 

graph to obtain constant holarchy. When a proxy server 

is overloaded, the sending load is adjusted from the 

source servers, causing fewer network resources to be 

involved in the overload. Load fitting is done based on 

received requests and used as predictor. Therefore, each 

holon uses the server capacity amount of its offered 

Domain of Subscriber B  Domain of Subscriber A  

 

S-CSCF 

P-CSCF 

4. Find S-CSCF 

5. Invite 

6. Invite 

7. Invite 

8. 183 

9. 183 

10. 183 

B 

P-CSCF 

S-CSCF 

1. Invite 

2. Invite 

3. Invite 

11. 183 

12. 183 

13. 183 

A
    

HSS 

I-CSCF 



Reinforcement Learning-based Load Controller in IP Multimedia Subsystems 

 

J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023                                                                                25 
 

load. In HOC, when a holon involved in overload is 

recognized with a request from the due holon, the 

overload is most likely solved because servers with high 

dependency are placed in a holon in terms of load 

exchange with each other. Complexity decreased by the 

use of holonic organization and cooperation between 

holons through the communication, agreement and 

knowledge that is exchanged among them [36]. 

In the rate-based policy, the rate of sending the 

upstream server to the downstream server is limited. 

Setting a threshold for CPU consumption and sending 

this value at regular intervals is one of these techniques 

controlling the rate to enter the requests into the 

downstream server [5], [24], [37]. In the on-off policy, 

the downstream server can stop or connect the received 

load for a while. Determining the time required to 

process messages within the downstream server queue 

and announcing the downtime to the upstream server is 

among the methods of this policy [24].  

Finally, a hop by hop method can be developed based 

on new policies, especially the concept of software 

networks, Network functions virtualization (NFV), and 

cloud environments [38]-[40]. 

Designing Load Controller  

In many IMS load control algorithms, there are 

parameters determining the efficiency of the algorithm. 

For example, in the proposed algorithms [5] a threshold 

value is considered for the amount of CPU occupation. 

Whenever the percentage of CPU occupation exceeds 

this threshold, the overload control algorithm will 

operate. Method [28] also determines a delay threshold 

in the upstream server. 

 It determines the window size in the upstream server by 

comparing the delay of the received responses with this 

threshold. The best and most accurate way to calculate 

the values of strategic parameters is to use 

mathematical relations. Nonetheless, mostly due to the 

complexity or heuristic of the method, it is not possible 

to calculate the desired values using mathematical 

equations [41]. Trial and error is another way to 

determine the values of the parameters and check the 

value producing the most optimal answer by simulating 

and placing different values. The problem with this 

method is that the obtained values  are only suitable for 

that network situation, and by changing the network 

conditions, the answers are no longer acceptable and 

the calculations must be performed again. Learning-

based methods help in such situations. According to Fig. 

2, IMS has three tandem SIP servers (S-CSCF, I-CSCF, S-

CSCF) in which the I-CSCS server is stateless not 

contributing to overload. However, the two tandem 

servers are stateful and play a role in organizing and 

managing the sessions. Since the servers connected 

through one hop, the proposed controller used the hop 

by hop overload control [42].  

As seen in Fig. 3, for each proxy server queue, two 

warning (Tw) and constraint (Tc) thresholds and thus 

three regions are defined determining the decision and 

controller response. If the number of session requests 

exceeds Tc (constraint region), requests will be rejected 

locally by messages 503. If the number is between two 

thresholds (warning region), the negotiation process 

with the upstream server begins. Nevertheless, if the 

number of requests is less than Tw, no reaction occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E2         2        1       Lmin E1          2        1       Lmin   E3           2      1         Lmin 

  TC                                          TW 

CPU 

Safe Area Warning Area Coercion Area 

L1 L2 L3 

S-CSCF                                                                                            S-CSCF 

CPU 

TC                    TW 

Coercion 
Area 

Warning 
Area 

Safe Area 
CPU 

TC                    TW 

Coercion 

Area 

Warning 

Area 
Safe Area 

Fig. 3: Two tandem servers in IMS. 

Fig. 4: Assigning states to the agent queue. 



M. Khazaei 
 

26  J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 
 

In this regard, each proxy server is defined as an 

intelligent agent with the ability to learn and negotiate. 

Agents learn the values of Tw and Tc by Q-learning 

through monitoring their resources and the knowledge 

from the environment. Q-learning allows the controller 

to be independent of expert knowledge and prior 

environmental information. Among the requisites for 

designing a Q-learning algorithm is the definition of 

states space, actions space, and appropriate reward 

function. In the designed controller, the control function 

implements the learning algorithm, the stimulator unit 

negotiates with the upstream agent, and the monitoring 

unit collects information about the queue length and the 

rate of incoming and outgoing requests. In the proposed 

controller, the monitoring unit, the control function, and 

the stimulator unit are located in the agent.  

A.  Defining Agent Q-Learning Requirements 

The actions defined for each agent determine how 

the constant queue length is divided into each region. To 

define each action by the agent, a minimum constant 

length is assigned to each region. Moreover, a certain 

number of length increases are considered as an 

extension. The action space is defined by <Na, Lmin, Nex, 

Lex>. Na indicates the number of regions, Lmin represents 

the minimum length assigned to each region, Nex 

denotes the number of extensions, and Lex indicates the 

length of each extension. Server queue length (L) is 

obtained from (1). 

𝐿 = 𝑁𝑎 ∗ 𝐿𝑚𝑖𝑛 + 𝑁𝑒𝑥 ∗ 𝐿𝑒𝑥                        (1) 

The length assigned to each region is obtained from 

(2). In Fig. 4 the length of each region is equal to the sum 

of the minimum initial lengths and the number of 

allocated extensions 

 𝐿𝑖 = 𝐿𝑚𝑖𝑛 + 𝑒𝑖 ∗ 𝐿𝑒𝑥  (2) 

where, ei is the number of extensions of the ith region. 

Since the sum of the extensions considered for all 3 

regions is constant, the method of allocating the 

extensions to each region is calculated by (3) [14]. 

∑ 𝑒𝑖 = 𝑁𝑒𝑥      ;       𝑒𝑖 ∈ 𝑁

𝑁𝑎

𝑖=1

 (3) 

The answer of (3) specifies the number of actions of 

each agent and depends on the value of Nex. As the Nex 

increases, the number of responses, and consequently 

the number of actions of each agent increase. With (4), 

the number of extensions of each region can be 

controlled by the parameter ϴ to reduce the action 

space to accelerate convergence [14]. 

∑ 𝑒𝑖 = 𝑁𝑒𝑥  ;     𝑒𝑖 ∈ 𝑁;   𝑒𝑖 ≤ 𝜃    ;    1 ≤ 𝜃 ≤ 𝑁𝑒𝑥

𝑁𝑎

𝑖=1

 (4) 

The values of the parameters used to determine the 

actions space are given in Table 1. According to these 

values, the set of actions is 19 actions, which are given in 

Table 2. The actions are selected through an exploration. 

To determine the states space, the number of 

transactions in each region is used. In this regard, the 

number of transactions in each region is arranged 

according to their order of entry and each arranged list 

corresponds to a state. The total number of states Table 

3 is equal to the sum (ten states) of the inequality 

permutations of the number of areas transactions (six 

states) plus the possibility of equalizing the number of 

areas transactions (four states). For example, if Ti 

indicates the number of transactions in the ith area, T1> 

T2> T3 will represent the highest number of transactions 

in the safe region and the lowest number of transactions 

in the constraint region. 
 

Table 1: The parameters used in determining the actions space 
 

Volumes Parameters 

110 L 

20 minL 

10 exL 

5 exN 

3 aN 

5 ϴ 

21 |Actions| 

13 |States| 

 
Table 2: The values of the length assigned to each region for 
possible actions 
 

Actions 

Coercion 
area 

Warning 
area 

Normal 
area 

Coercion 
area 

Warning 
area 

Normal 
area 

20 60 30 20 70 20 
30 50 30 30 60 20 
40 40 30 40 50 20 
50 30 30 50 40 20 
60 20 30 60 30 20 
20 40 50 70 20 20 
30 30 50 20 50 40 
40 20 50 30 40 40 
20 30 60 40 30 40 
30 20 60 50 20 40 

   20 20 70 

 
Table 3: The different states defined for each agent 

 

States 

Equality States Inequality States 
T1=T2>T3 T1>T2>T3 
T1=T3>T2 T1>T3>T2 
T2=T3>T1 T2>T1>T3 
T1=T2=T3 T2>T3>T1 

 T3>T1>T2 
 T3>T2>T1 

 



Reinforcement Learning-based Load Controller in IP Multimedia Subsystems 

 

J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023                                                                                27 
 

The directing of the agent in the states space and 

actions to achieve an optimal policy is done by the 

reward function. The reward function determines how 

much closer an agent is to a goal through a state. In the 

proposed learning method, the concept of Goodput is 

used as a reward function.  

The amount of reward received by an agent for acting 

is proportional to the amount of increase given by 

Goodput compare with the previous states. Hence, the 

values in Q-Table are updated with a delay step [35], the 

reward function for the ith agent is predicted by applying 

the Normalized Least Mean Square method (NLMS), 

Table 4. 
 

Table 4: The agents’ reward value prediction by NLMS 

 

Equations    Number     

𝑅𝑛−2 = 𝐺𝑛−1 − 𝐺̅𝑛−1 1 

𝑊𝑛 = 𝑊𝑛−1 + 𝜔 ∗
𝑅𝑛−2∗𝐺𝑛−2

‖𝐸𝑛−2‖2
 2 

𝐺𝑛−1 = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝐺𝑛−1𝑎𝑛𝑑 𝐺𝑛−2 3 

𝐺𝑛 = 𝑊𝑛
𝑇 ∗ 𝐺𝑛−1 4 

 

In Table 4, the underlined variables are vectors and 

the over-lined ones are to hold the predicted values. The 

W is the vector of prediction coefficient filter at size q 

and G is a vector to hold the q value of process reward. 

The initial value of W is zero which can be updated per 

each new data. Gn is predicted reward of Gn. 

Q-Table is used during the learning process to store 

and update Q-function values. This table is considered as 

a two-dimensional matrix in which rows and columns 

specify states and actions, respectively. The initial value 

of Q-Table is considered zero. After the learning stage, 

according to the values of Q-Table, the thresholds Tw and 

Tc of each agent are extracted based on the length of the 

regions [30], [36]. 

B.  Negotiation Protocol for Implementing the Policy 

In negotiation, a set of agents is involved along with a 

set of variables dependent on agents. Agents negotiate a 

set of possibilities (values). To reach an agreement, the 

possibilities are assigned to the variables through 

negotiation. In the controller, the set of agents 

participating in the negotiation are the agents in Fig. 3. 

The variables define the amount of load sent to the 

downstream agent. The possibilities are also the values 

suggested by the agents to obtain the amount of load 

sent or received.  

The agents will participate in the negotiation based 

on a defined strategy presented in Table 5. A suggestion 

cycle includes the initiator suggestion and the response 

of other agents to it. The initiator is the downstream 

agent initiating the negotiation process by passing the 

load through Tw, while the respondent is the upstream 

agent. 

Table 5: The negotiation protocol to reduce the load 

 

K=1 1 

The downstream agent (j) asks the upstream agent (i) to 
reduce the number of requests sent in the period ∆t 
based on Rij according to (5). 
 

𝑅𝑖𝑗 =
(𝑙𝑜𝑎𝑑𝑗−𝑇𝑤𝑗)

∆𝑡
∗ (1 − 𝐶𝑃𝑈𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦

𝑗
) ∗ 𝐶𝑃𝑈𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  

𝑗
  

                                                                                                 (5) 
Load is the number of sessions within the queue. 
 

2 

If agent i is in the safe region, it calculates the number of 
requests that it can process during Δt while not leaving 
the safe region according to (6) and notifies agent j. 
Otherwise, agent, i asks the upstream agent (P-CSCS) to 
reject the request as Rij + Rpi randomly. 
 

𝐷𝑖𝑗 =
(𝑇𝑊𝑖−𝑙𝑜𝑎𝑑𝑖)

∆𝑡
∗ (−𝐶𝑃𝑈𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦

𝑖 ) ∗ 𝐶𝑃𝑈𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑖  (6)  

 

3 

Agent j receiving the answer of agent i, rejects the 
request locally and randomly as Rij-Dij. If it enters the 
safe region, it sends the value Rij = 0 to agent i and the 
negotiation ends. Otherwise, agent i recalculates the 
load reduction rate according to (7) and sends it to j. 
 

𝑅𝑖𝑗 = ((∑ 𝑅𝑖𝑗
𝑘

𝐼

𝑘=1

− 𝐷𝑖𝑗
𝑘 )) ∗ 𝛽 ∗ 𝐼                                     (7) 

 
Where, β is the reduction coefficient and K is the 
number of negotiations. 
 

4 

K=K+1 5 

The above process is repeated until the end of the 
negotiation. 
 

6 

Results and Discussion 

The proposed method is implemented based on RFCs 

3261 and 6026 in NS-2 (2.34). NS-2 is run on the same 

software and hardware platform to compare the studied 

mechanisms (Fedora Linux 20, Intel(R) Core(TM) i7- 

6700K CPU @ 4.00GHz 4.00 GHz, Cache Size 8.0 MB, 

Install RAM 16.0 GB). UDP is considered as the 

transmission layer protocol. The servers have a 

processing capacity of 300 sessions per second (SPS). 

The users have unlimited capacity and can send or 

receive multiple session requests at the same time. The 

priority of processing agents is to negotiate messages 

because failure to process these messages on time 

causes an overload on the network. If the queue is full 

when receiving a request, the request will be deleted.  

Goodput, sessions delay, number of rejected sessions, 

stability, and rapid response are the main criteria for 

evaluating the performance of Reinforcement Learning 

Overload Controller (RLC). 

Goodput is the number of successful sessions that the 

agent handles per unit of time. A session is successful, 

which is created in less than 10 secs. A session delay is a 

time for creating a session. Session response time is 



M. Khazaei 
 

28  J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 
 

exponential with average of 30 secs. Stability means that 

the overload controller should not cause throughput 

fluctuations on the proxy servers and prevent the 

Goodput from being zero. On the other hand, by the 

sudden reduction in the traffic imposed on the server, all 

the applied controls should be removed quickly and the 

situation should return to the normal state [25], [43]. 

The offered load was entered into the network as a 

Poisson distribution by the acceptance and rejection 

method. The performance evaluation criteria were 

extracted with a confidence interval of 95%. In the 

diagrams and tables, the offered loads were divided by 

the network capacity and normalized. The parameters 

used in the Q-learning algorithm were shown in Table 6. 

To obtain the values of Tw and Tc, different input modes 

with consecutive performances are considered and then 

the values of these two thresholds are used in RLC. 
 

Table 6: The values of parameters in Q-learning 

 

Values Parameters 

0.7 α 

0.9 Decreasingly Learning rate  

0.4 Discount factor (γ) 

0.7 Exploration rate 
 

A.  Evaluating the Accuracy of RLC Performance 

Table 7 shows the average and variance of Goodput, 

sessions delay, and the number of rejected sessions of 

RLC, and Overload Controller (OC) when the average 

number of different input sessions is more than the 

network capacity; otherwise Tw and Tc have no role in 

the normal operation of the network. The optimal value 

of Tc is 37 and the optimal values of Tw are 13, 17 and 25, 

obtaining as trial and error for OC. In Table 7, the 

columns of improvement show the percentage which 

RLC improve performance relative to selected 

thresholds. In OC, thresholds have better performance, 

providing better average and less variance. Goodput at 

Tw= 17 has better performance, Tw = 17 performs better 

at delaying sessions, and Tw = 25 rejects sessions more 

efficiently. Since the rejects sessions are approximately 

equal for Tw=17 and Tw=25, the values Tw = 17 and Tc = 37 

are chosen to compare the performance of RLC with OC. 

Therefore, Goodput is improved through 1.25%, sessions 

delay is decreased through 3% and number of rejected 

sessions is reduced through 1.07% by RLC compare with 

selected OC. 

B.  Performance Evaluation of RLC  

RLC performance is compare with the known 

overload control methods of CPU occupancy end to end 

(EOCC), CPU occupancy hop by hop (HOCC) and Holonic 

overload control (HOC) [5], [36]. The reason for choosing 

these methods for comparison is 1) They are well-known 

and include standard codes 2) They have been used in 

many studies to compare performance, and 3) The end 

to end methods such as EOCC and HOC have better 

performance than hop by hop methods. Therefore, 

comparison with these methods can be a good 

benchmark to test RLC. Since there is no overload, when 

the offered load is less than the network capacity, 

comparisons are only made for offered load more than 

network capacity. Table 8 shows the improvement of the 

RLC over the compared methods. 

Goodput is shown in Figs. 5. In HOCC, when the 

downstream S-CSCF is overloaded, it notifies its 

upstream S-CSCF. Upstream S-CSCF receives this 

message to reduce the load on the downstream S-CSCF, 

however, it continues to send since P-CSCF has no 

knowledge causing overload in the S-CSCF upstream and 

eventually the entire network. 

 
Table 7: Checking validity and accuracy operation of the RLC 

 

Goodput 

 RLC Tw=13 Improvement Tw=17 Improvement Tw=25 Improvement 

Average 0.963 0.942 2.2% 0.951 1.25% 0.944 1.97% 

variance 1.571 1.611 2.48% 1.600 0.68% 1.710 8.13% 

Sessions delay 
Average 0.291 0.301 3.32% 0.300 3.00% 0.311 6.43% 

variance 0.022 0.043 48.8% 0.032 31.3% 0.033 33.3% 

Number of rejections 
Average 1.022 1.051 2.76% 1.033 1.07% 1.031 0.87% 

variance 298.4 317.1 5.89% 301.7 1.09% 300.6 0.73% 

 
Table 8: RLC performance compare with studied mechanisms 

 

RLC Compare with  HOC EOCC HOCC 

Goodput 0.6% 13.5% 40.4% 

Session delay -6.7% 49.17% 62.35% 

Number of rejections 9.4% 17.3% 31.04% 

 



Reinforcement Learning-based Load Controller in IP Multimedia Subsystems 

 

J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023                                                                                29 
 

 
Fig. 5: Goodput for the studied mechanisms. 

 

In EOCC, the probability of acceptance of sessions is 

adjusted so that the amount of CPU consumption is less 

than 90% so under heavy load, 10% of CPU capacity is 

wasted. Hence, the servers do not process at full 

capacity and Goodput is never exactly equal to C. In 

HOC, CPU capacity is fully utilized. In addition, overload 

occurrence is prevented in the proxy servers by holons, 

and the sending load is adjusted from the edge servers. 

Thereafter, the proxy servers are not overloaded. In RLC, 

whenever it detects that one of the agents leaves the 

safe region, it reacts quickly and tries to prevent 

overload from entering the network by preventing the 

additional load from entering the source. In RLC, the 

average of Goodput is almost 0.6% more than HOC 
because of the hierarchical structure of the HOC, it 

reacts more slowly than RLC. Goodput of RLC is 13.5% 

more than EOCC also 40.4% more than HOCC.  

The results of sessions delay are shown in Fig. 6. Due 

to the local view of the overload, the HOCC spends some 

of the server capacity on processing requests that are 

eventually deleted, causing delays the processing of 

other requests. In EOCC, the probability of accepting 

load from the destination server to the source servers is 

reported. Upon receiving the restrictions, each server 

changes its information and sends the updated values to 

the source servers. As a result, updating the parameters 

and sending the appropriate amount of load to the 

destination take time, inadvertently causing the 

additional load to enter the network and delay the 

establishment of sessions. HOC has smaller sessions 

delay (average is 0.13 secs). In HOC, the retransmission 

mechanism is rarely activated due to keeping the servers 

in the safe section and not permitting the extra load to 

enter the network. The due delay exists because of 

corresponding holon calculation. RLC starts negotiations 

with the upstream server as soon as the load passes 

through the secure region. However, in RLC, negotiation 

process delay is added to RLC delay therefore, sessions 

delay is 6.7% more than HOC. But RLC sessions delay is 

49.17% less than EOCC and 62.35% less than HOCC. Fig. 

7 shows the total number of the rejected sessions. By 

increasing the number of rejected sessions, the network 

resources are spent to process the requests with no 

results. 

 
Fig. 6: The sessions delay for the studied mechanisms. 

 

When the number of input sessions is equal to the 

network capacity, OCC methods reject the sessions due 

to the CPU consumption threshold of 90%. HOCC reject 

31.04% and EOCC reject 17.3% of the session more than 

RLC. However, in RLC and HOC there are no restrictions. 

Thus, no session is rejected until the load passes through 

the network capacity, after which RLC has fewer rejected 

sessions. Because the rejection of the sessions is based 

on an intelligent process in accordance with the existing 

conditions, the negotiation of the agents makes the 

rejection of the sessions more logical, rather than selfish 

behavior in HOC. Therefore, RLC reject 9.4% of session 

less than HOC. 

 
Fig. 7: The number of rejected sessions for the studied 

mechanisms. 
 

To test the stability and rapid response of the 

mechanisms, the number of input sessions is initially 

considered equal to 200 SPS below the network capacity, 

which lasts up to 100 secs. During this period, Goodput 

corresponds to the offered load. At 100 secs, the 

number of offered load suddenly increases to three 

times the network capacity (900 SPS). With this 

technique, it can be seen how quickly the mechanisms 

under study react in the face of sudden load changes and 

maintain their stability or not. The offered load is 

returned to 200 SPS at 200 secs. The Goodput and 

sessions delay of tests are shown in Figs. 8 and 9. In Fig. 

8, all mechanisms respond quickly to the offered load 

sharp changes. Moreover, HOC achieves better Goodput 

because the offered load is predicted. In HOC, the holons 

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.9 2.0 2.1 2.3 2.4 2.5 2.7 2.8 2.9 3.0

G
o

o
d

p
u

t 
(S

P
S)

Offered Load (SPS)

RLC HOC EOCC HOCC

0.01

0.21

0.41

0.61

0.81

1.01

1.21

1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.9 2.0 2.1 2.3 2.4 2.5 2.7 2.8 2.9 3.0

D
e

la
y 

(S
e

c)

Offered Load (SPS)

RLC HOC EOCC HOCC

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.9 2.0 2.1 2.3 2.4 2.5 2.7 2.8 2.9 3.0

Se
ss

io
n

s 
re

je
ct

io
n

 (
SP

S)

Offered Load (SPS)

RLC HOC EOCC HOCC



M. Khazaei 
 

30  J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 
 

react quickly to a sudden increase in the offered load 

and control it from the sources. However, its Goodput is 

more than RLC due to consecutive switching between 

the holons. RLC responds steadily to sudden load 

changes due to the negotiation. This is because the 

agents act quickly by increasing the offered load and 

entering the warning area. Moreover, they prevent 

overload from occurring through negotiation. In HOCC, 

the Goodput is initially decreased and then increased. 

Because the control parameters are updated based on 

200 SPS and until the next update, sessions are 

accepted. EOCC methods require time to propagate 

overload information from destination to the sources, 

causing temporary instability. At 200 secs, Goodput of 

RLC returns to its previous value without any fluctuation. 

Therefore, RLC completely satisfies stability. 
 

 
Fig. 8: Goodput of the studied mechanisms when the offered 

load changes suddenly. 
 
 

In Fig. 9, RLC has less delay than other methods. 

When the load returns to its previous value, the RLC 

delay will return to the value before the change. As the 

offered load increases due to the lack of up to date 

parameters in OCC methods, a large amount of load 

enters the network, and the delay increases. By 

removing the overload, the delay is slightly reduced. 

Parameter values in EOCC are updated with more delay 

due to being end to end and passing of control values 

over the entire network. The HOC makes a temporary 

error because it predicts load based on previous 

observations and the current load is very different from 

the previous.  

 
Fig. 9: Sessions delay of the studied mechanisms when the 

offered load changes suddenly. 

To evaluate the performance of RLC in a real VOIP 

environment, the Goodput and sessions delay for 

variable offered load with Poisson distribution are shown 

in Figs. 10 and 11. According to Fig. 10, RLC follows the 

changes in the number of incoming sessions well and 

adapts to it without network failure. When the offered 

load and Goodput are not distinguishable, they have 

been overlapped because Goodput is equal to offered 

load.  In addition, the delay is controlled and fluctuated 

with the load changes and the system becomes stable. 

 

 
Fig. 10: Goodput of RLC under real offered load. 

 
Fig. 11: The sessions delay of RLC under real offered load. 

Conclusion 

IMS will become the most important platform for 

multimedia applications. By increasing the number of 

users, the throughput of the IMS servers is decreased. 

On the other hand, the issue of overload control in IMS is 

a complex system, for which multi-agent systems are 

good alternatives to classical solving methods. In multi-

agent systems, a large task can be divided into a set of 

smaller tasks so that each agent performs a task 

partially. In this study, IMS servers are considered as a 

learner and negotiator agents. Agents learn the values of 

thresholds by Q-learning and they implement a hop by 

hop control method through negotiates strategy with 

the upstream agent. To prove the performance of the 

proposed method, it was compared to similar methods. 

In Table 8, we reported the efficiency, the mean sessions 

delay, the average of Goodput and number of rejected 

sessions for different methods. As shown, RLC has better 

performance on all three measured parameters; while 

only, its delay is more than HOC. Because holonic 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

G
o

o
d

p
u

t 
(S

P
S)

Time (Sec)

RLC HOC EOCC HOCC

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

D
e

la
y 

(S
e

c)

Time (Sec)

RLC HOC EOCC HOCC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

G
o

o
d

p
u

t 
(S

P
S)

Time (Sec)

LOAD RLC

0.0

0.1

0.1

0.2

0.2

0.3

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

D
e

la
y 

(S
e

c)

Time (Sec)

RLC



Reinforcement Learning-based Load Controller in IP Multimedia Subsystems 

 

J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023                                                                                31 
 

communication of HOC is faster than negotiation process 

of RLC. In the proposed method, the learning process is 

done independently by each agent. Although this type of 

learning is suitable for obtaining the parameters related 

to each agent, to show the optimal reactions by all 

agents, it is better to perform learning in the whole 

network to implement end to end methods through 

clustering. On the other hand, in IMS, there are HSS and 

DNS that are not based on SIP and contribute to the 

overload. These heterogeneous creatures can be 

inserted into the problem. Nowadays, by moving the 

process to cloud environments with NFV, the cost of IMS 

structure and platform has decreased. By quickly 

developing this method in scalable form, the proposed 

method can be implemented in cloud environments 

using NFV. 

Author Contributions 

M. Khazaei wrote the manuscript, designed the 

experiments, analysis the data, interpreted the results 

and revised the manuscript. 

Acknowledgment 

The author would like to thank the editor and 

reviewers for their helpful comments. 

Conflict of Interest 

The authors declare no potential conflict of interest 

regarding the publication of this work. In addition, the 

ethical issues including plagiarism, informed consent, 

misconduct, data fabrication and, or falsification, double 

publication and, or submission, and redundancy have 

been completely witnessed by the authors. 

Abbreviations  

IMS IP Multimedia Subsystems 

NGN Next-Generation Network 

SIP Session Initiation Protocol 

MAS Multi Agent Systems 

QOS Quality of Services 

HSS Home Subscriber Server 

SLF Subscription Locator Function 

CSCSF Call Session Control Functions 

S-CSCF Serving CSCF 

P-CSCF Proxy CSCF 

I-CSCF Interrogating CSCF 

NFV Network Functions Virtualization 

NLMS Normalized Least Mean Square 

SPS Sessions per Second 

C CPU Capacity 

RLC 
Reinforcement Learning Overload 
Controller 

OC Overload Controller 

EOCC End to end Occupancy 

HOCC Hop by hop Occupancy 

References 

[1] P. Agrawal, Y. Jui-Hung, C. Jyh-Cheng, Z. Tao, "IP multimedia 
subsystems in 3GPP and 3GPP2: overview and scalability issues," 
IEEE Commun. Mag., 46: 138-145, 2008. 

[2] K. K. Guduru, U. Jayadevappa, "Overload control in SIP signalling 
networks with redirect servers," Int. J. Wireless Mobile Comput., 
19: 124-132, 2020. 

[3] V. S. Vaishnavi, Y. M. Roopa, P. L. Srinivasa Murthy, "A survey on 
next generation networks," in Proc. ICCNCT 2019: 162-171, 2020. 

[4] C. Shen, H. Schulzrinne, E. Nahum, "Session Initiation Protocol 
(SIP) server overload control: Design and evaluation," in 
Principles, Systems and Applications of IP Telecommunications. 
Services and Security for Next Generation Networks, S. Henning, 
S. Radu, and N. Saverio, Eds., ed: Springer-Verlag: 149-173, 2008. 

[5] V. Hilt, I. Widjaja, "Controlling overload in networks of SIP 
servers," in Proc. IEEE International Conference in Network 
Protocols: 83-93, 2008. 

[6] J. Davin, P. Riley, M. Veloso, "CommLang: Communication for 
coachable agents," in Proc. RoboCup 2004: Robot Soccer World 
Cup VIII. vol. 3276, D. Nardi, M. Riedmiller, C. Sammut, and J. 
Santos-Victor, Eds., ed: Springer Berlin Heidelberg: 46-59, 2005. 

[7] M. Wooldridge, An Introduction to MultiAgent Systems, Newyork: 
Wiley, 2009. 

[8] B. Jang, M. Kim, G. Harerimana, J. W. Kim, "Q-Learning 
algorithms: A comprehensive classification and applications," IEEE 
Access, 7: 133653-133667, 2019. 

[9] M. Abdoos, N. Mozayani, A. C. Bazzan, "Hierarchical control of 
traffic signals using Q-learning with tile coding," Appl. Intell., 40: 
201-213, 2014. 

[10] H. C. Hsieh, J. L. Chen, "Distributed multi-agent scheme support 
for service continuity in IMS-4G-Cloud networks," Comput. Electr. 
Eng., 42: 49-59, 2015. 

[11] D. Pereira, R. Oliveira, H. S. Kim, "A machine learning approach 
for prediction of signaling sip dialogs," IEEE Access, 9: 44094-
44106, 2021. 

[12] F. B. Mismar, J. Hoydis, "Unsupervised learning in next-generation 
networks: Real-time performance self-diagnosis," IEEE Commun. 
Lett.,  25: 3330-3334, 2021. 

[13] S. Chen, Z. Yao, X. Jiang, J. Yang, L. Hanzo, "Multi-agent deep 
reinforcement learning-based cooperative edge caching for ultra-
dense next-generation networks," IEEE Trans. Commun., 69: 
2441-2456, 2021. 

[14] M. Abdoos, N. Mozayani, A. L. C. Bazzan, "Holonic multi-agent 
system for traffic signals control," Eng. Appl. Artif. Intell., 26: 
1575-1587, 2013. 

[15] M. Abdoos, N. Mozayani, A. L. C. Bazzan, "Traffic light control in 
non-stationary environments based on multi agent Q-learning," in 
Proc. 14th International IEEE Conference in Intelligent 
Transportation Systems (ITSC): 1580-1585, 2011. 

[16] Y. Yao, V. Hilaire, A. Koukam, W. Cai, "A holonic model in wireless 
sensor networks," in Proc. International Conference in Intelligent 
Information Hiding and Multimedia Signal Processing: 491-495, 
2008. 

[17] S. M. Hosseini, N. Mozayeni, "An intelligent method for resource 
management in wireless networks," in Proc. 5th Conference in 
Information and Knowledge Technology (IKT): 371-376, 2013. 

[18] E. Pei, L. Zhou, B. Deng, X. Lu, Y. Li, Z. Zhang, "A Q-Learning based 
energy threshold optimization algorithm in LAA networks," IEEE 
Trans. Veh. Technol., 70: 7037-7049, 2021. 

[19] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam, 
"ASPECS: an agent-oriented software process for engineering 
complex systems," Auton. Agents Multi-Agent Syst., 20: 260-304, 
2010. 

[20] M. Poikselkä, The IMS: IP multimedia concepts and services: 
Newyoek, J. Wiley & Sons, 2006. 

https://ieeexplore.ieee.org/document/4427242
https://ieeexplore.ieee.org/document/4427242
https://ieeexplore.ieee.org/document/4427242
https://ieeexplore.ieee.org/document/4427242
https://www.inderscience.com/info/inarticle.php?artid=110185
https://www.inderscience.com/info/inarticle.php?artid=110185
https://www.inderscience.com/info/inarticle.php?artid=110185
https://link.springer.com/chapter/10.1007/978-3-030-37051-0_18
https://link.springer.com/chapter/10.1007/978-3-030-37051-0_18
https://arxiv.org/abs/0807.1160
https://arxiv.org/abs/0807.1160
https://arxiv.org/abs/0807.1160
https://arxiv.org/abs/0807.1160
https://arxiv.org/abs/0807.1160
https://ieeexplore.ieee.org/document/4697027?arnumber=4697027
https://ieeexplore.ieee.org/document/4697027?arnumber=4697027
https://ieeexplore.ieee.org/document/4697027?arnumber=4697027
https://link.springer.com/chapter/10.1007/978-3-540-32256-6_4
https://link.springer.com/chapter/10.1007/978-3-540-32256-6_4
https://link.springer.com/chapter/10.1007/978-3-540-32256-6_4
https://link.springer.com/chapter/10.1007/978-3-540-32256-6_4
https://www.wiley.com/en-us/An+Introduction+to+MultiAgent+Systems,+2nd+Edition-p-9780470519462
https://www.wiley.com/en-us/An+Introduction+to+MultiAgent+Systems,+2nd+Edition-p-9780470519462
file:///C:/Users/Electr/Downloads/B.%20Jang,%20M.%20Kim,%20G.%20Harerimana,%20and%20J.%20W.%20Kim,%20%22Q-Learning%20Algorithms:%20A%20Comprehensive%20Classification%20and%20Applications,%22%20IEEE%20Access,%20vol.%207,%20pp.%20133653-133667,%202019
file:///C:/Users/Electr/Downloads/B.%20Jang,%20M.%20Kim,%20G.%20Harerimana,%20and%20J.%20W.%20Kim,%20%22Q-Learning%20Algorithms:%20A%20Comprehensive%20Classification%20and%20Applications,%22%20IEEE%20Access,%20vol.%207,%20pp.%20133653-133667,%202019
file:///C:/Users/Electr/Downloads/B.%20Jang,%20M.%20Kim,%20G.%20Harerimana,%20and%20J.%20W.%20Kim,%20%22Q-Learning%20Algorithms:%20A%20Comprehensive%20Classification%20and%20Applications,%22%20IEEE%20Access,%20vol.%207,%20pp.%20133653-133667,%202019
https://dl.acm.org/doi/abs/10.1007/s10489-013-0455-3
https://dl.acm.org/doi/abs/10.1007/s10489-013-0455-3
https://dl.acm.org/doi/abs/10.1007/s10489-013-0455-3
https://dl.acm.org/doi/abs/10.1007/s10489-013-0455-3
https://www.sciencedirect.com/science/article/abs/pii/S0045790614002110
https://www.sciencedirect.com/science/article/abs/pii/S0045790614002110
https://www.sciencedirect.com/science/article/abs/pii/S0045790614002110
https://www.sciencedirect.com/science/article/abs/pii/S0045790614002110
https://ieeexplore.ieee.org/document/9376867
https://ieeexplore.ieee.org/document/9376867
https://ieeexplore.ieee.org/document/9376867
https://ieeexplore.ieee.org/document/9376867
https://arxiv.org/abs/2104.06993
https://arxiv.org/abs/2104.06993
https://arxiv.org/abs/2104.06993
https://arxiv.org/abs/2104.06993
https://ieeexplore.ieee.org/abstract/document/9293032
https://ieeexplore.ieee.org/abstract/document/9293032
https://ieeexplore.ieee.org/abstract/document/9293032
https://ieeexplore.ieee.org/abstract/document/9293032
https://www.sciencedirect.com/science/article/abs/pii/S0952197613000171
https://www.sciencedirect.com/science/article/abs/pii/S0952197613000171
https://www.sciencedirect.com/science/article/abs/pii/S0952197613000171
https://ieeexplore.ieee.org/document/6083114
https://ieeexplore.ieee.org/document/6083114
https://ieeexplore.ieee.org/document/6083114
https://ieeexplore.ieee.org/document/6083114
https://ieeexplore.ieee.org/document/4604105
https://ieeexplore.ieee.org/document/4604105
https://ieeexplore.ieee.org/document/4604105
https://ieeexplore.ieee.org/document/4604105
http://webpages.iust.ac.ir/mozayani/Papers-pdf/ieee53d67dea-b053-20140413062338.pdf
http://webpages.iust.ac.ir/mozayani/Papers-pdf/ieee53d67dea-b053-20140413062338.pdf
http://webpages.iust.ac.ir/mozayani/Papers-pdf/ieee53d67dea-b053-20140413062338.pdf
http://webpages.iust.ac.ir/mozayani/Papers-pdf/ieee53d67dea-b053-20140413062338.pdf
https://ieeexplore.ieee.org/document/9432772
https://ieeexplore.ieee.org/document/9432772
https://ieeexplore.ieee.org/document/9432772
https://ieeexplore.ieee.org/document/9432772
file:///C:/Users/Electr/Downloads/M.%20Cossentino,%20N.%20Gaud,%20V.%20Hilaire,%20S.%20Galland,%20and%20A.%20Koukam,%20%22ASPECS:%20an%20agent-oriented%20software%20process%20for%20engineering%20complex%20systems,%22%20Autonomous%20Agents%20and%20Multi-Agent%20Systems,%20vol.%2020,%20no.%202,%20pp.%20260-304,%202010/03/01%202010
file:///C:/Users/Electr/Downloads/M.%20Cossentino,%20N.%20Gaud,%20V.%20Hilaire,%20S.%20Galland,%20and%20A.%20Koukam,%20%22ASPECS:%20an%20agent-oriented%20software%20process%20for%20engineering%20complex%20systems,%22%20Autonomous%20Agents%20and%20Multi-Agent%20Systems,%20vol.%2020,%20no.%202,%20pp.%20260-304,%202010/03/01%202010
file:///C:/Users/Electr/Downloads/M.%20Cossentino,%20N.%20Gaud,%20V.%20Hilaire,%20S.%20Galland,%20and%20A.%20Koukam,%20%22ASPECS:%20an%20agent-oriented%20software%20process%20for%20engineering%20complex%20systems,%22%20Autonomous%20Agents%20and%20Multi-Agent%20Systems,%20vol.%2020,%20no.%202,%20pp.%20260-304,%202010/03/01%202010
file:///C:/Users/Electr/Downloads/M.%20Cossentino,%20N.%20Gaud,%20V.%20Hilaire,%20S.%20Galland,%20and%20A.%20Koukam,%20%22ASPECS:%20an%20agent-oriented%20software%20process%20for%20engineering%20complex%20systems,%22%20Autonomous%20Agents%20and%20Multi-Agent%20Systems,%20vol.%2020,%20no.%202,%20pp.%20260-304,%202010/03/01%202010
https://www.wiley.com/en-us/The+IMS%3A+IP+Multimedia+Concepts+and+Services%2C+2nd+Edition-p-9780470031834
https://www.wiley.com/en-us/The+IMS%3A+IP+Multimedia+Concepts+and+Services%2C+2nd+Edition-p-9780470031834


M. Khazaei 
 

32  J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023 
 

[21] N. M. Ahmed, N. E. Rikli, "QoS-Based data aggregation and 
resource allocation algorithm for machine type communication 
devices in next-generation networks," IEEE Access, 9: 119735-
119754, 2021. 

[22] V. K. Gurbani, R. Jain, "Transport protocol considerations for 
session initiation protocol networks," Bell Labs Tech. J., 9: 83-97, 
2004. 

[23] M. Ohta, "Overload control in a SIP signaling network," Int. J. 
Electr. Electron. Eng., 3: 87-92, 2009. 

[24] E. N. V. Hilt, C. Shen, A. Abdelal, "Design considerations for 
session initiation protocol (SIP) overload control," Internet 
Engineering Task Force (IETF), Request for Comments: RFC6357, 
2011. 

[25] J. Liao, J. Wang, T. Li, J. Wang, J. Wang, X. Zhu, "A distributed end-
to-end overload control mechanism for networks of SIP servers," 
Comput. Networks, 56: 2847-2868, 2012. 

[26] H. Dong-Yeop, P. Ji Hong, Y. Seung-wha, K. Ki-Hyung, "A window-
based overload control considering the number of confirmation 
massages for SIP server," in Proc. Fourth International Conference 
in Ubiquitous and Future Networks (ICUFN): 180-185, 2012. 

[27] M. Homayouni, H. Nemati, V. Azhari, A. Akbari, "Controlling 
Overload in SIP Proxies: An Adaptive Window Based Approach 
Using No Explicit Feedback," in Proc. IEEE Global 
Telecommunications Conference: 1-5, 2010. 

[28] S. V. Azhari, M. Homayouni, H. Nemati, J. Enayatizadeh, A. Akbari, 
"Overload control in SIP networks using no explicit feedback: A 
window based approach," Comput. Commun., 35: 1472-1483, 
2012. 

[29] A. Montazerolghaem, M. H. Yaghmaee Moghadam, "Improving 
efficiency of SIP protocol using window-based overload 
conditions," Soft Comput. J., 2: 16-25, 2021. 

[30] M. Khazaei, N. Mozayani, "A dynamic distributed overload control 
mechanism in SIP networks with holonic multi-agent systems," 
Telecommun. Syst., 63: 437-455, 2016. 

[31] Y. Hong, C. Huang, J. Yan, "Applying control theoretic approach to 
mitigate SIP overload," Telecommun. Systems, 54: 387-404, 2013. 

[32] A. Abdelal, W. Matragi, "Signal-Based Overload Control for SIP 
Servers," in Proc. 7th IEEE Consumer Communications and 
Networking Conference: 1-7, 2010. 

[33] R. G. Garroppo, S. Giordano, S. Niccolini, S. Spagna, "A Prediction-
Based Overload Control Algorithm for SIP Servers," Network and 
Service Management, IEEE Transactions, 8: 39-51, 2011. 

[34] S. Jing, T. Ruixiong, H. Jinfeng, Y. Bo, "Rate-based SIP flow 
management for SLA satisfaction," in IFIP/IEEE International 
Symposium on Integrated Network Management: 125-128, 2009. 

[35] M. Khazaei, "Occupancy overload control by Q-learning," in 

Fundamental Research in Electrical Engineering, Singapore: 765-
776, 2019. 

[36] M. Khazaei, N. Mozayani, "Overload management with regard to 
fairness in session initiation protocol networks by holonic 
multiagent systems," Int. J. Network Manage., 27: e1969, 2017. 

[37] A. Akbar, S. M. Basha, S. A. Sattar, "A cooperative overload 
control method for SIP servers," International Conference in Proc. 
Communications and Signal Processing (ICCSP): 1296-1300, 2015. 

[38] A. Montazerolghaem, S. K. Shekofteh, M. H. Yaghmaee, M. 
Naghibzadeh, "A load scheduler for SIP proxy servers: design, 
implementation and evaluation of a history weighted window 
approach," Int. J. Commun. Sys., 2015. 

[39] A. Montazerolghaem, M. H. Y. Moghaddam, A. Leon-Garcia, 
"OpenSIP: Toward software-defined SIP networking," IEEE Trans. 
Netw. Serv. Manage., 15: 184-199, 2018. 

[40] R. Gandotra, L. Perigo, "SDVoIP—A software-defined VoIP 
framework for SIP and dynamic QoS," Comput. J., 64: 254-263, 
2019. 

[41] L. D. Cicco, G. Cofano, S. Mascolo, "Local SIP overload control: 
controller design and optimization by extremum seeking," IEEE 
Trans. Control Network Syst., 2: 267-277, 2015. 

[42] Y. Hong, C. Huang, J. Yan, "Modelling chaotic behaviour of SIP 
retransmission mechanism," Int. J. Parallel Emerg. Distrib. Syst., 
28: 95-122, 2013. 

[43] J. Wang, J. Liao, T. Li, J. Wang, J. Wang, Q. Qi, "Probe-based end-
to-end overload control for networks of SIP servers," J. Network 
Comput. Appl., 41: 114-125, 2014. 

Biographies 
Mehdi Khazaei received a B.Sc. degree in 
computer Engineering (Computer 
Hardware) from Iran University of Science 
and Technology (Tehran, IRAN); M.Sc. and 
Ph.D. degree in computer systems 
Architecture from Iran University of 
Science and Technology (Tehran, IRAN) in 
2017. He is currently assistant professor in 
the School of Information Technology at 
Kermanshah University of Technology 
(Kermanshah, Iran). 

• Email: m.khazaei@kut.ac.ir 

• ORCID: 0000-0002-4780-065X 

• Web of Science Researcher ID: NA 

• Scopus Author ID: 1027784 

• Homepage: https://kut.ac.ir/en/profile/6-mehdi-khazaei 

 

 

 

 

 

 

 

 

 

How to cite this paper: 
M. Khazaei, “Reinforcement learning-based load controller in IP multimedia subsystems,” 
J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023. 

DOI: 10.22061/JECEI.2022.8723.546 

URL: https://jecei.sru.ac.ir/article_1713.html 
 

 

https://ieeexplore.ieee.org/document/9521884
https://ieeexplore.ieee.org/document/9521884
https://ieeexplore.ieee.org/document/9521884
https://ieeexplore.ieee.org/document/9521884
https://ieeexplore.ieee.org/document/6781155
https://ieeexplore.ieee.org/document/6781155
https://ieeexplore.ieee.org/document/6781155
https://ieeexplore.ieee.org/document/6781155
https://zenodo.org/record/1074712/files/10162.pdf
https://zenodo.org/record/1074712/files/10162.pdf
https://www.researchgate.net/publication/329783081_Design_Considerations_for_Session_Initiation_Protocol_SIP_Overload_Control
https://www.researchgate.net/publication/329783081_Design_Considerations_for_Session_Initiation_Protocol_SIP_Overload_Control
https://www.researchgate.net/publication/329783081_Design_Considerations_for_Session_Initiation_Protocol_SIP_Overload_Control
https://www.researchgate.net/publication/329783081_Design_Considerations_for_Session_Initiation_Protocol_SIP_Overload_Control
https://www.sciencedirect.com/science/article/abs/pii/S1389128612001752
https://www.sciencedirect.com/science/article/abs/pii/S1389128612001752
https://www.sciencedirect.com/science/article/abs/pii/S1389128612001752
https://www.sciencedirect.com/science/article/abs/pii/S1389128612001752
https://ieeexplore.ieee.org/document/6261689?section=abstract
https://ieeexplore.ieee.org/document/6261689?section=abstract
https://ieeexplore.ieee.org/document/6261689?section=abstract
https://ieeexplore.ieee.org/document/6261689?section=abstract
https://ieeexplore.ieee.org/document/5684311
https://ieeexplore.ieee.org/document/5684311
https://ieeexplore.ieee.org/document/5684311
https://ieeexplore.ieee.org/document/5684311
https://www.sciencedirect.com/science/article/abs/pii/S0140366412001260
https://www.sciencedirect.com/science/article/abs/pii/S0140366412001260
https://www.sciencedirect.com/science/article/abs/pii/S0140366412001260
https://www.sciencedirect.com/science/article/abs/pii/S0140366412001260
https://scj.kashanu.ac.ir/article_111371.html?lang=en
https://scj.kashanu.ac.ir/article_111371.html?lang=en
https://scj.kashanu.ac.ir/article_111371.html?lang=en
https://scj.kashanu.ac.ir/article_111371.html?lang=en
https://link.springer.com/article/10.1007/s11235-015-0133-3
https://link.springer.com/article/10.1007/s11235-015-0133-3
https://link.springer.com/article/10.1007/s11235-015-0133-3
https://link.springer.com/article/10.1007/s11235-015-0133-3
https://link.springer.com/article/10.1007/s11235-013-9744-8
https://link.springer.com/article/10.1007/s11235-013-9744-8
https://ieeexplore.ieee.org/document/5421642
https://ieeexplore.ieee.org/document/5421642
https://ieeexplore.ieee.org/document/5421642
https://ieeexplore.ieee.org/document/5699971
https://ieeexplore.ieee.org/document/5699971
https://ieeexplore.ieee.org/document/5699971
https://ieeexplore.ieee.org/document/5699971
https://ieeexplore.ieee.org/document/5188798
https://ieeexplore.ieee.org/document/5188798
https://ieeexplore.ieee.org/document/5188798
https://link.springer.com/chapter/10.1007/978-981-10-8672-4_58
https://link.springer.com/chapter/10.1007/978-981-10-8672-4_58
https://link.springer.com/chapter/10.1007/978-981-10-8672-4_58
https://link.springer.com/chapter/10.1007/978-981-10-8672-4_58
https://onlinelibrary.wiley.com/doi/10.1002/nem.1969
https://onlinelibrary.wiley.com/doi/10.1002/nem.1969
https://onlinelibrary.wiley.com/doi/10.1002/nem.1969
https://onlinelibrary.wiley.com/doi/10.1002/nem.1969
https://ieeexplore.ieee.org/document/7322718
https://ieeexplore.ieee.org/document/7322718
https://ieeexplore.ieee.org/document/7322718
https://ieeexplore.ieee.org/document/7322718
https://onlinelibrary.wiley.com/doi/10.1002/dac.2980
https://onlinelibrary.wiley.com/doi/10.1002/dac.2980
https://onlinelibrary.wiley.com/doi/10.1002/dac.2980
https://onlinelibrary.wiley.com/doi/10.1002/dac.2980
https://ieeexplore.ieee.org/document/8012472
https://ieeexplore.ieee.org/document/8012472
https://ieeexplore.ieee.org/document/8012472
https://ieeexplore.ieee.org/document/8012472
https://ieeexplore.ieee.org/document/9433170
https://ieeexplore.ieee.org/document/9433170
https://ieeexplore.ieee.org/document/9433170
https://ieeexplore.ieee.org/document/6760384
https://ieeexplore.ieee.org/document/6760384
https://ieeexplore.ieee.org/document/6760384
https://dl.acm.org/doi/abs/10.1080/17445760.2011.647912
https://dl.acm.org/doi/abs/10.1080/17445760.2011.647912
https://dl.acm.org/doi/abs/10.1080/17445760.2011.647912
https://www.sciencedirect.com/science/article/abs/pii/S1084804513002609
https://www.sciencedirect.com/science/article/abs/pii/S1084804513002609
https://www.sciencedirect.com/science/article/abs/pii/S1084804513002609
https://www.sciencedirect.com/science/article/abs/pii/S1084804513002609
mailto:m.khazaei@kut.ac.ir
https://orcid.org/0000-0002-4780-065X
https://kut.ac.ir/en/profile/6-mehdi-khazaei
https://dx.doi.org/10.22061/jecei.2022.8723.546
https://jecei.sru.ac.ir/article_1713.html


Reinforcement Learning-based Load Controller in IP Multimedia Subsystems 

 

J. Electr. Comput. Eng. Innovations, 11(1): 21-32, 2023                                                                                33 
 

  

 


