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 Background and Objectives: To a large extent, low production of maize can 
be attributed to diseases and pests. Accurate, fast, and early detection of 
maize plant disease is critical for efficient maize production. Early detection 
of a disease enables growers, breeders and researchers to effectively apply 
the appropriate controlled measures to mitigate the disease’s effects. 
Unfortunately, the lack of expertise in this area and the cost involved often 
result in an incorrect diagnosis of maize plant diseases which can cause 
significant economic loss. Over the years, there have been many techniques 
that have been developed for the detection of plant diseases. In recent years, 
computer-aided methods, especially Machine learning (ML) techniques 
combined with crop images (image-based phenotyping), have become 
dominant for plant disease detection. Deep learning techniques (DL) have 
demonstrated high accuracies of performing complex cognitive tasks like 
humans among machine learning approaches. This paper aims at presenting 
a comprehensive review of state-of-the-art DL techniques used for detecting 
disease in the leaves of maize. 
Methods: In achieving the aims of this paper, we divided the methodology 
into two main sections; Article Selection and Detailed review of selected 
articles. An algorithm was used in selecting the state-of-the-art DL 
techniques for maize disease detection spanning from 2016 to 2021. Each 
selected article is then reviewed in detail taking into considerations the DL 
technique, dataset used, strengths and limitations of each technique.  
Results: DL techniques have demonstrated high accuracies in maize disease 
detection. It was revealed that transfer learning reduces training time and 
improves the accuracies of models. Models trained with images taking from a 
controlled environment (single leaves) perform poorly when deployed in the 
field where there are several leaves. Two-stage object detection models 
show superior performance when deployed in the field.  
Conclusion: From the results, lack of experts to annotate accurately, Model 
architecture, hyperparameter tuning, and training resources are some of the 
challenges facing maize leaf disease detection. DL techniques based on two-
stage object detection algorithms are best suited for several plant leaves and 
complex backgrounds images. 
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Introduction 
The importance of maize production cannot be  

 

overemphasized. Maize is ranked among the most 

heavily grown and consumed cereals in the world [1],
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[2]. However, the contributions of maize to people’s 

economic well-being are hindered by disease-ridden 

crops that affect the yield, thus reducing income and 

affecting food security. It is estimated that about 14 

million tonnes of maize were lost to Northern leaf Blight 

(NLB) in the United States between 2012 and 2015, 

which translates to about $1.9 billion [3]. The gravity of 

the situation warrants those efficient measures to 

control or mitigate any threat that may hamper the 

growth and production of maize are found. These 

control or mitigation strategies must be proposed to 

ensure food security globally. 

In the hope to mitigate disease infestation on maize 

fields, preventive techniques need to be employed. 

Nevertheless, plant diseases can still strike even when all 

preventive protocols are in force. Therefore, it is 

imperative to know that an accurate diagnosis of a 

disease is an essential first step to timely control plant 

diseases. Plant diseases have long been studied. There 

are well-established control mechanisms for controlling 

plant disease, that is if they are detected early enough. 

The timely diagnosis and classification of plant diseases 

is a critical aspect in preventing yield loss and improving 

product quality [4], [5]. A relevant characteristic of a 

sound disease detection system will be its ability to 

identify early signs and symptoms of the disease. 

Notably, the system must include containment strategies 

that prevent or limit the disease spread once it is 

detected [6]. Plant disease phenotyping is one crucial 

process that allows early detection of a particular kind of 

plant diseases, enabling growers, breeders, and 

researchers to effectively apply the appropriate control 

measures to mitigate the disease’s effects.   

Plant phenotyping in the past involved human experts 

visually inspecting diseased plants to observe defects in 

various parts of the plant: leaves, stems, roots, in other 

to predict the presence of a particular kind of disease 

[4]. This detection technique by human experts is often 

time-consuming, subject to erroneous decisions, and 

impractical for largescale fields [7], [8]. Microscopic 

evaluation of morphology features like spores, mycelium 

to identify pathogens is another plant disease detection 

technique in literature [9]. Computer vision and machine 

learning can solve these issues by enabling high accuracy 

and scalable plant phenotyping. Recent techniques have 

focused on using automated systems to detect plant 

diseases in agriculture accurately. Computer-aided 

methods combined with crop images (image-based 

phenotyping) have become very dominant for plant 

disease detection [10]. Numerous image-based plant 

disease detection techniques have been developed, 

which shows better accuracy and precision than visual 

inspection [8]. Machine learning (ML) has been applied 

to many computer vision problems, including face 

recognition, speech processing, and disease tissue 

classification in medicine. The success of ML techniques 

is as a result of their ability to identify a hierarchy of 

features and generalized trends from available data [11]. 

In narrowing down on machine learning approaches, 

deep learning techniques have demonstrated high 

accuracies of performing complex cognitive tasks like 

humans [7]. Deep Learning (DL) is the state-of-the-art 

ML approach widely used to address problems in health 

care, agriculture, audio and speech processing [12]. 

Convolutional Neural Networks (CNNs) are state-of-the-

art deep learning algorithms used to address computer 

vision problems recently, especially image classification 

tasks. Traditional ML approaches require a manual 

selection of features that are thought to be helpful in a 

classification task. However, CNNs can learn which 

features are most important and which are not. The 

usage of DL in agriculture and plant disease detection 

have proven to give very high accuracies enabling better 

agriculture and crop management quality [13]. 

This survey aims to present a comprehensive review 

of state-of-the-art deep learning techniques used for 

detecting disease in the leaves of maize. The survey 

documents all relevant proposals in the domain to 

enable readers to understand maize disease detection 

using deep learning methods proposed from 2016 to 

2021. Most recent survey papers mainly focus on plant 

disease detection. Which encompasses many plants and 

not necessarily maize thus do not provide an in-depth 

discourse of the subject matter. This paper will act as a 

primary source for discussing maize leaf disease 

detection using deep learning methods to the best of our 

knowledge. The paper details concepts, approaches, 

available datasets, and the strengths or shortfalls of DL 

techniques for maize leaf disease detection. 

The remainder of the paper is organized as follows. 

Next Section discusses the concept of deep learning, 

transfer learning and highlights some plant leaf disease 

datasets. In third Section, the methodology used in 

acquiring the candidate papers for review have been 

highlighted and detailed review of deep learning-based 

proposals for maize leaf disease detection is outlined. 

Open issues and future research directions are provided 

in fourth Section. Conclusions are made fifth Section. 

Deep Learning and Plant Leaf Disease Datasets 

This section discusses the concept of deep learning. It 

also elucidates some models that have been adopted for 

transfer learning. Finally, the section provides dataset 

used in the design of plant leaf disease detection to 

serve as a primer for new researchers in the field. 

A.  Deep Learning 

Deep learning is recently gaining popularity and 

momentum because of its success in various 

https://jecei.sru.ac.ir/?_action=article&au=38448&_au=H.++Nunoo-Mensah


A Survey of Deep Learning Techniques for Maize Leaf Disease Detection … 

J. Electr. Comput. Eng. Innovations, 10(2): 381-392, 2022                                                                 383 
 

applications. Deep learning is a sub-field of machine 

learning. It extends classical Machine learning by adding 

more depth (layers) to a model. Successive layered 

learning or a hierarchical way of representing data 

abstractly emphasizes deep learning. Deep learning does 

not mean any more profound understanding for using 

this approach. Instead, it refers to the successive layers 

of representation. The depth of the model is 

characterized by the number of layers in the model [14]. 

Modern deep learning approaches consist of tens or 

even hundreds of successive layers for data 

representation. All these layers learn automatically from 

data. These layers learn through neural networks 

models; the layers are stacked on top of each other. 

Figure 1 illustrates the basic layered structure of a deep 

learning model [15].  

B.  Convolutional Neural Networks 

Convolutional neural networks have become very 

dominant in the field of deep learning and are the 

approach used for visual object recognition and other 

computer vision problems. CNN was first introduced 

over twenty years ago. However, they have become 

widely used today due to improvements in hardware 

and the development of very deep CNNs. CNNs are not 

only applied to images but show better results in speech 

recognition, and natural language processing problems 

[16]. Convolution is the essential operation of a 

convolutional neural network (CNN). This convolution 

operation is achieved by applying filters (also known as 

kernels) to input data, mostly an image. Convolutional 

filters are composed of two-dimensional matrices of real 

values: the dimensions of a filter are smaller than the 

dimensions of the input data used in training. The aim of 

convolution operations is to extract features from an 

input image and thereby preserving the spatial 

relationship between pixels [17]. 
 

 
Fig. 1:  Example of digit classification using deep learning [15]. 

 

A standard convolutional neural network structure 

comprises several essential building blocks that 

represent the layers of the network. The number of 

layers and combinations of building blocks varies 

depending on the architecture. Fig. 2 represent a 

standard convolutional neural network which consists of 

convolutional layers (Conv layers) classification layer 

(Softmax layer), fully-connected layers (FC layers), and 

compression layers (Pool layers) [18]. 

Feature maps (output) from previous layers are 

convolved with distinct filters and a scalar product is 

calculated over the entire length and the width of the 

given filter. The output of the filters is then pass through 

either a linear or most of the time a non-linear function 

[19]. It is very important to select good kernels to be 

able to capture salient and important information from 

the data. This allows for strong inferences about the 

content of the input data [20]. The result of the 

convolution operation is the output feature maps which 

the filters find. 

 
Fig. 2:  CNN for plant disease detection [18]. 

 

The compression layer is a filter that non-linearly 

reduces the number of pixels, or compresses image 

dimension (down-sampling). This filter does not contain 

learned weights. The pooling layer’s is responsible for 

secondary feature extraction by reducing the dimensions 

of the feature maps. It also increases the robustness of 

feature extraction. 

For convolutional neural networks there is normally 

one or two fully-connected layers used as classifiers. All 

neurons in this layer are connected to all neurons in the 

previous layer. There is a last fully-connected layer 

before the output layer. In classification problems, the 

output of the convolutional neural network is reduced to 

activation function, the most commonly used function is 

Softmax. This is because it generates a well-performed 

distribution of the outputs. Support vector machines 

(SVM) can also be combined with CNNs for classification 

problems. 

Activation functions play a very important role in the 

success of training deep neural networks. The role of 

activation function is to “mimic” the behaviour of a 

biological neuron by deciding if a neuron should turn off 

or on. Most commonly used and successful activation 

function is the Rectifier linear unit (ReLU). ReLu is very 

simple and effective and has become the default 

activation function used in deep learning. Other 

activations functions have been proposed to replace 

ReLu but the performance improvements tend to be 

inconsistence with different models and datasets. Other 

derivatives of ReLu are: Parametric ReLu (PReLu), 

Exponential linear unit (ELU) and Leaky ReLu (LReLu). 

C.  Modern Architectures and Transfer Learning 

Deep learning algorithms, unlike typical machine 

learning algorithms, can automatically extract features 
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either through semi-supervised or unsupervised learning 

and attempt to learn high-level features from huge 

amounts of data. One challenge about deep learning is 

the massive dependency on data because it needs large 

data to better understand patterns in data [21]. 

Transfer learning uses knowledge from a source 

domain to improve the learning ability of a target 

domain by transferring information between the two 

domains. One important requirement that will enable 

successful knowledge transfer is that both the source 

and target domains should be related closely [22]. 

Transfer learning is needed where there is limited 

amount of targeted training data: this may as result of 

expensive data collection and labelling, data being rear 

or data being inaccessible. Transfer learning has been 

applied successfully in many applications including image 

classification, software defect classification, text 

sentiment classification [21]. 

As early as 2012, deep neural networks were 

achieving significant results in tasks classification and 

detection of objects over large image datasets. For 

example, in the likes of the ImageNet (ImageNet Large 

Scale Visual Recognition Challenge) competitions. 

ImageNet image dataset has more than 20; 000 

categories (classes) with over 80 million images. From 

2012 to 2017, when the last competition was held, the 

winning architects were convolutional neural networks. 

It was the first time a deep learning technique, i.e., 

convolutional neural networks, showed a significant 

improvement over previous results obtained by standard 

machine learn ing techniques and manual processing of 

features. Over time, these architects have become more 

successful than man himself in tasks classifications and 

detection over the ImageNet image dataset. Thus, these 

architectures have become standard architectures that 

have proven successful not only over the ImageNet 

dataset but on significantly wider range of problems. 

This is ensured through the tech- niques of transfer 

learning or as a basis or idea for new architectures. Some 

of these modern architectures include: GoogleNet [23], 

AlexNet [24], ResNet [25], and VGGNet [26], DenseNet 

[27], EfficientNet [28] etc. 

D.  Datasets 

Automated diagnosis and identification of plant 

diseases may allow for more rapid advances in plant 

breeding as well as easier monitoring of farmers' fields. 

However, given the multiple differences in lighting and 

direction, it is challenging for a simple algorithm to 

differentiate between the specific disease and other 

causes of dead plant tissue in a normal field. A vast 

amount of high-quality human-generated training data is 

required to train a machine learning system to 

accurately detect a certain disease from photographs 

obtained in the field. Therefore, datasets become an 

integral part of any machine leaning algorithm, because 

the amount and quality of the dataset goes a long way to 

affect the performance of an algorithm. This section of 

the review takes a look at some available datasets for 

plants disease detection. 

The largest public database of leaf images is 

PlantVillage, [29]. collected and maintained by a non - 

profit project run by Penn State University in United 

States and EPFL in Switzerland. The database consists of 

54309 pictures, of 14 types of plants, divided into 38 

classes (healthy and diseased leaves). These, however, 

were captured with detached leaves on a simple 

background, and CNNs trained on them can't perform 

well on field photos. Fig. 3 shows examples of images 

from each class of the PlantVillage dataset. 

 

 
Fig. 3:  Sample images of from PlantVillage dataset [29]. 

 

 
Fig. 4:  Statistics from the PlantDoc dataset [30]. 

 

PlantDoc by Singh et al. [30] contains 2; 598 data 

points in total over 27 classes; 17 diseases and 10 

healthy classes the dataset authors purport that 

https://jecei.sru.ac.ir/?_action=article&au=38448&_au=H.++Nunoo-Mensah


A Survey of Deep Learning Techniques for Maize Leaf Disease Detection … 

J. Electr. Comput. Eng. Innovations, 10(2): 381-392, 2022                                                                 385 
 

PlantDoc is a first of its kind that contains non-controlled 

image settings. This is envisaged to enhance 

performance of trained models used in practical real-life 

applications. Fig. 4 shows statistics of the PlantDoc 

dataset with a sizeable maize content 

The dataset by Wiesner-Hanks et al. [31] is made up 

of full images of maize leaves shot in three different 

ways: using a handheld camera which produced 1787 

images with 7669 annotations, camera mounted on a 

boom consisting of 8766 images with 55; 919 

annotations and those pictures taken by a drone which is 

made up of 7669 images with 42; 117 annotations. There 

is no way to indicate the confidence of annotations. 

Some lesions are easily visible, which others are partially 

or entirely occluded from the focal plane. Other factors 

affecting the confidence of annotation are a heavy shade 

or being washed out by bright sunlight. It was reported 

that even experts found it difficult to distinguish 

between NLB and similar-looking diseases. The 

generalizability of the data is affected since image 

samples were taken in a single field in New York State. 

However, symptoms of the same disease can present or 

develop differently. Thus, the performance is hindered 

by the limitations mentioned earlier. 

Since popular datasets cut across multiple plant 

leaves, the CMLD dataset [32] on the other hand, 

combines PlantVillage and PlantDoc maize or corn 

related data points to form a new dataset. Unrelated 

data samples were ignored in the creation of this new 

hybrid dataset. CMLD contains 4188 data points in total. 

The distributions are 1306 images for common rust, 574 

images for grey leaf spot, 1146 images for blight, and 

1162 healthy images. 

Existing Deep Learning-based Proposals for 

Detecting Maize Leaf Disease 

A.  Methodology for Selecting State-of-the-Art Models 

Following research works done by [33]-[35] a search 

was done in the following databases: IEEE Xplore, 

Scopus, ResearchGate, and Google Scholar. The 

keywords used in searching for articles were: “plant leaf 

disease detection”, “Maize leaf disease detection”, and 

“deep learning-based maize leaf detection”. The year 

range was limited to 2016 - 2021. The procedure for 

selecting the existing candidate works for this study is 

presented in Algorithm 1. The search results in IEEE 

Xplore using the keys words shows that in 2018, 77 

research papers were published. Out of these three were 

for maize leaf diseases detection and none for Deep 

learning techniques for maize leaf detection There was 

an increase in the number of conducted research in the 

years 2019 and 2020. The publications for 2019 and 

2020 were 148 and 208, respectively. This shows the 

growing interest in plant leaf disease detection and the 

desire to maximize gains in agriculture. However, the 

number of publications involving maize leaf disease 

detection remains at three. Deep learning techniques for 

maize leaf detection in 2019 and 2020 were one and 

two, respectively, in the IEEE Xplore. As of July 2021, 

there were 91 publications, with only one involving 

maize leaf detection using deep learning techniques. 
 

 

B.  Current State-of-the-Art Models 

There have been many approaches and techniques to 

detect maize disease in plants accurately. This section of 

the review highlights DL approaches used, datasets used 

in the study, contributions and limitations of the existing 

DL techniques. This review seeks to review state-of-the-

art works from 2016 to 2021. 

Richey et al. [36], used supervised transfer learning: 

based the ResNet50 model for the identification of 

Northern Corn Leaf Blight disease in maize plants. Two 

publicly available datasets were used for training and 

validation. Tensorflow with Keras high-level API public 

deep learning libraries are used. The model performance 

included an F1 score of 0.99, Accuracy of 0.99 and 

precision of 0.98 and a Recall of 1.00. The model was 

then served to a mobile application for practical field 

purposes. Esgario et al. 

Esgario et al. [37] also used transfer learning for 

classification and severity estimation of four biotic 

stresses in coffee leaves. Two different datasets were 

generated, leaf dataset and symptom datasets using 

standard and mixup image augmentation techniques. 

AlexNet, GoogleNet, VGG19, Resnet50, MobileNetV2 

were trained using single-task and multi-task CNN 

architectures. The GoogleNet, ResNet50, and AlexNet 

performed better with multi-task learning. ResNet50 

achieved the best results. Multi-task learning made 

learning much faster because only a single model was 

trained. 

A limitation identified by the authors involved the low 

representativity of the dataset that covered only the 

principal biotic stresses that affect coffee trees. 
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Nevertheless, this could be improved by increasing the 

number of images, thus adding new kinds of stress to the 

dataset.  

Sambuddha et al. [7] proposed an explainable 

machine learning framework for the identification of 

stress in soybean with remarkable accuracy. Their 

proposed xPlNet framework comprised two main 

phases: the deep convolutional neural network (DCNN) 

and explanation phasesThe classification accuracy 

achieved by their model was 94.13%. 

Xihai et al. [38] used improved deep learning models, 

GoogleNet and CIFAR10 (transfer learning), to identify 

disease in leaves of maize plants. The GoogleNet model 

achieved the highest accuracy of 98.9% as compared to 

the CIFAR10 of 98.8% accuracy. However, the authors 

claimed that with their improved CIFAR10, the testing 

accuracy could be improved by 0:7% and the loss 

reduced by 10:2%. 

Wu et al. [39] proposed a three-stage pipeline CNN to 

detect the presence of NLB in field images of maize 

plants using images acquired from an unmanned aerial 

vehicle (UAV). Their model achieved an accuracy of 

95.1%. Liang et al. [10] proposed a Deep Convolutional 

Neural for the detection of rice blast disease. Three 

feature extraction methods were used for feature 

extraction: Convolutional neural network (CNN), Harr-

wavelet (Haar-WT), and local binary pattern histograms 

(LBPH). Using t-Distributed Stochastic Neighbor 

Embedding (t-SNE) as a criterion for evaluating the 

performance of the three feature extractors, CNN 

showed a better performance than the other two 

handcrafted features. Support Vector Machines (SVM) 

when combined with all the feature extractors for 

classification, the CNN-based feature extractor shows far 

superior performance than LBPH and Haar-WT. The 

results showed that the quantitative analysis accuracy, 

receiver operating characteristic curve (ROC), and area 

under the ROC Curve (AUC) agreed with qualitative 

analysis using t-SNE. CNN and 

CNN+SVM showed superior performance than 

LBPH+SVMand Haar-WT+SVM. It can, however, be 

alluded to that CNN and CNN+SVM are better for rice 

blast identification. CNN+SVM was a solid competitor for 

rice blast detection, but the latter is preferred. Their 

technique was limited to detection and failed to address 

the issue of the severity of the disease. 

Panigrahi et al. [40] proposed a CNN-based model for 

the detection of three major corn diseases: northern leaf 

blight, common rust, and Cercospora leaf spot. The 

authors used images from the PlantVillage dataset for 

the study. A CNN model was proposed, which consisted 

of 3 convolutional layers and two fully connected dense 

layers. The dropout layer is used to prevent overfitting. 

The proposed model achieved an accuracy of 98.78% 

with less convergence time. Sibiya and Sumbwanyambe 

[41] designed a CNN model for detecting leaf disease of 

corn plants using a Java-based neural network 

framework, Neuroph. The training set included personal 

images captured from the field and the PlantVillage 

dataset. Their model had 50 hidden layers of CNN built 

for the classification of three maize diseases. The overall 

accuracy of the CNN was 92.85% but achieved individual 

accuracies ranging from 87% to 99.9%. The model could 

easily overfit because small amounts of data points were 

used in training. 

Garg et al. [42] proposed a deep framework 

(cascaded CNN) to detect and automatically quantify the 

presence of a disease in plants. The model was trained 

using field images captured by using unmanned aerial 

vehicles (UAVs). Their framework extracted phenotypic 

traits to detect and estimate the severity of a leaf 

disease at the leaf level. The results of their experiment 

gave a severity correlation of 73%. A modified LeNet 

architecture proposed by Priyadharshini et al. [43] for 

the classification of three-leaf diseases of maize is 

discussed. The study was carried out by using images of 

maize leaves from the PlantVillage dataset. Principal 

component analysis (PCA) was used for preprocessing. 

To improve the classification accuracy of their proposed 

model, the authors adjusted the framework by varying 

the depth and kernel size. The model accuracy was 

97.89%. The simulation results for maize leaf disease 

classification demonstrated the proposed method’s 

potential in maize disease classification. 

Richey and Shirvaikar [31] used an object detection 

algorithm, YoloV4, to detect the presence of NLB in the 

leaf of maize plants. Using a subset of the publicly 

available dataset by Wiesner-Hanks et al. [44] with 

augmentation techniques, 5699 images and a test set of 

1251 images were used. Evaluating the model based on 

Intersection-over-Union (IoU) and Mean Average 

Precision (mAP), the model reported a 93.55%mAP with 

an average of 77.13% IoU. 

Bhatt et al. [45], proposed a novel CNN technique for 

classifying corn leaves into Healthy, Common Rust, Late 

Blight, and Leaf Spot by using adaptive boosting and 

other classifiers to train on features from four CNN 

architectures (i.e., VGG-16, ResNet-50, Inception-v2, and 

MobileNetv1). Adaptive Boosting assisted the classifiers 

in developing a solid rule for class labels. An accuracy of 

98% was achieved together with classification scores of 

0:97, 0:98, 0:97 for precision, recall, and f1-score, 

respectively. 

To improve the performance of CNNs in the detection 

of maize leaf disease classification, da Rocha et al. [46] 

used Bayesian optimization to help find optimal 

hyperparameter for training using the PlantVillage 

dataset. The significant contribution of their study was 
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finding the best hyperparameters using Bayesian 

optimization. The authors employed K-fold cross-

validation for training three CNN architectures: AlexNet, 

SqueezeNet and ResNet-50. Interestingly the three 

models obtained 97% accuracy, indicating that 

optimization produced improved generalization 

throughout all the models. 

Waheed et al. [47], using an optimized DenseNet 

architecture proposed a novel technique for the 

recognition and classification of three maize leaf 

diseases. In determining optimal hyperparameter values, 

the authors used a grid search to find these optimal 

values. However, but may present a curse of 

dimensionality. DenseNet uses significantly fewer 

parameters as compared to other CNN architectures 

used in the experiment. Experimental results showed 

that DenseNet achieved an accuracy of 98:06% with 

fewer parameters and training time. 

Lin et al. [48] proposed a novel multi-channel 

convolutional neural network (MCNN) to improve the 

identification of five maize leaf diseases. Their proposal 

employed techniques used in video saliency detection 

that imitates human visual behavior. Their model 

achieved an average accuracy of 92:31%, 

Liu et al. [49] used transfer learning based on 

EfficientNet for the automatic recognition of maize leaf 

diseases. The model parameters trained on the 

ImageNet dataset were maintained during training, and 

the fully connected layers and Softmax were optimized. 

Images collected from the internet were used for 

training. The training speed was significantly improved 

with a recognition accuracy of 98:52%. 

A transfer learning approach based on the 

Inceptionv3 and Inception-v4 approach was designed by 

Sun et al. [50] to classify maize diseases. The pre-trained 

model was fine-tuned, providing a new approach for 

maize disease identification. The dataset used was from 

AI challenger and consisted of eight categories. An 

experimental result indicated that transfer learning 

could help reduce the training time of the network. 

Syarief and Setiawan [51] analyzed four classes of 

diseased maize leaf images using seven CNN 

architectures and three classification methods. The data 

was obtained from the PlantVillage dataset. The best 

classification method identified by the authors were 

AlexNet and SVM, with an accuracy of 93:5%. 

Sumita et al. [52] proposed a real-time deep learning-

based model that is deployed onto a raspberry pi for 

identifying and classifying major corn diseases. The bulk 

of the dataset used is from PlantVillage dataset, but few 

images were captured from corn plantations. Live 

images of an infected or healthy corn plant are captured 

by a Smartphone camera and sent to the raspberry pi for 

processing through a Wi-Fi network. The average 

accuracy of the model is 98:40%, but the accuracy 

reduces to 88:66% when deployed. 

Tian et al. [53] also proposed a multi-layer deep 

neural network for the recognition of six different 

diseases of corn plants. Dataset used in the study is from 

experimental fields. VGG-16 is used for feature 

extraction. Smut and rust disease achieved 100% 

accuracy but with an overall accuracy of 96:8%. Several 

methods for classifying plant diseases that can learn 

from small amounts of data are proposed in [54]. 

PlantVillage dataset and coffee leaf datasets were 

used in the study. Transfer learning, triplet networks, 

and Deep Adversarial Metric Learning (DAML) [55] are 

the main building blocks of these methods. Very high 

accuracy of 99% was achieved, thus demonstrating the 

efficiency of transfer learning. 

A summary of the discussed state-of-the-art models 

and proposals have been outlined in Table 1. 

Open Issues and Future Research Directions 

This section highlights some challenges in plant 

disease detection. It outlines some directions for future 

research in using deep learning techniques for plant 

disease identification and detection in intelligent 

agriculture, especially diseases in cereal crops.  

From the discussions mentioned earlier, it can be 

found that one of the challenges facing plant disease 

detection is the lack of experts to annotate accurately. 

The problem arises when experts cannot rightly 

differentiate between dead tissues and diseases when 

compiling a dataset. This task requires experts and 

experienced professionals to identify plant diseases that 

are difficult and costly, especially for new or rare 

diseases. Furthermore, crop diseases vary in severity. 

The data collection is unquestionably important when 

using deep learning technologies to identify crop pests 

and illnesses.  

Model architecture, hyperparameter tuning, and 

training resources also throw another challenge in plant 

disease detection. Shallow architectures are best suited 

for small datasets. Most recent models for object 

detection offer another angle to consider in selecting or 

building a model for disease detection and classification. 

The adaptive boosting (AdaBoost) technique is a choice 

to be considered to enhance the performance of 

detection models. Most DL techniques are focused 

mainly on the detection and classification of maize leaf 

disease. The paper recommends that future research on 

maize leaf disease detection, classification, and 

quantification of disease severity will help improve smart 

agriculture. Quantification is an area that is least 

explored by researchers in the field but has the 

possibility of providing more insightful data for rapid 

decision-making during farming. 
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 Authors DL Algorithm Dataset Contribution Performance Limitation 

1 
Afifi et al. 
[54] 

▪ ResNet18, ResNet34, 
ResNet50, 

▪ Triplet networks 

▪ Deep Adversarial Metric 
Learning 

PlantVillage 

Demonstrates the 
efficiency of transfer 
learning for corn 
diseases detection 

An accuracy of 99% 
was reported by 
the authors 

The proposed models 
have low accuracy 
under varied conditions 

2 
Richey and 
Shirvaikar 
[31] 

▪ YoloV4 Subset of [44] 

The authors used an 
object detection 
algorithm for the 
detection of NLB in 
the leaf of maize 
plants 

Evaluation 

Their model 
reported a 93:55% 
mAP with an 
average of 77:13% 
IoU. 

 

Their work did not 
consider multiple 
regions of interest. 

3 
Kanish et 
al. 
[42] 

▪ A self-trained cascaded 
CNN model 

 

They captured 
field images 
using UAVs 

 

The authors proposed 
a framework for the 
detection and 
estimation of leaf 
disease severity 

Experiments gave a 
severity correlation 
of 73%. 

 

The dataset used by the 
authors were not 
extensive thus the 
reduced accuracy 
levels. 

4 
Liu et al. 
[49] 

▪ EfficientNet 

 

The authors 
sourced 
images from 
the internet 

 

The authors fine-
tuned EfficientNet for 
the automatic 
recognition of maize 
leaf diseases 

They achieved a 
recognition 
accuracy of 98:52% 

The authors used non-
standardized images for 
their dataset 

5 
Sun et al. 
[50] 

▪ Inception-v3 

▪ Inception-v4 

 

AI challenger 

 

The authors leveraged 
transfer learning 
capabilities to aid in 
classifying maize leaf 
diseases. 

The transfer 
learning procedure 
reduced the 
training time of the 
network 
significantly 

The proposed 
framework might not 
perform well on images 
that contain several 
leaves, due to the kind 
of images used for 
training 

6 

Syarief 
and 
Setiawan 

 [51] 

▪ AlexNet 

▪ VGG16 

▪ VGG19 

▪ GoogleNet 

▪ Inception-V3 

▪ ResNet50 

▪ ResNet101 

PlantVillage 

 

The authors classified 
maize leaf diseases 
using pre-trained 
models 

AlexNet achieved 
the best average 
classification 
accuracy of 93:5%. 

 

The best results of 
AlexNet with an SVM 
classifier recorded 
lower accuracies than 
the state-of-the-art 

7 
Sumita et 
al. [52] 

▪ Self-trained CNN model 
PlantVillage 
 

A real-time corn 
disease identification 
and classification 
using a Raspberry Pi 
was designed and 
implemented by 
authors. 

An average 
accuracy of 98:40% 
was recorded 
during model 
training, however, 
the accuracy 
reduced to 88:66% 
when deployed 

Model overfitting on 
training data likely 
cause for reduction in 
the implementation 
accuracy. 

8 

Panigrah 
et al. [40] 

 

▪ Self trained CNN model 
PlantVillage 

 

The authors proposed 
a CNN-based model 
for the detection of 
three major corn 
diseases 

Their proposed 
model achieved an 
accuracy of 98:78% 
with little 
convergence time. 

The model can under-fit 
due to small data 
samples used for 
training. 

 

9 
Blake et al. 
[36] 

▪ ResNet50 
PlantVillage 

 

The authors proposed 
a real-time maize 
disease detection 
model using transfer 
learning. 

They achieved an 
accuracy of 99%. 

 

Their model however, 
performed poorly on 
field images. 

 

10 
Esgario et 
al. [37] 

▪ AlexNet 

▪ GoogleNet 

▪ VGG19 

▪ Resnet50 

▪ MobileNet-v2 

The authors 

used images 

captured using 

smartphones 

 

A multi-task learning 
technique for 
classification and 
severity estimation of 
four biotic stresses in 
coffee leaves were 
proposed by the 
authors. 

ResNet50 achieved 
the highest results 
among the 
candidate models. 

In-field images were 
not used which could 
have positively 
impacted the model. 

 

 

 

Table 1: A summary of the discussed state-of-the-art models and proposals have been outlined. 

https://jecei.sru.ac.ir/?_action=article&au=38448&_au=H.++Nunoo-Mensah
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11 
da Rocha et al. 

[46] 

▪ AlexNet 
▪ SqueezeNet 
▪ ResNet-50 

PlantVillage 

The authors 

determined the 

optimum hyper-

parameters using 

Bayesian optimization 

for disease 

classification. 

All three CNNs 

obtained a 97% 

accuracy. 

Model was not tested 

with field data. 

12 
Waheed et al. 

[47] 
▪ DenseNet 

The authors used 

images manually 

gathered from 

different sources 

A novel technique for 

recognition and 

classification of three 

maize leaf diseases 

was proposed by 

authors. 

The DenseNet model 

used achieved an 

accuracy of 98:06% 

with less parameters 

and training time. 

Their framework may 

present a curse of 

dimensionality. 

13 Wu et al. [39] 
▪ Self-trained CNN 

model 

Images acquired 

from [31] 

The authors proposed 

a three-stage pipeline 

CNN to detect the 

presence of NLB in 

field images of maize 

plants. 

Their model 

achieved an accuracy 

of 95:1%. 

Their proposed model 

cannot detect severity 

of NLB in maize plants. 

14 Liang el al. [10] 
▪ Self-trained CNN 

model 

Images were 

acquired from the 

Institute of Plant 

Protection, 

Jiangsu Academy 

of Agricultural 

Sciences. 

A deep convolutional 

neural network for 

the detection of rice 

blast disease was 

proposed by authors 

CNN and CNN+SVM 

showed superior 

performance. 

Reliability and 

robustness of the 

model needs 

improvements. 

15 

Sibiya and 

Sumbwanyambe 

[41] 

▪ Self-trained CNN 
model 

Field images + 

PlantVillage 

database 

The authors proposed 

a CNN for the 

classification of three 

maize disease. 

An overall accuracy 

of 92:85%. 

The model can easily 

overfit due to the 

small amount of data 

used in training the 

model. 

16 
Priyadharshini 

et al. [43] 
▪ Modified LeNet 

architecture 
PlantVillage 

The authors proposed 

a LeNet method’s 

potential in maize 

leaf disease 

classification. 

The reported model 

accuracy was 97:89% 

It is expected that the 

model might perform 

poorly on field images; 

this is due to the 

controlled nature of 

the images used. 

17 Bhatt et al. [45] 

▪ VGG-16 
▪ ResNet-50 
▪ Inception-v2 
▪ MobileNet-v1 

PlantVillage 

The authors used a 

CNN for classifying 

corn diseases using 

adaptive boosting 

techniques. 

An accuracy of 98% 

was achieved in their 

work 

Some of models used 

in the ensemble had 

larger parameters and 

took longer periods to 

train. The accuracy of 

the ensemble was not 

verified with field 

image 

18 Tian et al. [53] ▪ VGG16 Field images 

A multi-layer deep 

neural network for 

the recognition of six 

different disease of 

corn was proposed by 

the authors. 

They recorded an 

overall accuracy of 

96:8%. 

Their proposed 

method did not take 

into account the 

different 

characteristics of the 

plant at different 

stages of the diseased 

journey. 
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Conclusion 

The early detection of a plant disease enables 

stakeholders to apply the appropriate controlled 

measures to mitigate against the disease effectively. 

Recent techniques have focused on automated 

techniques using deep learning to detect diseases in 

maize plants accurately. This review details DL 

techniques that are used for automated maize leaf 

diseases detection and classification. The paper 

introduces plant disease detection and some of the 

shortfalls of traditional techniques used. Recent 

automated techniques, some essential datasets, and 

some DL architectures were also highlighted. The paper 

further gave a detailed account of recent DL techniques 

used to detect diseases in the leaves of maize plants and 

a discussion of their significant contributions and 

limitations. Challenges and future research directions in 

maize leaf disease detection are also presented in the 

paper. 
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