
J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

Doi: 10.22061/JECEI.2021.8218.496 311

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Semantic Enterprise Architecture Oriented Test case Generation for
Business Process

M. Rahmanian1, R. Nassiri2, M. Mohsenzadeh1, R. Ravanmehr2

1Department of computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2Department of computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Article Info Abstract

Article History:
Received 10 August 2021
Reviewed 10 September 2021
Revised 22 November 2021
Accepted 24 November 2021

 Background and Objectives: The area of enterprise architecture
encompasses various domains, the most complicated of which concerns
developing enterprise business architecture. Although many state-of-the-art
enterprise architecture frameworks describe the architecture by abstract
levels, they still fail to provide accurate syntactic and semantic descriptions.
Several previous conducted studies were looking for different objectives
elaborated on modeling enterprise architectures. However, none of those
studies tried to develop a modeling that generates test cases which would
later be used for validation and/or verification. Therefore, the main
contribution of this study is generating a set of test cases based on the
descriptions yielded from enterprise business processes in early steps; then,
the amount of later reviews and changes can be significantly lessened.
Methods: Following the objective of accurate validation and/or verification
of the enterprise business processes within an enterprise's architecture
development, this paper proposes a new method based on the enterprise
architecture design. Throughout the iterative cycle of the proposed method,
initially, the enterprise goals will be extracted based on the TOGAF
framework. Afterwards, it will be subjected to syntactical modeling based on
the Archimate language. Then, semantics will be added to the syntactic
model of the enterprise business processes based on the WSMO framework
and formalize manually to B language by using defined transition rule.
Therefore, in order to discover test cases, a set of test coverage will be tested
on the formal model.
Results: The proposed method has been implemented in the marketing and
sales department of a petrochemical corporation, where the results show the
validity and also the effectiveness of the method. Based on the
implementation of our method on the selected case study, the details of the
business process have been defined based on an enterprise level, the level of
abstraction is decreased by syntactic and semantic modeling of enterprise
architecture description, the formal descriptions created using the proposed
transition rules for sampling.
Conclusion: The proposed method starts from the goals of enterprises;
therefore, the output samples are efficiently precise. By adding semantics to
the syntactic models of enterprise architecture, the degree of abstraction has
been decreased. By creating a formal model, the model can be subjected to
sampling. For future work, it is suggested to use the proposed method for
the automatic generation of codes.

©2022 JECEI. All rights reserved.

Keywords:
Enterprise architecture

Business process

Syntactic and semantic
modeling

Test case generation

*Corresponding Author’s Email
Address: r_nasiri@iauctb.ac.ir

Introduction

Enterprise architecture is a comprehensive integrated

approach that separates and analyzes an enterprise in

various aspects and objects from an engineering, but IT-

based point of view, to acquire a better understanding of

http://jecei.sru.ac.ir/
mailto:r_nasiri@iauctb.ac.ir

M. Rahmanian et al.

312 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

the entire structures and elements of an enterprise, as

well as the forms in which they are connected. Currently,

there are multiple enterprise architecture frameworks

available worldwide, all of which provide a highly

abstract description of an enterprise architecture [1]. In

this context, one of the most deployed among those

frameworks is the TOGAF, which is based on an iterative

development method known as ADM [1]. Based on the

TOGAF framework, every enterprise architecture is to be

shaped of four domain layers known as the business,

data, application, and technology architecture layers [2].

Software testing is a critical and costly process in the

Software Development Lifecycle. In fact, a considerable

portion of the cost of producing reliable software is

associated with this process phase [3], [4]. Nevertheless,

if one can generate a set of test cases based on the

descriptions yielded from enterprise business processes

in early steps; then, the amount of later reviews and

changes can be significantly lessened. This is the main

idea behind of later steps in this paper.

Several previous studies following different objectives

tried to model enterprise architecture [1], [5]-[9], [11]-

[24]. However, none of those studies elaborated on

modeling to generate test cases for the purpose of

verification and/or validation. The main issues addressed

by this paper is how to start from the enterprise level,

get benefited from the enriched descriptions yielded for

enterprise business processes, move to generate proper

syntactic and semantic models of the descriptions, and

generate prioritized test cases from the well-established

models to come up with samples to be used for

verification and/or validation.

Based on what aforementioned, we may cope with

two main challenges:

A) Syntactic and semantic modeling of the

enterprise business processes.

B) Generating proper test cases using the syntactic

and semantic models.

Compared to previous studies, innovation in this

paper is as follows:

• Starting from the enterprise level (vision, mission

and goal) to get descriptions of the enterprise

business process.

• Reducing the level of abstraction in architectural

descriptions using syntactic and semantic

modeling.

• Enabling model sampling using formal transition

rules.

 Later on, in the next section the related studies

would be reviewed, and once the proposed method is

explained, it would be implemented in the form of a case

study for further evaluation purposes. Finally, this paper

ends up with the proposed method conclusions and

further suggestions for future works.

Review of Literature

A. Syntactic and Semantic Description of Enterprise
Architecture

Several studies have tried to provide syntactic and

semantic descriptions of enterprise architecture, while

each of them used the descriptions for a specific

purpose.

In [1], Zhou et al. to identify, classify, analyze, and

evaluate existing methods for EA visualization, reviewed

the research papers on EA visualization systematically.

They selected and analyzed 112 research papers, and

then they categorized them according to their purposes.

In none of the studies reviewed in this study, the issue of

modeling with the aim of generating test cases has been

addressed. In [5], Bouafia and Molnar defined the basics

concepts of EA and the purpose and utility of an EA and

its place in the IS environment are discussed. The

approach presented provides a formal way to use the

mathematical analytic methods for exploring

misalignment based on different concepts and relation

between them. In [6], Hinkelmann et al. believe that

modeling for humans is different from modeling for

machines. They proposed a combined approach that

would be suitable for both humans and machines. In

order to create a graphical modeling language, a

graphical symbol was designed for each ontology.

However, the perspective proposed in this research is to

be known as general and not pertaining to any specific

domain, particularly while someone is seeking a test case

generation solution at this level. In [7], Babkin proposed

a method for detecting any logical paradoxes in

enterprise architecture models that works under the

approach of model checking (verification) in the business

process model. Babkin’s study uses the ArchiMate

language and the MIT Alloy Analyzer tool to describe

enterprise architecture and to analyze model limitations,

respectively. Furthermore, the study has also developed

an editor module that translates enterprise architecture

models to the MIT Alloy Analyzer system’s language. The

main drawback of this model may be its failure to

support semantics, whilst the major effort was mainly on

model consistency check and syntax matters among

models. In [8], Caetano attempted to address three

major issues. The first one was about how to use

ontology to present enterprise models; the second one

was how to use ontology to integrate enterprise models;

and the third one was how can use semantic computing

techniques to analyze integrated enterprise models. He

stated that the main challenge should be on the

determination of mapping function among different

schemas. Sometimes based on the extent of semantic

difference among various schemas, it may become

virtually impossible to select a mapping function. This

study stated that a conceptual model could be

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 313

determined via three components, namely as the

subject, the interface, and the object. Through this

method, the concepts underlying each of the model

components would be described in an ontological

fashion. The main drawback of this research is its focus

on semantic modeling where sampling is ignored. In [9],

Hinkelmann et al. proposed a combined modeling

approach for convergence between business and

technology. The authors used enterprise ontology

proportional to BPaaS concepts. It is noteworthy that

OMiLAB LifeCycle backs the development of the BPaaS

design environment. The authors believed that the

BPaaS ontology is the format of ArchiMEO ontology [10].

The study has expanded various models with different

algorithms and mechanisms of semantic transformation

to connect graphical models to the BPaaS ontology. The

main pitfall here is deployment area if the proposed

method for other cases is not considered by authors. In

[11], Gokalo believes that the complexity of enterprise

architectures is the reason that manual analysis seems to

be impossible, and so he proposed using descriptive logic

along with ontology. This study categorized inferential

activities into five main groups: subscription, sample

inspector, relation inspector, compatibility of concepts,

and compatibility of the database. Each of the

mentioned activities was being described by a different

descriptive logic also with varying descriptive

capabilities. The study used OWL to provide a high-level

description of the meta-model. Using the stated

descriptive logic, concepts relating to the elements and

the relationships among them had been described in

ArchiMate. However, still no sampling capability is

available in this method. In [12], Chen et al. suggested

that semantic technology should allow different datasets

extracted from different data sources in enterprise, to be

later integrated into an EA repository, and would

prepare the basic information required for decision

making corresponding to the outlook of the information

systems at hand. In addition, enterprise architecture

frameworks such as the TOGAF produce meta-models to

be used as guides for generating EA repositories.

Considering this content, the authors defined a process

for generating SEAM repositories. Furthermore, the data

have been subjected to ontology and related to the

enterprise architecture. SEAM focuses on modeling the

dependencies among the business, information systems,

and IT infrastructures. However, still no sampling

capability is available in this method. In [13], Hinkelmann

et al. developed a framework intended to make a

balance between technology and business. Model-based

engineering is presented either as a graphical or as a

formal model. Enterprise architecture frameworks solely

display a general schema of the enterprise architecture

and its structures and elements, while in some cases

such as the Zackman framework, there is a lack of any

specific modeling instrument. As a result, such

frameworks cannot be used as a tool for decision

making. The study assumed that no language can

provide a formal description of an enterprise

architecture definition since a perfect modeling language

is the one that encapsulates the three components of

syntax, semantics, notations, and symbols.

B. Generating Test Cases Based on Enterprise
Architecture Description

An important debate pertaining to the domain of

software testing includes generating test cases which are

normally generated in different forms from various

software models. In the following, previous studies
related to this domain are to be discussed. Since the

present study focuses on enterprise business processes,

we will only discuss the studies that fall into this

category.

In [3], Sharma et al. identified various factors

affecting related aspects of software testing process and

therefore the impact of ontology has been observed in

the testing and analyzed. They believe that such an

elucidation is significant for having knowledge-oriented

verification and validation and the wide adoption of

ontology helps the domain in manifolds. In [14], Yazdani

et al. present a model-based approach to automatically

generate test cases from business process models. They

first model business processes and convert them to state

graphs. Then, the graphs are traversed and transformed

to the input format of the "Spec explorer" tool that

generates the test cases. The limitations of the proposed

algorithm is that it works only for well-structured

processes and if the input process is not well-structured,

it cannot define states correctly and it so captures invalid

paths. In [15], Zhang et al. developed a tool for the

automated generation of test cases based on

descriptions. Their study used preconditions and post-

conditions to produce formal descriptions. Their method

was thoroughly based on programming which was

unusable for sets containing infinite elements. In [16],

Ajay et al. used the activity diagram for the automated

generation of test cases. In their method, an activity flow

table was established based on the activity diagram, and

then based on the former table, an activity flow graph

will be yielded. In addition, their study used the Genetic

Algorithm to generate a set of optimal test cases. It is

noteworthy that their method generates the set of test

cases according to the structure of the activity diagram

via selecting different paths within it. In [24], Bures et al.

created a tool named PCTgen which automatically

generated a set of test cases to check a workflow. Unlike

previously presented methods, this method assumed

that there were no UML documents available. To this

end, a directed graph will be used to signify the

M. Rahmanian et al.

314 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

workflow. The test cases generated through this method

are resulted solely from the sequence of activities

existing in the work flow, irrespective of semantics.

C. Motivation of the paper

Investigating the previous studies led us to the

conclusion that although many studies have tried to

generate semantic models of enterprise architecture,

but none of them, have adopted the approach of test

case generation with the aim of verification and/or

validation using syntactic and semantic models.

Therefore, considering enterprises objectives and

missions, we intend to generate proper test cases for

further use in the system through a new method known

as "Semantic Enterprise Architecture Oriented Test Case

Generation for Business process ", which is based on the

views relating to the TOGAF and model checking of a

formal model of syntactic and semantic modeling.

The Proposed Method

The overall framework of the proposed method is

based on an iterative cycle, which is derived from the

Architecture Development Method of the TOGAF, which

itself is a stepped iterative process. The proposed

method doesn’t elaborate on the transition from the

existing status of the enterprise to the desired status;

rather than, in this method, the only input is the

architecture of the desired status which will be further

developed via an iterative cycle. The overall framework

of the proposed method is presented in Fig. 1.

Fig. 1: The overall framework of the proposed method.

A. Receiving the Enterprise Architecture’s Description

Based on the TOGAF’s view, the entire business

processes of an enterprise are rooted and validated in its

objectives and missions. At this phase, we will start from

the enterprise-level objectives and missions to reach the

enterprise business processes. In the meantime, it is

assumed that the descriptions have been received from

the domain experts. It is worthy of mentioning that the

mentioned descriptions have been provided in an oral

and/or semi-documented unofficial manner, and hence

could not be directly subjected to sampling.

B. Syntactic Modeling

Each model depicts a part of the reality, but a single

model alone cannot express all the realities by itself.

Since the received (input) descriptions are oral and/or

semi-documented and unofficial, at this phase, the

products of TOGAF will be generated using the

ArchiMate [17]-[20] language and according to the

received data. Since the present paper focuses on

enterprise business processes, we will only elaborate on

the required products corresponding to the TOGAF and

the business architecture layer.

The steps involved in syntactic modeling are

described in Table 1, as displayed in Fig. 2.

Fig. 2: Steps involved in syntactic modeling.

At the first step, we determine the goals and their

respective hierarchies of details based on the extracted

descriptions. For each goal, an enterprise face certain

requirement. At the second step, we define respected

requirements of goals. In order to meet the expressed

requirements, one or more proper solutions will be

proposed. At the third step, solutions proportional to

different requirements will be determined. At the fourth

step, to provide an overview that traces essential

elements to be built or revised from goals through to

components, we create a business footprint model. The

Footprint is a complete collection of process, data,

application, business unit, and business objective that

validates a capability as in TOGAF and finally at the fifth

step, to model the entities identified in a business

process and the relationship among them, the business

entity model is created.

C. Semantic Modeling

Syntactic models are unable to cover the entire

knowledge pertaining to an enterprise alone. Additional

data required to describe a model and should be

expressed in the form of business rules. These rules are

either defined by the process, or by the entities existing

in a process. To this end, it would be necessary to

provide a semantic description of the enterprise

business processes. The algorithm used for semantic

modeling has been illustrated in Fig. 3. Nevertheless, we

use the semantic modeling process by concepts involved

Architecture
Description

Input

Syntactic
modeling of

the
description

Semantic
modeling of

the
description

Generating
the formal

model

Generating
samples from

the formal
model

Reviewing and
Evaluating

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 315

in WSMO [21]-[27]. This is because of the capability of

WSMO as a semantic modeling language compliant with

the aims of this paper.

For semantic modeling of an enterprise business

process, at the first step, the business entities are

semantically modeled to determine the ontology of

business entities by specifying the name, attributes,

types, and constraints on each entity. At the second

step, we use axioms to express the rules governing a

business process, and finally, at the third step, for

modeling the goal of a business process, we use the Goal

concept in WSMO to express the goal of an enterprise

business process.

Fig. 3: Steps in semantic modeling.

D. Creating the Formal Model

Since semantic models developed with the WSML

language [21] cannot be subjected to sampling, in order

to provide the required conditions for sampling, at this

step, a formal model that can be subjected to sampling

will be generated from the description. In order to

express the description in a formal sense, the B language

[28], [29] will be used. The reason by which the B

language is selected for use in the proposed method is

that the target description is based on the Abstract State

Machine model. Similarly, description B is also based on

the abstract state machine. Language B is equipped with

suitable supports for validating and checking the model;

therefore, the model created using the B language will

be adequately suitable for sampling at the next phase.

We have defined a set of rules to transform semantic

descriptions from WSML language to the B formal

language. The description generated in WSML language

contains two major parts, the first being the ontology of

concepts, and the second being goal description.

 I) Rules of Ontology Transformation

Ontology is the main part of WSMO and comprises

three parts: the header, concept, and rules. The

following rules are abided, while transforming into the B

language.

Rule 1: Transforming the Ontology Header.

The header is comprised of several parts of the name,

imports-ontology, mediator, and non-functional

properties. However, since the sections of mediator and

non-functional properties are ineffective, they won’t be

used in transformation. To this end, according to the

relation (1) in Table 1, the transformation of machine B

will be executed under the same name given to the

defined ontology.

Rule 2: Transforming the Imports-ontology in the

ontology.

If a specific ontology is added to the header, it will be

added to the machine in the INCLUDES section according

to relation (2) in Table 1.

Rule 3: Transforming Concept names in the Ontology.

The concepts in a WSMO ontology are transformed to

sets in a B machine in the SETS section. The deferred sets

in B usually declare the sets. A deferred set is one that is

not initialized at the time of the set declaration.

However, the explicit initialization of a set is represented

by the initialized set. The set initialization can also be

used to map the inheritance of the concepts. A concept

with multiple sub-concepts can be transformed as the

initialized set with elements representing its sub-

concepts.

A concept comprises three sections, namely the
name, attribute, and (attribute) type. Concepts are
transformed into language B using relation (3) in Table 1.
In this sense, the concept’s name will be transformed
into a set’s name (in capital letters) in the SETS section. It
is noteworthy that these sets will not be primarily
quantified during defining.
Rule 4: Transforming the Attributes of Ontology

Concepts.

The attributes of a concept in a WSMO ontology are

transformed using the B relations. An attribute of a

concept is transformed as a relation over the set

representing the concept and the set representing the

type of the attribute. Such relations are defined in the

INVARIANT section of the B machine. The attribute of a

concept is defined as a variable for defining this

relationship.

The attributes will be transformed into the B language

in the form of relations and based on relation (4) in Table

1. It is worthy of mentioning that the attributes will be

defined in the VARIABLES section of the machine.

Rule 5: Transforming the Attribute Types of Ontology

Concepts.

Attribute types are defined as a relation from a set
representing the concept to a set representing the
attribute type. These relations are defined in the
INVARIANTS section of the machine based on relation (5)
in Table 1. The type of a variable can be one of the main
defined types or the types added to the machine in the
imports-ontology section.
Rule 6: Transforming the Rules of Concepts.

Rules are constraints expressed in a logical form. In

WSML language, rules are added in different sections

under the name of axioms in order to show a restriction.

For mapping, it is necessary to transform the mappings

between the operators from WSML to B language. Using

the mappings between different operators that

Semantic
modeling of

business
process
entities

Semantic
modeling of

business
process rules

Semantic
modeling of
the Goal of

business
process

M. Rahmanian et al.

316 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

expressed in the Table 2, rules can be transformed into

the B language. It is noteworthy to mention that axioms

will be written in the INVARIANT section of the machine.

Table 1: Rules of transforming the ontology from WSML to B
language

Relation Relation Transformation Rule

Header name
Transformation

Ontology(ontology-name)- >
MACHINE(ontology-name)Machine
(1)

Imports-Ontology
Transformation

Imports-Ontology(ontology-name)-
> INCLUDES(ontology-name-
Machine) (2)

Concept Name
Transformation

Concept(name)-> cap(name) in
SETS (3)

Concept Attributes
Transformation

Concept(Attribute)- > var in
VARIABLES (4)

Attribute Type
Transformation

Attribute(Type)- > VARIABLES(var) :
SETS(concept) < - > Type (5)

Table 2: Transforming the operators from WSML to B language

Description WSMO operator B operator

Conjunction And &

Disjunction Or or

Negation Neg, naf Not

Universal
quantifier

For all !x

Exist quantifier exists #=

Equality =, :=: =

Inequality != /=

Implication Implies, ImpliedBy =>

Reverse
implication

ImpliedBy =>

Membership memberOf :

Typing ofType, impliesType :

Inheritance subConceptOf :>

 II) Rules of Goal Transformation

The goal shows the system’s behavior and

performance in the user’s view. A goal’s description

includes three parts, namely as header, capability, and

interface.

A goal specification G is defined as a 3-tuple G = (H, I,

C), where H is a goal header, I is a goal interface

specification, and C is a goal capability. Below we

describe the mapping in the same order.

Rule 1: Transforming Goal Header.

The header of a WSMO goal Specification consists of

names, imports-ontology, mediator, and non-functional

properties. Since they do not affect the non-functional

and the mediator, we do not use them in

transformation. As shown in relation (6) in Table 3, the

goal declaration is transformed to a B machine

declaration by the MACHINE statement. Note that the

symbol "->" denotes the "is transformed to" statement.

This means that the goal declaration is transformed to

the machine declaration in the translated B machine.

The naming convention is to use the name of goal

Specification, with the suffix "Machine".

Rule 2: Transforming Goal Imports-ontology.

An ontology imported in a goal Specification using the

imports-ontology makes all the ontology concepts and

instances visible to the goal Specification as if they were

included. Therefore, the imports-ontology statement in

goal specification is transformed using the INCLUDES

statement in the B machine that also makes the included

machine visible and accessible in the including machine.

The B machine representing the ontology is imported

using the INCLUDES statement in the B machine

representing the goal Specification. This is shown in

relation (7) in Table 3.

Rule 3: Transforming Goal Capability.

Capability is determined with four parameters namely

the precondition, assumptions, post-condition, and

effects. Each of these parameters is a set of axioms,

therefore using the previously mentioned rules for

transforming axioms; they will be transformed into the B

language via the rules stated in Table 2.

Rule 4: Transforming Goal Interface.

In describing the interface, the parts "signature" and

"transition rule" are of importance. States are sets of

concepts used in describing the interface. In WSMO,

states are based on ASM with the variables in the B

machine functioning in a similar way.

Suppose SSIG is the set of states used in the

description of the interface, and VAR is the set of

variables defined in machine B. in this sense, while

mapping the states, according to the relation (8) in Table

3, the set of states will be defined in the variables

section. In contrast, their types will be signified in the

INVARIANTS section.

Rule 5: Transforming the Rules of Goal Interface

Transition.

Suppose that T (G) is the transition rules defined in

the target description, and OP(M) is the set of

operations defined in machine M. In this case, all

transition rules will be mapped into an operation in the

machine using the relation (9) in Table 3.

Rule 6: Transforming the Inputs and Outputs of Goal

Interface Transition Rule.

An operation is specified with a name; input values,

and return values. According to relation (10) in Table 3,

the name of the transition rule will be mapped into the

operation name while the input parameters and return

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 317

values of the transition rule will be mapped into

operation input parameters and operation return values,

respectively.

Table 3: Rules of transforming the goal from WSML to B

Relation Transformation Rule

Transforming
Goal header
name

Goal(Goal-name)-> MACHINE(Goal-
name)Machine (6)

Transforming
Goal imports-
ontology

Imports-Ontology(ontology-name)->
INCLUDES(ontology-name-Machine) (7)

Transforming
Interface States

Interface(SSIG)-> Machine(VAR)
Type(SSIG)-> VAR : SETS(concept) < - >
Type (8)

Transforming
Transition Rules

T(G)- > OP(M) (9)

Transforming
the Inputs and
Outputs of
Transition Rule

Tri- > Opi
 Tri(in-concept)= Opi (inArg) ^
Tri(out-concept)= Opi (retype) ^
Tri-name = Opi-Name (10)

E. Generating Samples from the Formal Model

Once the formal model is generated in B language, it

will be subjected to sampling to generate test cases, to

which end the method of Model Checking will be used.

The mentioned method is usually used to study the

validity and reliability of state-based formal models. By

this method, firstly, a set of traps for formal descriptions

are set and subsequently added to the assertion section

of formal description; then, the model will be checked. A

negative trap is a test predicate obtained through

various criteria of test coverage. The model checker

searches through different system states for a state in

which the assertion is contravened.

We use ProB [30] for model checking and generating

test cases. The reason for using ProB is that: first of all, it

is fast and automatic; second, it applies a perfect

mechanism on the formal description to find

contravention instances, and also checks the entire

states space; and third, it is suitable for state-based

descriptions. The steps involved in this section are

shown in Fig. 4.

Fig. 4: The flowchart of generating samples from formal model.

 I) Obtaining a Trap from Formal B Descriptions

The present paper uses the two criteria of boundary
condition coverage and modified condition decision
coverage to cover the formal descriptive model.
Boundary condition coverage efficiently tests relational
phrases, while modified condition decision coverage
elaborates on testing predicates and logical phrases.

The traps are obtained based on formal descriptions

and criteria of test coverage which are added to the

assertion section of the description.

The Boundary Value Testing method tests the

system’s behavior on the boundary of a variable.
In order to obtain the traps from the MCDC coverage

criterion, a logical phrase containing atomic parts will be
tested by n+1 test cases. The steps involved in the
process of extracting traps from this coverage criterion
are described as follows:
1- Determining logical conditions from various parts of

the description.

Input •Formal description in B language

Step1

•Querying logical phrase for MC/DC coverage
•Querying insert conditions for insert condition coverage

Step2
•Obtaining test predicates

Step3
•Complementing predicates and setting traps

Step4
•Describing traps in B language

Step5

•Adding the traps to the assertion section of formal
description

Step6
•Activating ProB model checker

Output
•Generated output samples

M. Rahmanian et al.

318 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

2- Obtaining test predicates for logical phrases
through the application of a table-based method.
3- Complementing the entire test predicates and

obtaining the traps.
Afterwards, the obtained traps will be added to the

assertion section of the description.
Once created, the traps will be consecutively added;

then, the model checker will be activated. Since the
traps are added to the ASSERTIONS section, we will
request the checker to check the model for the defined
assertions. If the descriptive model is valid, the checker
will run into an error. The steps involved in trap
calculation using MC/DC coverage are displayed in Fig. 5.

Fig. 5: Steps for trap calculation by using MCDC coverage.

F. Reviewing and Evaluating

Based on the views expressed in the TOGAF,

developing an enterprise architecture is a gradually

iterative process. At this phase, in case of a need for a

change, the evaluation will be made, and the

corresponding cycle of the proposed method will be

iterated.

Implementing and Evaluating

In order to evaluate the efficiency of the proposed

method, we deployed it in the marketing and sales

department of a petrochemical corporation as a good

case study.

In the following, firstly, the case study will be

described, and afterwards, the details and results of the

implementation of each section of the proposed method

will be studied.

A. Description of the Case Study: Petrochemical
Corporation

The vision of this corporation is to become the most

well-known producer and distributor of isocyanate in the

entire Middle-east.

The studied corporation uses nitric acid and gases

such as chlorines, carbon monoxide, hydrogen and

toluene to produce high-quality basic petrochemical

products such as various isocyanates which are of a

higher added value and also to distribute these products

in domestic and foreign markets.

The goals of the marketing and sales department of

the studied petrochemical corporation have been shown

in Table 4, using well-known format of the Balance Score

Cards technique.

Table 4: The marketing and sales department goals

Aspect Goal1 Goal2 Goal3 Goal4 Goal5 Goal6

Financial
Aspect

Development
of income

opportunities

Increased
domestic sales

Increased
income

Increased
exports

Customer
Aspect

Being satisfied
by sales staff

Customer
loyalty

Being satisfied
by the sales
mechanism

Processes
Aspect

Development
of marketing

for new grades

Variability of
customers

Development of
the

communication
s process

Improving the
process of

development of
major and

regional market
studies

Development
of

mechanisms
for improving

customers’
loyalty

Development
of

relationships
with the

global pricing
centers

Growth and
Learning Aspect

Promoting the
personnel’s

knowledge and
skills

Improving the
sales

mechanism,

Development of
knowledge

management

Increasing the
contacts

between the
sales and other
Departments of
the enterprise

Creating a
database and

promoting
integrated

Documentation
and data bank.

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 319

B. Syntactic Modeling of the Case Study

Syntactic modeling of the descriptions has been

carried out using the ArchiMate language and the

software of Modelio V.7.0. In the following, the steps

involved in syntactic modeling, as well as the outputs of

each section, will be described. Afterwards,

implementing the details of the proposed method will be

discussed in terms of a process aspect.

 I) Modeling the Vision Layer

To provide a full vision that can be used to scope all

the work area, the vision phase uses initial schemas of

an essentially informal nature. These artifacts are very

high level and do not yet involve detailed modeling

activities. They will be developed free hand, in the form

of images or matrices, in order to prepare later phases.

TOGAF defines an enterprise as being a collection of

business units with a common set of goals. This shows

just how important goals are within an enterprise; they

are its reason for existence. Goals are constructed

hierarchically. Goals constitute the roots of the

goal/objective tree.

According to Table 5, increasing sales and income is a

strategic goal for the realization of which there is a need

for other objectives, including developing marketing for
new grades, leveraging customers, developing the

process of efficient communications, developing

mechanisms for improving customer loyalty, and

developing contacts with global sales centers must be

already realized. In order to realize the mentioned

requirements, proper and adequate solutions must be
found. For instance, in order to realize the determined

goals, develop income opportunities, increasing

domestic sales, and improving exports, the corporation

under study has been suggested to develop its sales

process.

Based on the proposed algorithm, in this step, we first

draw the Goal model, and then, based on that we draw

the requirement model, the solution concept model, and

the business footprint model. A solution-concept

diagram has been shown in Fig. 6. This model uses

preliminary information to share a preliminary vision

with all stakeholders by providing general information

on the changes that are going to be implemented.

Fig. 6: Solution concept diagram.

 II) Modeling the Business Architecture Layer

Enterprise architecture puts a very strong emphasis

on business architecture. Business architecture

endeavors to identify the key business processes to fulfill

Business strategies and goals. Based on the obtained

information, the sales process group analysis is reported

in Table 5. At this step, based on the collected

information, models pertaining to the business process

are created. A business footprint diagram describes the

links between business goals, enterprise departments,

M. Rahmanian et al.

320 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

business functions, and business services. These

functions and services are also traced with technical

components producing the required capabilities. A

business footprint diagram is only interested in essential

elements that show the connection between

organization units and functions in order to produce

services. A business footprint diagram has been drawn in

Fig. 7 based on the sales department information. It is

used to communicate with the management of the

enterprise. Business footprint diagrams focus on the

current concerns of the business.

Fig. 7: Business footprint diagram.

The retrieved information shows that in the domain

of business knowledge, it is necessary to pay close
attention to terminology.

For instance, it must be clear what is meant by

customers, purchase request, product, payment, sale

bill, freight bill, freighter, and invoice.

Each of the above-mentioned entities is defined by a

set of properties and rules governing them. For example,
a customer is specified by a name, an ID, an address, and

a credit card number. In fact, every customer has their

unique IDs, and there could not be any two customers

with the same ID. Furthermore, every customer has a

unique account number and so on.

C. Semantic Modeling of Business Processes

Among the processes pertaining to the case of the

study, we have selected the process of direct domestic
sales for the purpose of semantic description. Semantic
modeling and the rules governing the client entity are
written as follows:
ontology petro_EA_ontology
 nonFunctionalProperties
 wsmostudio#version hasValue "0.7.3"
 endNonFunctionalProperties
concept client
 name impliesType _string
 surname impliesType _string
 Identifier impliesType _integer
 address impliesType _string
 crediet_card_type impliesType _string
 credit_card_balance impliesType _integer
 credit_card_number impliesType _integer

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 321

Table 5: Sales process group analysis

The ID of the Sales and Delivery Process Group

EA-company-SAL The code of existing process group Sales and delivery Existing process group

The range of existing process group

Includes the entire products of the company including the final products, middle products, side products, and waste products

The goals of the existing process group

Planning and executing the entire activities relating to sales including receiving orders, reviewing orders, sealing contracts, and
delivery of products

Business services

• Domestic/foreign sales

• Product Delivery report

• Managing the contracts

The indices of the existing process group

• Monetary realization of domestic sales goals

• Monetary realization of exported sales goals

• Weight realization of domestic sales goals

• Weight realization of exported sales

Main inputs

From process Data

Customer services Customer needs

Cash received approval Cash received approval

Main outputs

From process Data

CRM Customer data

Production planning and controlling Sales plan

Management of accounts receivable Sales invoices

Customer services Providing product services

Supplying the feed Order basket

The owner of the existing process group

• The chief of sales department

The beneficiaries of the existing process group

• petrochemical company as well as the customers

The existing processes

1. Domestic Sales through commodity exchange

2. Direct domestic sales

3. Export sales through another company

4. Direct Export sales

M. Rahmanian et al.

322 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

For the client entity, a certain axiom is that account

numbers are unique per person (client) and this axiom is

described in the following fashion:

axiom uniq_credit_card

 definedBy

 ?x[creditcardnumber hasValue ?ccn1] memberOf

client and ?y[creditcardnumber hasValue ?ccn2]

memberOf client:-?ccn1 != ?ccn2.

In order to describe a process, we will try to describe

its interface and capability parts. While describing the

capability, we use axioms to write the preconditions,

post-conditions, assumptions, and effects. For example,

one important assumption in this process is that a valid

credit card is the one that is either the MCARD or a

SCARD. For this purpose, we use an axiom for this

assumption named as a valid card. While describing the

interface, we will describe the set of states along with

the rules of transition among them.

D. Creating the Formal Model

In this section, we use the predefined mapping rules

to transform the WSML language semantic description

into formal B language. In the first step, the concepts

and their attributes will be transformed. The following

presents a partial transformation for the concept of

client:

MACHINE petroEAontologymachine
SETS
 CLIENT
VARIABLES

address,crediet_card_type,crediet_card_balanc
e,creadit_card_number,Identifier,name,surnam
e

INVARIANT
address:CLIENT<->STRING &
credit_card_balance:CLIENT<->INT &
credit_card_number:CLIENT<->INT &
credit_card_type:CLIENT<->STRING &
Identifier:CLIENT<->INT &
name:CLIENT<->STRING &
surname:CLIENT<-> STRING

Describing the goal is comprised of three parts, being

the header, capability, and interface, respectively. Since

in describing the goal, we have used

"input_saleontology". Then, by implementing the

expressed rules for transforming axioms, the

preconditions, post-conditions, assumption, and effects

in the description of capability will be transformed into B

language. For example, one assumption maintained in

the description is that a credit card is only valid if it is

either the MCARD or a SCARD. The following presents

the description in both WSML and formal B languages.

Presentation in WSML language:

 assumption valid_card
 definedBy
 ?x[credit_card_type hasValue Mcard] memberOf

client or ?x[credit_card_type hasValue Scard]
memberOf client.

Presentation in B language:

#(x,credit_card_type).(x:CLIENT &
credit_card_type:CLIENT<->STRING =>
credit_card_type(x)="Mcard" or
credit_card_type(x)="Scard”)

In the interface part of the goal, we have a set of

states and transitions among them. The set of states is

written in the VARIABLES section, whereas their types

are written in the INVARIANTS section.

E. Obtaining Samples from the Formal Model

In this section, to obtain the traps based on the

expressed algorithm in Fig. 6, we used the MC/DC

coverage criterion for a logical phrase in the INVARIANT

section. Valid_credit_card is a logical phrase in the

formal description. The logical phrase is as follows:

A=credit_card_type(x)="Mcard"
B=credit _card _type(x)="Scard”)

These two parts are connected by an OR connection

operator. In the following, test phrases will be obtained

using the table-based method.

Table 6: Sample from logical expression

Effect
B

Effect
A

A or
B

B A No.

 F F F 1

 T T F 2

 T F T 3

 T T T 4

In Table 6, columns 5 and 6 denote effects A and B,

respectively. These two columns signify what parts of a

phrase are responsible for the sum of that phrase. In

every phrase, the part that results in the occurrence of

overall result is referred to as the main part, and the rest

are called subsidiary parts.

According to the above table, the test cases of rows 1

and 2 test the effect B, while test cases 1 and 3 test the

effect A. as a result, the test cases that test A and B

effects are rows 1, 2, and 3. Hence, using these three

test cases, one can test the above-mentioned phrase in

terms of MCDC coverage.

Afterwards, the obtained test cases will be

complemented and then added to the ASSERTION

section of the description B.

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 323

ASSERTIONS
Not (credit_card_type(x)="Mcard")
Not (credit_card_type(x)="Scard")
Not (credit_card_type(x)/="Mcard" and
credit_card_type(x)/=”Scard”)

The third assertion in the last section has been

checked using the model checker and displays the

output as Fig. 8.

The distance of the fault location from the beginning

is the machine mode which is a test case. The result

illustrates suitable input and expected values under

posed semantic limitations.

A piece of the output graph of the test case has

shown in Fig.9.

Fig. 8: The output of activating model checker.

Fig. 9: A piece of output graph of the test case .

M. Rahmanian et al.

324 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

F. Evaluation of Implementation

The recent studies are categorized by two indicators:

1- Studies that have studied syntactic and semantic

modeling in the field of enterprise architecture.

None of which was intended to generate test

cases.

2- Studies that have produced test cases without

considering the discussion of enterprise

architecture.

In comparison to recent studies, as shown in Table 7,

the proposed method starts from the enterprise level,

get benefited from the enriched descriptions yielded for

enterprise business processes, move to generate proper

syntactic and semantic models of the descriptions, and

generate prioritized test cases from the well-established

models to come up with test cases to be used for

verification and/or validation. While in [1], [5]-[9], [11]-

[13], syntactic and semantic modeling has been used for

other objectives and a formal model has rarely been

created.

These studies have in no way generated test cases

based on enterprise architecture design. In [15], test

cases have been generated, regardless of enterprise

architecture design.

Test case
generation

Formal
modeling

Semantic
modeling

Syntactic
modeling

Enterprise
architecture

design
Main contribution Reference

no no yes yes yes
Identify, classify, analyze, and evaluate
existing methods for EA visualization.

[1]

no yes no yes yes
Providing a formal way for exploring

misalignment of concepts.
[5]

no no no yes yes
Proposing a combined approach that

enterprise modeling would be suitable for
both humans and machines.

[6]

no no no yes yes
Proposing a method for detection of any

logical paradoxes in enterprise
architecture models.

[7]

no no yes no yes
Using ontology to present, integrate and

analysis enterprise models.
[8]

no no yes no yes
Proposing a combined modeling approach

for convergence between business and
technology.

[9]

no no yes no yes
Using descriptive logic along with ontology

for manual analysis of enterprise design.
[11]

no no yes no yes
Modeling the dependencies between the

business, information systems and IT
infrastructures.

[12]

no no no yes yes
Develop a framework intended to make a

balance between technology and
business.

[13]

yes no no yes no
Presenting a model-based approach to
automatically generate test cases from

business process models
[14]

yes yes no no no
Developing a tool for the automated

generation of test cases based on
descriptions

[15]

yes no no yes no
Using the activity diagram for the

automated generation of test cases
[16]

yes no no yes no
Creating a tool named PCTgen which

automatically generated a set of test cases
to check a workflow

[17]

yes yes yes yes yes
Generating semantic test case from the

enterprise level
Proposed
method

Table 7: Comparison of propose method by recent studies

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 325

Results and Discussion

As mentioned earlier, no studies have been

conducted to generate test cases based on descriptions

received from enterprise architecture. However, the

proposed method has the following advantages and

limitations based on implementation of our method on

the selected case study.

1- The details of the business process have been

defined and started based on the enterprise level.

2- The level of abstraction is decreased by syntactic

and semantic modeling of the enterprise

architecture description.

3- In order to create a description that would be

sampled, the semantic descriptions created using

the proposed transition rules.

4- The generated test cases can be used in the

validation and/or validation of business software,

and because their descriptions are started at the

enterprise level, they have high validity.

The limitations of the proposed method:

1- Due to the generality of TOGAF, it has been used

for describing an enterprise architecture in this

research. It is suggested that other enterprise

architectures can also be used.

2- The focus of the proposed method was on

enterprise business process. It is suggested that

other business elements such as enterprise

business services can be examined.

3- We transform semantic description into formal

form by predefined rules, manually. It is

suggested that, this can be done automatically by

writing a parser.

Conclusions

The frameworks of enterprise architecture describe

the elements of enterprise architecture at an abstract

level and thus fail to elaborate on the details. However,

they do provide architecture developers with a general

primitive perspective. The main core in every

enterprise’s architecture consists its business processes.

Enterprise processes are resulted by enterprise’s goals

and missions.

In order to test the verification and/or validation of a

software product, it must be evaluated against the

expressed descriptions and business rules. Previously,

several studies following different objectives have tried

to model enterprise architectures.

However, no previously conducted study has

elaborated on modeling following the objective of

creating test cases for further verification and/or

validation purpose.

Therefore, the subject of testing for business software

practically starts from the enterprise level (goals,

missions, etc.). Therefore, the main contribution of this

study is generating a set of test cases based on the

descriptions yielded from enterprise business processes

in early steps; then, the amount of later reviews and

changes can be significantly lessened.

The overall framework of the proposed method is an

iterative cycle adopted from the TOGAF Architecture

Development Method. Following this cycle, once the

primary descriptions of goals, missions, and strategies of

the enterprise are retrieved, we will syntactically model

the architecture.

Afterwards, the business processes will be modeled

semantically, and the description will be transformed

into formal B language for the purpose of sampling from

the syntactic-semantic modeling.

In order to evaluate the proposed method, it has

been implemented on the sales and marketing

department of a petrochemical corporation, and the

yielded results confirmed the validity of the proposed

method. Based on the proposed method, the following

values have been created:

1- By adding semantics to the syntactic models of

enterprise architecture, more precise and

exhaustive descriptions of the processes have

been yielded, and in fact, the degree of

abstraction has been decreased.

2- Creating a formal model of the syntactic and

semantic descriptions can be subjected to

sampling. And the resulting samples will be

covering both syntax and semantics.

3- The proposed method starts from the missions

and strategic goals of enterprises; therefore, the

output samples are efficiently precise and

complete.

One of the most applied fields in the domain of

software engineering is automatic code generation. For

future work, it is suggested to use the proposed method

for automatic generation of codes according to the

descriptions retrieved relating to enterprise architecture,

and according to the TOGAF framework, which is a

general framework.

Semantic descriptions are suitable tools for providing

precise and yet understandable descriptions for

machines.

The focus of the present study was centered on

business processes in the architecture layer of

enterprises. For future work, it is suggested to elaborate

on providing semantic descriptions for other layers of

architecture as well.

In the present study, the authors have used the

TOGAF standard due to its publicity and high

applicability; however, it is suggested to use also other

standards for analyzing enterprise architecture and

providing high-level descriptions.

M. Rahmanian et al.

326 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

Author Contributions

M. Rahmanian designed and implemented the

proposed method. R. Nassiri collected data. M.

Mohsenzade interpreted the results and carried out the

data analysis. R. Ravanmehr wrote the manuscript and

carried out the data analysis.

Acknowledgment

 The authors received no funding from any

organization in the course of carrying out the current

study. It is certified that the Islamic Azad University is a

private research and academic institute.

Conflict of Interest

No potential conflict of interest regarding the

publication of this work. Besides, the authors have been

completely witnessed the ethical issues including

plagiarism, informed consent, misconduct, data

fabrication and, or falsification, double publication and,

or submission, and redundancy.

Abbreviations

TOGAF The Open Group Architecture

Framework

ADM Architecture Development Method

WSMO Web Service Modeling Ontology

WSML Web Service Modeling Language

OWL Ontology Word Language

EA Enterprise Architecture

SEAM Semantic Enterprise Architecture

Modeling

SBVR

Semantic of Business Vocabulary

and Rule

IS Information System

BPaaS Business Process as a Service

OWL Ontology World Language

SEAM Semantic Enterprise Architecture

Modeling

MC/DC Modified Condition Decision

Coverage

BSC Balance Score Cards

References

[1] Z. Zhou, Q. Zhi, S. Morisaki, S. Yamamoto, "A systematic literature

review on enterprise architecture visualization methodologies,"

IEEE Access, 8(1): 96404-96427, 2020.

[2] "The TOGAF® Standard, Version 9.2." accessed 1 October 2021.

[3] S. Sharma, L. Raja, D. Pallavi Bhatt, "Role of ontology in software

testing," J. Inf. Optim. Sci., 41(2): 641-649, 2020.

[4] A. Mili, F. Tcheir, Software Testing Concepts and Operations, John

Wiley & Sons, 2015.

[5] K. Bouafia, B. Molnár, "Analysis approach for enterprise

information systems architecture based on hypergraph to aligned

business process requirements," Procedia Comput. Sci., 164: 19-

24, 2019.

[6] K. Hinkelmann, E. Laurenzi, A. Martin, B. Thönssen, Ontology-

Based Metamodeling" Business Information Systems and

Technology 4.0. Studies in Systems, Decision and Control, 141:

177-194, 2018.

[7] E. Babkin, A. Ponomarev, "Analysis of the consistency of

enterprise architecture models using formal verification

methods," Bus. Inf., 3 (41): 30–40, 2017.

[8] A. Caetano, G. Antunes, J. Pombinho, M. Bakhshandeh, J. Granjo,

"Representation and analysis of enterprise models with semantic

techniques: an application to ArchiMate, e3value and business

model canvas," Knowledge Inf. Syst., 50: 315–346, 2016.

[9] K. Hinkelmann, E. Laurenzi, B. Lammel, S. Kurjakovic, "A

semantically-enhanced modelling environment for business

process as a service," in Proc. 4th International Conference on

Enterprise Systems, 4: 143-152, 2016.

[10] K. Hinkelmann, E. Laurenzi, A. Martin, D. Montecchiari, M. Spahic,

B. Thönssen, "ArchiMEO: A standardized enterprise ontology

based on the ArchiMate conceptual model," in Proc. the 8th

International Conference on Model-Driven Engineering and

Software Development – MODELSWARD: 417-424, 2020.

[11] G. Antunes, M. Bakhshandeh, R. Mayer, J. Borbinha, A. Caetano,

"Using ontologies for enterprise architecture analysis," in Proc.

17th IEEE International Enterprise Distributed Object Computing

Conference Workshops, 17: 361-368, 2013.

[12] W. Chen, C. Hess, M. Langermeier, "Semantic enterprise

architecture management," in Proc. the 15th International

Conference on Enterprise Information Systems (ICEIS-2013): 318-

325, 2013.

[13] K. Hinkelmann, D. Karagiannis, B. Thoenssen, R. Woitsch, A.

Gerber, "A new paradigm for continuous alignment of business

and IT: combining enterprise architecture," Model. Enterpr.

Ontol., 79: 77-86, 2015.

[14] A. Yazdani Seqerloo, M.J. Amiri, S. Parsa, "Automatic test cases

generation from business process models," Requirements Eng.

24: 119-132, 2019.

[15] W. Zhang, S. Liu, "Supporting tool for automatic specification-

based test case generation," in Proc. International Workshop on

Structured Object-Oriented Formal Language and Method, 7787:

12-25, 2013.

https://ieeexplore.ieee.org/document/9097240
https://ieeexplore.ieee.org/document/9097240
https://ieeexplore.ieee.org/document/9097240
https://www.opengroup.org/togaf
https://www.tandfonline.com/doi/citedby/10.1080/02522667.2020.1733196?scroll=top&needAccess=true
https://www.tandfonline.com/doi/citedby/10.1080/02522667.2020.1733196?scroll=top&needAccess=true
https://www.wiley.com/en-us/Software+Testing%3A+Concepts+and+Operations-p-9781118662878
https://www.wiley.com/en-us/Software+Testing%3A+Concepts+and+Operations-p-9781118662878
https://www.sciencedirect.com/science/article/pii/S187705091932188X
https://www.sciencedirect.com/science/article/pii/S187705091932188X
https://www.sciencedirect.com/science/article/pii/S187705091932188X
https://www.sciencedirect.com/science/article/pii/S187705091932188X
https://link.springer.com/chapter/10.1007/978-3-319-74322-6_12
https://link.springer.com/chapter/10.1007/978-3-319-74322-6_12
https://link.springer.com/chapter/10.1007/978-3-319-74322-6_12
https://link.springer.com/chapter/10.1007/978-3-319-74322-6_12
https://bijournal.hse.ru/en/2017--3%20(41)/212183168.html
https://bijournal.hse.ru/en/2017--3%20(41)/212183168.html
https://bijournal.hse.ru/en/2017--3%20(41)/212183168.html
https://link.springer.com/article/10.1007/s10115-016-0933-0
https://link.springer.com/article/10.1007/s10115-016-0933-0
https://link.springer.com/article/10.1007/s10115-016-0933-0
https://link.springer.com/article/10.1007/s10115-016-0933-0
https://ieeexplore.ieee.org/document/7880484
https://ieeexplore.ieee.org/document/7880484
https://ieeexplore.ieee.org/document/7880484
https://ieeexplore.ieee.org/document/7880484
https://www.semanticscholar.org/paper/ArchiMEO%3A-A-Standardized-Enterprise-Ontology-based-Hinkelmann-Laurenzi/8adb6f637d383c05658223d7556ff6c128eb6936
https://www.semanticscholar.org/paper/ArchiMEO%3A-A-Standardized-Enterprise-Ontology-based-Hinkelmann-Laurenzi/8adb6f637d383c05658223d7556ff6c128eb6936
https://www.semanticscholar.org/paper/ArchiMEO%3A-A-Standardized-Enterprise-Ontology-based-Hinkelmann-Laurenzi/8adb6f637d383c05658223d7556ff6c128eb6936
https://www.semanticscholar.org/paper/ArchiMEO%3A-A-Standardized-Enterprise-Ontology-based-Hinkelmann-Laurenzi/8adb6f637d383c05658223d7556ff6c128eb6936
https://www.semanticscholar.org/paper/ArchiMEO%3A-A-Standardized-Enterprise-Ontology-based-Hinkelmann-Laurenzi/8adb6f637d383c05658223d7556ff6c128eb6936
https://ieeexplore.ieee.org/document/6690573
https://ieeexplore.ieee.org/document/6690573
https://ieeexplore.ieee.org/document/6690573
https://ieeexplore.ieee.org/document/6690573
https://www.semanticscholar.org/paper/Semantic-Enterprise-Architecture-Management-Chen-Hess/06a101820dc4e9f75b8b456e30cfe994b8c3cf54
https://www.semanticscholar.org/paper/Semantic-Enterprise-Architecture-Management-Chen-Hess/06a101820dc4e9f75b8b456e30cfe994b8c3cf54
https://www.semanticscholar.org/paper/Semantic-Enterprise-Architecture-Management-Chen-Hess/06a101820dc4e9f75b8b456e30cfe994b8c3cf54
https://www.semanticscholar.org/paper/Semantic-Enterprise-Architecture-Management-Chen-Hess/06a101820dc4e9f75b8b456e30cfe994b8c3cf54
https://www.sciencedirect.com/science/article/abs/pii/S0166361515300270
https://www.sciencedirect.com/science/article/abs/pii/S0166361515300270
https://www.sciencedirect.com/science/article/abs/pii/S0166361515300270
https://www.sciencedirect.com/science/article/abs/pii/S0166361515300270
https://link.springer.com/article/10.1007/s00766-018-0304-3#citeas
https://link.springer.com/article/10.1007/s00766-018-0304-3#citeas
https://link.springer.com/article/10.1007/s00766-018-0304-3#citeas
https://link.springer.com/chapter/10.1007/978-3-642-39277-1_2#citeas
https://link.springer.com/chapter/10.1007/978-3-642-39277-1_2#citeas
https://link.springer.com/chapter/10.1007/978-3-642-39277-1_2#citeas
https://link.springer.com/chapter/10.1007/978-3-642-39277-1_2#citeas

Semantic Enterprise Architecture Oriented Test Case Generation for Business Process

J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022 327

[16] A.K. Jena, S.K. Swain, D.P. Mohapatra, "A novel approach for test

case generation from UML activity diagram," in Proc.

International Conference on Issues and Challenges in Intelligent

Computing Techniques: 621-629, 2014.

[17] "The ArchiMate® Standards" accessed 1 October 2021.

[18] G. Wierda, Mastering ArchiMate Edition 3.1. : R & A, 2021.

[19] P. Desfray, G. Raymond, Modeling Enterprise Architecture With

TOGAF. : Elsevier, 2014.

[20] "Archi-Open Source ArchiMate Modelling" accessed 1 Octobr

2021.

[21] "Web Service Modeling Ontology" accessed 1 October 2021.

[22] D. Fensel, H. Lausen, J. Bruijn, Enabling Semantic Web Services:

The Web Service Modeling Ontology. : Springer-Verlag Berlin,

2007.

[23] D. Fensel, F.M. Facca, E. Simperl, I. Toma Web Service Modeling

Ontology. In: Semantic Web Services. Springer, Berlin, Heidelberg,

2011.

[24] M. Bures, T. Cerny, M. Klima, "Prioritized process test: More

efficiency in testing of business processes and workflows," in

Proc. International Conference on Information Science and

Applications, 424: 585-593, 2017.

[25] J. Bruijn, H. Lausen, A. Polleres, D. Fensel, “The web service

modeling language WSML: An overview,” in Proc. European

Semantic Web Conference: 590-604, 2006.

[26] J. Bruijn, D. Fensel, U. Keller, "Using the web service modeling

ontology to enable semantic e-Business," Commun. ACM, 8(12):

43-47, 2005.

[27] F. Christina, P. Axel, D. Roman, D. John, " Towards intelligent web

services: the web service modeling ontology (WSMO)," in

Proc. International Conference on Intelligent Computing

(ICIC'05): 23-26, 2005.

[28] "The Programming Language B" accessed 1 October 2021.

[29] K. Lano, The B Language and Method: A Guide to practical Formal

development. : Springer Verlog, 1996.

[30] M. Leuschel, M. Butler, "ProB: a model checker for B," in Proc.

International Symposium of Formal Methods Europe Springer,

Berlin-Hei- delberg: 855–874, 2003.

Biographies

Mehdi Rahmanian received his B.S.

degree in software Engineering from

Shahid Chamran University, Ahwaz, Iran in

2007. He graduated in M.Sc. degree in

software Engineering from IAU University,

Ahwaz, Iran in 2011. Currently he is a Ph.D.

student in IAU University, Tehran, Iran. His

interests include software engineering,

Enterprise Architecture and Software

testing.

• Email: mehdi.rahmanian@srbiau.ac.ir

• ORCID: 0000-0002-3575-5230

• Web of Science Researcher ID: NA

• Scopus Author ID: NA

• Homepage: NA

Ramin Nassiri received his B.S. in

Computer software engineering from

Tehran University, Tehran, in 1989, the

M.S. in Computer software engineering, in

1995 and the Ph.D. degree in Computer

software engineering from IAU University,

Tehran, in 2003. Currently, he is a

faculty in the Department of Computer

engineering at the IAU University. He is the

author/coauthor of more than 100 publications in professional and/or

academic journals and conferences. He is co-founder of three IT

companies in Iran and UAE since 2000. Also he has been managing a

few national IT projects since past decade to promote public welfare by

deploying ICT technologies and enablers. His research focus is basically

on Software engineering, Enterprise architecture, Big data, Software

testing, IoT and Etc.

• Email: r_nasiri@iauctb.ac.ir

• ORCID: 0000-0002-9488-9044

• Web of Science Researcher ID: NA

• Scopus Author ID: NA

• Homepage: NA

Mehran Mohsenzadeh received his B.E

degree (Software Engineering) in 1997

from Shahid Beheshti University and M.E

(in 1999) and Ph.D. (Software

Engineering) in 2004 from IAU University,

Tehran. His major interests are Cloud

Computing, Software Engineering and Big

Data and has published more than 85

papers (author/co-author) in

International Conferences and journals.

He is Assistant Professor in the Department of Computer Engineering,

Science and Research Branch, IAU University of Iran.

• Email: r.mohsenzadeh@srbiau.ac.ir

• ORCID: 0000-0001-6835-409x

• Web of Science Researcher ID: NA

• Scopus Author ID: 26435355100

• Homepage: NA

Reza Ravanmehr graduated in computer

engineering from Shahid Beheshti

University, Tehran, in 1996. After that, he

gained his M.Sc. and Ph.D. degrees, both

in computer engineering, from Islamic

Azad University, Science and Research

Branch, Tehran, in 1999 and 2004,

respectively. His main research interests

are distributed/parallel systems, large-

scale data management systems, and

social network analysis. He has been a

faculty member of the Computer Engineering Department at Central

Tehran Branch, Islamic Azad University, since 2001.

• Email: r.ravanmehr@iauctb.ac.ir

• ORCID: 0000-0001-9605-5839

• Web of Science Researcher ID: NA

• Scopus Author ID: NA

• Homepage: NA

https://ieeexplore.ieee.org/document/6781352
https://ieeexplore.ieee.org/document/6781352
https://ieeexplore.ieee.org/document/6781352
https://ieeexplore.ieee.org/document/6781352
https://publications.opengroup.org/archimate-library/archimate-standards
https://www.amazon.com/Mastering-ArchiMate-3-1-introduction-architecture/dp/9083143414
https://www.oreilly.com/library/view/modeling-enterprise-architecture/9780124199842/B9780124199842000148.xhtml
https://www.oreilly.com/library/view/modeling-enterprise-architecture/9780124199842/B9780124199842000148.xhtml
https://www.archimatetool.com/
https://www.archimatetool.com/
http://www.wsmo.org/index.html
https://books.google.com/books?hl=fa&lr=&id=SThetVflcxwC&oi=fnd&pg=PA4&dq=web+service+modeling+ontology&ots=rNj55BTKSu&sig=pTIaeohnnOKbyUvqBAJmkjW2t8A#v=onepage&q=web%20service%20modeling%20ontology&f=false
https://books.google.com/books?hl=fa&lr=&id=SThetVflcxwC&oi=fnd&pg=PA4&dq=web+service+modeling+ontology&ots=rNj55BTKSu&sig=pTIaeohnnOKbyUvqBAJmkjW2t8A#v=onepage&q=web%20service%20modeling%20ontology&f=false
https://books.google.com/books?hl=fa&lr=&id=SThetVflcxwC&oi=fnd&pg=PA4&dq=web+service+modeling+ontology&ots=rNj55BTKSu&sig=pTIaeohnnOKbyUvqBAJmkjW2t8A#v=onepage&q=web%20service%20modeling%20ontology&f=false
https://link.springer.com/chapter/10.1007/978-3-642-19193-0_7
https://link.springer.com/chapter/10.1007/978-3-642-19193-0_7
https://link.springer.com/chapter/10.1007/978-3-642-19193-0_7
https://link.springer.com/chapter/10.1007/978-981-10-4154-9_67#citeas
https://link.springer.com/chapter/10.1007/978-981-10-4154-9_67#citeas
https://link.springer.com/chapter/10.1007/978-981-10-4154-9_67#citeas
https://link.springer.com/chapter/10.1007/978-981-10-4154-9_67#citeas
https://link.springer.com/chapter/10.1007/978-981-10-4154-9_67#citeas
https://link.springer.com/chapter/10.1007/11762256_43
https://link.springer.com/chapter/10.1007/11762256_43
https://link.springer.com/conference/esws
https://link.springer.com/conference/esws
https://dl.acm.org/doi/fullHtml/10.1145/1101779.1101807
https://dl.acm.org/doi/fullHtml/10.1145/1101779.1101807
https://dl.acm.org/doi/fullHtml/10.1145/1101779.1101807
http://oro.open.ac.uk/23147/
http://oro.open.ac.uk/23147/
http://oro.open.ac.uk/23147/
http://oro.open.ac.uk/23147/
https://www.bell-labs.com/usr/dmr/www/bintro.html
https://www.amazon.com/Language-Method-Development-Approaches-Information/dp/0387760334
https://www.amazon.com/Language-Method-Development-Approaches-Information/dp/0387760334
https://link.springer.com/chapter/10.1007/978-3-540-45236-2_46#citeas
https://link.springer.com/chapter/10.1007/978-3-540-45236-2_46#citeas
https://link.springer.com/chapter/10.1007/978-3-540-45236-2_46#citeas
mailto:mehdi.rahmanian@srbiau.ac.ir
mailto:r_nasiri@iauctb.ac.ir
mailto:r.mohsenzadeh@srbiau.ac.ir
http://www.scopus.com/inward/authorDetails.url?authorID=26435355100&partnerID=MN8TOARS
mailto:r.ravanmehr@iauctb.ac.ir

M. Rahmanian et al.

328 J. Electr. Comput. Eng. Innovations, 10(2): 311-328, 2022

Copyrights

©2022 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
M. Rahmanian, R. Nassiri, M. Mohsenzadeh, R. Ravanmehr, “Semantic enterprise
architecture oriented test case generation for business process,” J. Electr. Comput. Eng.
Innovations, 10(2): 311-328, 2022.

DOI: 10.22061/JECEI.2021.8218.496

URL: https://jecei.sru.ac.ir/article_1636.html

https://jecei.sru.ac.ir/article_1636.html

