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In this paper, a quadrotor with two manipulators constrained on a straight path 

is modeled and a robust adaptive controller is proposed for it. Adding two 

manipulators to quadrotor increases its capabilities and applications in industry. 

Here, these two manipulators are used to place the robot on a constraint path so 

that the quadrotor can perform monitoring operations more accurately, since the 

under-actuated quadrotor becomes over-actuated by these constrained 

manipulators and one can use this feature to accurately control the position of 

the robot. Reduced form of motion equations is derived for the constrained 
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nonlinear terms in the dynamic model are approximated by basic functions with 

constant weights; and adaptive laws are designed by projection operator. 
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1. Introduction

Nowadays, as quadrotors have simple 
mechanical structure with high maneuverability, 
they are one of the preferred types of unmanned 
aerial vehicles (UAVs). This aerial vehicle has 
four motors whose propulsion thrust is generated 
by their propellers. Since a quadrotor has six 
degrees of freedom and four actuators, it is 
considered as an under-actuated robot. Also, the 
main problem is its low payload capacity.  The 
quadrotors will be suitable for monitoring the 

traffic, pipeline and weather, as well as search 
and rescue operations and other diverse 
applications. Hence, these robots have received 
a lot of attention from many researchers all 
around the world. The dynamic modeling and 
simulation of quadrotors have been done by 
many researchers [1-3]. Additionally, multirotor 
helicopters have been investigated extensively 
[4] as a potential platform for such tasks because
they are capable of hovering close to the ground,
which is necessary for observing ground targets.
Linearization of the dynamic model of quadrotor
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using Taylor series approximation method has 
been presented in [5]. 
For the flight control of quadrotors, many 
methods have been proposed. One of these 
controllers is the proportional-integral-
derivative (PID) control. This controller is 
designed and used for position and orientation 
control of the robot [6-10]. Many studies have 
been done on the stabilization of the quadrotor 
under external disturbances. For example, the 
external constant disturbances have been 
estimated using the Lyapunov functions and the 
validity of this method has been proved by 
experiments [11]. Recently, much attention has 
been paid to the use of nonlinear control methods 
for the flight control of quadrotors such as 
feedback linearization, fuzzy logic, sliding mode 
and back-stepping controller. Feedback 
linearization is used for controlling quadrotor 
[12-14]. Sliding mode control has been used for 
altitude control of a small helicopter in [15]. 
Also, the sliding mode control is used for 
controlling the movement of quadrotor [16-18]. 
In many studies, the steps of back-stepping 
controller with the proof of stability are 
presented [19-22]. Also, the performance of the 
back-stepping and sliding mode controllers for 
the robot's motion control were compared by 
Nadda and Swarup [23], and according to their 
simulation results, sliding mode controller 
functioned better. 
Recently, the quadrotors are designed for 
advanced tasks due to their simple structure and 
high activity. Design, modeling and control of 
the interaction of a quadrotor with the 
environment are introduced by Sanchez et al 
[24]. In this area, some studies have addressed 
robust takeoff and landing of the quadrotor [25], 
quadrotor ball juggling [26], cooperative 
grasping and transport [27, 28], flipping [29], 
flight through narrows and perching on inverted 
surfaces [30], landing on moving platform [31, 
32], and ensembles of aerial robots [33]. 
Adding two manipulators to quadrotor increases 
its capabilities. The application of quadrotor 
with two manipulators can be considered in 
different ways. This robot is able to use two 
manipulators in grasping and dynamic shipping, 
or moving along the surface by contacting two 
manipulators with that surface. Quadrotors with 
two manipulators are introduced in Yu and 
Ding’s study [34]. The dynamic modeling of this 
robot, derived by using recursive method and 

trajectory linearization control of the robot on 
vertical surfaces, was proposed. Yu and Ding 
studied an optimal planning strategy [35]. Also, 
dynamic modeling and control motion of two 
armed quadrotors for wall-climbing mode and 
flying-walking locomotion are presented in Yu 
and Ding’s study [36, 37]. In previous studies 
related to the control of quadrotors with two 
manipulators, the control law dependent on 
accurate information of nonlinear terms in the 
dynamic equations and the uncertainties of these 
terms were not considered. 
In this paper, a quadrotor with two manipulators 
is considered such that the manipulators are 
constrained by a path. In order to conduct 
accurate monitoring of a path such as the high 
voltage lines, the robot must be resistant to 
external disturbances. Hence, in this paper, in 
order to overcome this challenge, the quadrotor 
with two manipulators constrained on the path 
has been proposed. Robust adaptive control 
design of the constrained quadrotor is one of the 
main contributions of this paper. The novelty of 
this article is that in designed controller, the 
nonlinear terms are estimated by functional 
approximation method and then the adaptive 
laws are designed by projection operator. The 
efficiency of the proposed controller and the 
robustness of motion in the presence of the 
model uncertainties and the external 
disturbances, are shown by some simulations. 
 
2. Dynamical modeling of robot 
 

The considered quadrotor with two manipulators 
is shown in Fig. 1. In this robot, the rotational 
axes of the propellers are parallel and the 
propellers, positioned opposite to each other, 
rotate in a direction reverse to the rotation of the 
coupling propellers. The main body of the robot 
has a square frame with the length of 2L and four 
propellers with an equal height h, which are 
located at the four corners of the robot’s frame. 
Each manipulator of the robot is composed of 
two links and the links are connected to each 
other and to the main body of the robot by the 
revolute joints. As shown in Fig. 1, L1 represent 
the length of the links AB and DE and L2 
represent the length of the links BC and EF. The 
joints axis is normal to the main body and in a 
plane. When the robot is in flight mode, it has 
10-DOF. By increasing or decreasing the speed 
of the rotors and changing the torque of the 
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joints, various maneuvers can be performed. The 
ends of the two manipulators are constrained on 
a path. In this section, the dynamic equations of 
the quadrotor with two constrained manipulators 
are obtained.  
As shown in Fig. 1, two basic coordinate frames 
are defined to describe the robot motion: earth 
fixed frame E = {X,Y,Z} and body fixed frame 
B = {x,y, z}. The origin of the body fixed frame 
is connected to the center of the main body. 
Also, Euler angles 3-2-1, displayed respectively 
by ψ, θ, ϕ, are used to describe the orientation 
of the main body. 

Thus, the rotation matrix of the main body is 

given as: 

 

R(ψ,θ,φ)= 

[

CCϴ SCϴ -Sϴ

SϴSφC-CφS SϴSφSѰ+CφC SφCϴ

SϴCφC+SφS SϴCφC-SφS CφCϴ

] 
(1) 

 
where C and S stand for the cosine and sine, 
respectively. According to Fig. 1, the 
generalized coordinate vector (q) and the 
velocity coordinates (η) are chosen as: 
 

q=((Po
E)

T
,γT,αT)

T

    =(X,Y,Z,φ,θ,ψ,α1,α2,α3,α4)
T  

 

η=((vo
B)

T
,(ωB)

T
,(α̇)T)

T

    =(vx,vy,vz,p,q,r,α̇1,α̇2,α̇3,α̇4)
T
    

 

(2) 

 

where Po
E=(X,Y,Z)T, vo

B=(vx,vy,vz)
T
 and 

ωB=(p,q,r)Tare the position vectors of the origin 
(point O in Fig. 1) in frame E, the linear velocity 
vector of the body frame's origin and the angular 
velocity vector of the main body in frame B, 
respectively. Also, superscript B and E are the 
body and inertial frames, respectively; 

α=(α1,α2,α3,α4)
Tis the vector of joint angles. 

The inertial and body-fixed velocity relations are 
introduced as: 
 

[
vo

B

ωB
]= [

R(γ)              0

0                  J(γ) 
] [Ṗo

E
 

γ̇
]                      (3) 

 
 

 
Fig. 1. A quadrotor with two manipulators and 
utilized frames. 

                                                                                    

where the Jacobian matrix J is given as follows: 
 

J(γ)= [

1 0 -sinθ

0 cosφ sinφcosθ

0 -sinφ cosφcosθ
]                            (4)                                                                                                

 
The kinematic equations of the robot can be 

written as: 
 

η= [
R(γ)                   0

              J(γ)      
0                           I

] q̇=Θq̇              (5)                                           

  

Now, Lagrange method is used to obtain the 

dynamic equations of the robot in the flight 

mode [38]: 

 
d

dt
(

∂ L

∂η
)+

∂ L

∂η
[(Θ̇-

∂η

∂q
)Θ-1] -

∂ L

∂q
Θ-1=U  (6)                                    

  

where L=T-Ρ; T and Ρ are the kinetic energy and 

the potential energy, respectively [37]. Also, U 

is the generalized force vector. Aerodynamic 

studies show that a drag moment and a thrust 

force are created by the rotation of each propeller 

[6]. The thrust force 𝐹and drag moment 𝜏, are 

proportional to the square of propeller’s angular 

velocity Ω which is given as: 
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F=ktΩ
2      ,      τ=kdΩ2                             (7)            

  

where kt and kd are the thrust and drag moment 

constant coefficients, respectively. Therefore, 

the generalized force vector is given as: 

  

U=Bτ =

(

 
 
 
 
 
 
 
 

                         0

                         0

-kt(Ω1
2+Ω2

2+Ω3
2+Ω4

2)

        -L kt(Ω2
2-Ω4

2)

        -L kt(Ω3
2-Ω1

2)

- kd(Ω1
2-Ω2

2+Ω3
2-Ω4

2)
                        τ1

                        τ2

                        τ3

                        τ4 )

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 

0
0
u1

u2

u3

u4

u5

u6

u7

u8)

 
 
 
 
 
 
 

 (8) 

 

where B∈R10×8 is the distribution of inputs 

matrix and τi  (i=1,2,3,4) are the joint torques on 

the manipulators. 
As shown in Fig. 1, the contact between the robot 
and constrained path is considered with the 

rollers in the points C and F. Frame xRyRzRis 
defined on the constraint. In order to move along 
the constrained path, the speed of the points C 

and F along z1 and y
1
axes of xRyRzR frame  

should be zero. Therefore, the constraints are 
written as: 
 

VC
R ⋅ kR=0 ,  VC

R ⋅ jR=0

VF
R ⋅ kR=0,  VF

R ⋅ jR=0

ωR ⋅ iR=0

  (9)                                                                                                                 

 

where iR, jRand kR are unit vectors in the 

direction of the xR, yR and zR axes, respectively. 

The relations given in Eq. (9) are written in the 

matrix form as follows [38]: 

 

A̅ q̇=0      (10)  

                                                                                                                                           

where A̅∈R5×10. Considering these five 

constraints, the dynamic equations of the 

constrained robot are written as follows [38]: 

 

M(q) η̇+h(q,η)=Bτ+ATλ  (11)   

                                                                                                         

where M(q) ∈R10×10is the mass matrix; h∈R10×1 
is the centrifugal, Coriolis and gravity forces 

vector; B∈R10×8 is the input distribution matrix; 

τ∈R8×1 whose four first elements correspond to 
the propeller and four other elements are related 

to the torque of the robot joints; λ∈R5×1 is the 
Lagrange coefficients vector 

and A=A̅ W with W=Θ-1. 
 
3. Controller design 
 

In this section, the robot is controlled in 

the presence of the external disturbances and 

uncertainty. At first, the control law is derived 

based on accurate dynamic model and then by 

estimating the nonlinear terms of the dynamic 

model, a robust adaptive controller is proposed. 

 

3.1. Controller design based on accurate 

dynamic model 

 

The robot has eight inputs and ten generalized 

coordinates. The five constraints of the system 

reduce the degree of freedom of the robot to five. 

Therefore, the reduced form equations can be 

obtained using the constraints. To this end, the 

dynamic equations of the constrained robot, Eq. 

(11), are rewritten in terms of q, q̇. The second 

time derivative of Eq. (5) is written as: 

 

q̈=Ẇη+Wη̇  (12)   

                                                                                                                                  

Substituting Eq. (5) into Eq. (12) yields: 

 

q̈=ẆΘq̇+Wη̇  (13)   

                                                                                                                                

Hence, the vector η̇ can be given as: 

 

η̇=W-1(q̈-ẆΘq̇)  (14)   

                                                                                                                        

By substituting Eq. (14) into Eq. (11) the 

dynamic equations are rewritten as follows: 

 

MW-1(q̈-ẆΘq̇)+h(q,q̇)=Bτ+ATλ (15)                              

  

In order to obtain the reduced form of the 

dynamic equations, the vector of the generalized 

velocities is decomposed into constrained and 

non-constrained coordinates by the invertible 

matrix P. 
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q̇=P(
q̇

c

q̇
nc

)                                                  (16)                             

  

where, q
nc
∈R5 , q

c
∈R5  are non-constrained and 

constrained coordinates, respectively and 

P∈R10×10 is invertible. Also, since there are five 

constraints governing the system, five elements 

of vector q̇ are assigned to vector q̇
c
. 

Substituting Eq. (16) into Eq. (10) yields: 

 

G1q̇
c
+G2q̇

nc
=0                                       (17)                            

  

where G1∈R5×5and G2∈R5×5 are sub-matrices of  

A̅P determined by: 

 

A̅P=[G1   G2]                                             (18)                  

  

By using Eq. (17), the vector q̇
c
is obtained in 

terms of q̇
nc

. 

 

q̇
c
=-G1

-1 G2q̇
nc

                                    (19)                   

  

Hence, Eq. (16) is rewritten in terms of q̇
nc

. 

 

q̇=H q̇
nc

                                                     (20)           

  

where, the matrix H is defined as follows: 

 

H=P (
-G1

-1 G2

         I5×5

)                                      (21)            

  

Time derivative of Eq. (20) yields: 

 

q̈=Ḣ q̇
nc

 +H q̈
nc

                                            (22)  

          

By substituting Eq. (22) into Eq. (15), another 

form of the dynamical equations of the robot is 

obtained. 

 

MW-1(Ḣ q̇
nc

 +H q̈-

ẆΘq̇)+h(q,η)=Bτ+ATλ 
(23) 

  

 

Pre multiplying Eq. (23) by HTW-T, the reduced 

form equations are given as 

 

M̅q̈
nc

+h̅=B̅τ                                            (24)            

  

with 

 

M̅=HTW-1T

MW-1 H

h̅=HTW-1T

(
h(q,q̇)-MW-1ẆΘq̇

+MW-1Ḣq̇
nc

)

B̅=HTW-1T

B

          (25)        

  

In Eq. (25), A̅H=0 has been used. Now, the 

controller is designed using the dynamic model 

(Eq. (25)). For this goal, the errors are defined 

as: 

 

e=q
nc
d -q

nc
                                              (26)            

  

σ=ė+K1e                                                 (27)               

  

where, q
nc

 shows the coordinates that are 

controlled. Superscript ‘d’ denotes the desired 

value and K1 is a constant positive definite 

diagonal matrix. Using the dynamic model (Eq. 

(24)), time derivative of Eq. (27) yields: 

 

σ̇=q̈
nc
d +K1ė-M̅

-1
B̅τ+M̅

-1
h̅             (28)                               

  

Based on dynamic (Eq. (28)), the control law is 

suggested as follows: 

 

τ=B̅
-1

M̅(K1ė+q̈
nc

d
+K2 σ)+B̅

-1
h̅    (29)                      

  

While the dynamic model is accurate, the error 

of dynamics is given as: 

 

σ̇+K2σ=0                                                (30)                 

  

Considering the Lyapunov function V=
1

2
σTσ, its 

time derivative will be in the following form:  

 

V̇=-σTK2σ                                                (31)         

  

Since V and V̇ are positive definite and negative 

definite, respectively, the tracking error 

converges to zero when t→∞. However, if the 

accurate dynamic model is not available, the 

controller (Eq. (29)) cannot be used and this is 

considered in the next sub-section. 
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3.2. Robust adaptive controller design  

 

In this section, it is assumed that the Coriolis, 

centripetal, and gravity forces are not exactly 

modeled. Therefore, to compensate the dynamic 

model errors, the nonlinear terms of dynamic 

model are estimated by adaptive laws based on 

projection operator [39] and function 

approximation [40]. Therefore, in the proposed 

controller, the model nonlinear functions are not 

required to be known accurately, which is one of 

the main advantages of this controller. 

To this end, the inputs are proposed as follows: 

 

τ=B̅
-1

M̅(K1ė+q̈
nc

d
+K2 σ)+B̅

-1
ĥ   (32)                          

  

where, ĥ is the estimation of h̅. Using the 

controller (Eq. (32)), the error of dynamics (Eq. 

(30)) is rewritten as: 

 

σ̇+K2σ=M̅
-1

(h̅-ĥ)                                 (33)            

  

In order to determine 𝐡̂, the adaptive law is 

designed. To do so, let’s define: 

 

F=M̅
-1

h

F̂=M̅
-1

ĥ
                                                    (34)          

  

where, F̂ is the estimation of F. Functional 

approximation is used to estimate the vector 

elements of F. For this purpose, F elements are 

approximated as temporal basic functions by 

constant weights. In other words, 

 

Fi=Wi
TSi+ε̅i        i=1,2,...,nc                     (35)       

  

where, nc is the number of coordinates under 

control and ε̅i is the approximation error.         

Si∈Rβ
i
  and Wi∈Rβ

i  are basic functions and 

constant weights, respectively. Also, β
i 
is the 

number of basic functions. Estimation of 

elements F is considered as follows: 

 

F̂i=Ŵi

T
Si                 i=1,2,...,nc             (36)                  

  

where, Ŵi is the estimation of  Wi. Since Wi is 

a constant vector, one can obtain an adaptive law 

using the Lyapunov function. For this purpose, 

the Lyapunov function is considered as: 

 

V=
1

2
σTσ+

1

2
∑ W̃i

T
Γi

-1nc

i=1 W̃i                   (37)                   

  

where W̃i=Wi-Ŵie  is the estimation error. Time 

derivative of (Eq. (37)) during (Eq. (33)) yields: 

V̇=-σTK2σ+∑ (σiW̃i

T
Si-W̃i

T
Γi

-1Ẇ̂i)+

nc

i=1

 σTε (38) 

 

Now, an adaptive law can be obtained for Ŵi 

using (Eq. (38)). To this end, the projection 

operator for the adaptive law is proposed as 

follows: 

 

Ẇ̂i=proj Γ i
(Ŵi,σ iSi,fi)   i=1,2,...,nc (39)              

  

where 
 

proj Γ i
= 

{
σ iΓiSi-σ iΓiSi

∇fi.∇fi
T

∇fi
T.∇fi

ΓiSifi    if fi, ai>0

σ iΓiSi                                      otherwise

   
(40) 

 

and ai=σ
i
Si

TΓi∇fi ,  ∇fi=
∂fi

∂Ŵ
, the functions fi are 

convex functions that are considered as follows: 

 

fi=
‖Ŵi‖

2
-(‖Ŵi‖M

-εf)
2

2εf‖Ŵi‖M
-εf

2
  (41) 

 

where ‖Ŵi‖M
=max(‖Ŵi‖). Note that for the 

projection operator defined in Eq. (40), the 

following inequality is true. 

 

(Ŵi-Wi)(Γi
-1 proj

Γi
(Ŵi,σiSi,fi) 

         -σiSi)≤0     i=1,2,...,nc 
(42) 

 

Lavretsky et al. have presented more basic 

details for the projection operator [40].  Now, the 

following theorem is given for control of the 

considered robot. 

Theorem 1: To control the constrained robot 

system with the dynamic Eq. (10 and  11), the 

control law (Eq. (32)) and the adaptive law (Eq. 

(39)) are proposed. These laws cause the robot to 

follow the reference trajectory in the presence of 
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the dynamic uncertainty, so that the tracking and 

estimation errors can be bounded.  

Proof: Consider the Lyapunov function given in 

Eq. (37) and its time derivative Eq. (38). Using 

the control law (Eq. (32)), the adaptive laws (Eq. 

(39)) and inequality (Eq. (42)) yield: 

 

V̇≤-σTK2σ+ σTε                                  (43)              

  

Now, the   Yang   inequality ( a , b ∈ 

R2 , ρ>0  s.t  ab≤
1

2
(

a2

ρ
+ρb

2
)) is used and Eq. (38) 

is rewritten as: 

 

V̇≤-
1

2
(λmin(K2)‖σ‖2-

‖ε‖2

λmin(K2)
)     (44)                      

  

Using the Lyapunov function, Eq. (44) yields: 

 

V̇≤-λmin(K2)V+ρ                                      (45)         

  

Solving Eq. (45) for V gives: 

 

V(t)=V0e-λmin(K2)t+
ρ

λmin(K2)
(1- 

e-λmin(K2)t)                    
(46) 

 

where ρ=
‖ε‖2

2λmin(K2)
. It shows V(t) will go to 

bounded value  
ρ

λmin(K2)
 when t→∞. Therefore, 

by choosing the gain values, this constant value 

can be tuned small. Thus, the tracking errors and 

uncertain estimations will be limited and the 

proof will be completed. 

       

4. Simulation results  

 
Here, the numerical simulation results of the 

robot motion under the proposed controller are 

presented. The robot parameters are given in 

Table 1.  

The non-constrained and constrained 

coordinates are considered as follows: 

 
q

n c
=(X,Z,θ,α1,α3)

T

q
c
=(Y,φ,ψ,α2,α4)

T
                                      (47) 

 

Table 1. Physical parameters of the quadrotor [37]. 

Parameter Value 

bm 1.13 kg 

pm 0.01 kg 

ABm 0.04 kg 

DEm 0.04 kg 

BCm 0.14 kg 

EFm 0.14 kg 

ABL 0.15 m 

DEL 0.15 m 

BCL 0.22 m 

EFL 0.22 m 

h 0.03 m 
L 0.5 m 

dk 5 22.1 10 N.s−  

tk 5 22.1 10 N.s−  

XbI 2 21.27 10 kg.m−  

ybI 2 21.27 10 kg.m−  

ZbI 2 22.29 10 kg.m−  

ZpI 8 23.8 10 kg.m−  

XI
1

 4 20.17 10 kg.m−  

yI
1

 4 20.17 10 kg.m−  

zI
1

 3 20.12 10 kg.m−  

zI
2

 3 20.12 10 kg.m−  

xI
2

 4 20.31 10 kg.m−  

yI
2

 4 20.31 10 kg.m−  

  

4.1. Initial conditions and desired trajectory 

 

Since the robot is constrained, the initial 

conditions have to satisfy the constraints. In 

order to satisfy the constraints defined in Eq. (9), 

the initial generalized velocities are chosen zero. 

But for the initial generalized coordinates, initial 

configuration of the robot has to satisfy the 

holonomic constraints. To this end, the initial 

configuration of the robot is considered as Fig. 

2(b). It is assumed that the center of the main 

body of the robot moves as much as d in the 

vertical direction from its highest possible point; 

and the main body rotates clockwise as much as 

β about yR. Therefore, the rotation matrix defined 

in Eq. (1) can be obtained as Eq. (48). 
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R(ψ,θ,φ)=
1

2
[

1+Cβ 1-Cβ √2Sβ

1-Cβ 1+Cβ -√2Sβ

-√2Sβ √2Sβ 2Cβ

]  (48) 

 

The Eq. (48) yields: 

 

tan(ψ)=
R12

R11

, tan(φ)=
R23

R33

 

tan(θ)=
-R13

√R11
2 +R12

2

 
(49) 

  

Thereby, ψ,θ and φ are obtained.  

Now, αi(i=1,2,3,4) should be determined. To this 

end, Eq. (50) can be obtained from Fig. 2. 
  

OF⃗⃗ ⃗⃗  ⃗z=OC⃗⃗⃗⃗⃗⃗ z=LAB+LBC, (50) 
 

where, (⋅ )
z 

denotes z component. Eq. (50) has 

two constraints; therefore, two variables are 

chosen and two others are obtained from Eq. 

(50). To, this end, α2 and α4 are chosen zero and 

α1 and α3 are determined by Eq. (50). It should 

be noted that the distance 𝑑′ has to satisfy Eq. 

(51). 

 

d
'
=d-(

L

√2
)sinβ≥0  (51) 

 

Therefore, by considering β=40 and d=4 cm, the 

value d
'
=2.7680 cm will be determined and by the 

rotation matrix, Euler angles are given as 

φ=-2.82730 and θ=-2.82730 and ψ=-0.06990. 

Also, Po
E

 is determined by defining the position 

Ó in initial frame and given as 

Po
E=(0 , 0 , 0.04)T.  

 

 
Fig. 2. (a) The robot configuration in the highest point 
on the path and (b) the initial configuration of the 
robot on the path. 

Accordingly, the initial configuration of the robot 

is considered as Eq. (52). 

 

Po
E=(0 , 0, 0.04)T

γ
0
=(-2.8307 o, -2.8273 o,0.0699 o)T

α0=(55.5125 o , 0, 55.5125 o, 0)T
              (52) 

 

Since the constraint path is along the 𝑥𝑟 axis, the 

desired path of the robot is defined as:  
 

  
R Xo

d(t)= 

0.25t2                                        0≤t<12 

6 t-36                                       12≤t<20 

-0.5t2+26t-236                          20≤t<26 

102                                          26≤t<30 

-2t+162                                    30≤t<80 

(53) 

  

For this path, the robot movement includes 

acceleration movement, constant velocity, 

deceleration, and fixed position during forward 

motion. Also, it moves with constant velocity 

during the way back.  

It is assumed that this quadrotor has to monitor 

the path defined in Eq. (53). For this purpose, the 

robot posture is chosen as constant during 

motion. Therefore, the desired trajectory is given 

as in Eq. (54). 

 

q
nc
d =

(

  
 

√2

2
(   

R Xo
d(t))

  0.04 

- 2.8273 o

85 o

85 o )

  
 

                                      (54)          

          

                            

4.2. Performance of robust adaptive control  

 
 

Now, the implementation results of the proposed 

adaptive controller are presented. It should be 

noted that this controller does not require to 

accurately know the dynamic model of the 

nonlinear functions. In the following, the ability 

of this controller for tracking the desired path 

(Eq. (54)) is investigated by the gains.  

 

 
K1=diag([0.1,4.0,0.5,0.6,0.8])

K2=diag([0.02,70.02,18.55,82.0,75.2])
        (55)                                
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The adaptive parameters are considered as      

εi=0.1 , Γi=Iβ
i
  ,  ‖Φi‖M=1(i=1,...,5). 

Fig. 3 shows the position of the main body in the 

xRyRzR frame. The desired path is specified with 

the dotted lines. As it can be seen, the controller 

without knowing the nonlinear terms of the 

dynamic model has forced the robot to move 

along the desired path. Also, according to the 

constraints (Eq. (9)), the robot has not moved 

along Yo
R axis. 

 
Fig. 3. Tracking performance of the quadrotor. 

 
Fig. 4. The joint angles of the manipulators during 
quadrotor motion 

 
Fig. 5. Euler angles during quadrotor motion. 

 

The joint angles are shown in Fig. 4. The angles 

α1 , α3 reach the desired value in less than one 

second from the start of the movement. Also, the 

angles α2 and α4 converge to a constant value of 

58.4 degrees. 

Euler angles are shown in Fig. 5. As expected, 

the angle θ is well controlled and two other 

angles remain constant. 

The control inputs are shown in Fig. 6. Due to 

the fact that Euler's angles are constant, the roll, 

pitch and yaw moments are zero. As seen from 

Fig. 6, input u1, the lift force, has nonzero value 

during accelerated motion. The joint torques are 

shown in Fig. 7. It is seen that torques are 

bounded during motion. It is obvious that during 

the movement without acceleration, the joint 

torques are nonzero as the lift force (u1) is almost 

zero and this means that the robot weight is 

controlled by the joint torques during the 

movement without acceleration. 

In Fig. 8, the estimated values of nonlinear terms 

in dynamic model are shown and compared with 

their actual values. This figure shows that the 

estimation error is bounded during motion. 

Therefore, these results show that the 

constrained quadrotor can follow the reference 

trajectory by the proposed adaptive control in 

spite of the dynamic model uncertainty. 
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Fig. 6. The control inputs u1, u2, u3and u4 during 
quadrotor motion 

 
Fig. 7. The joint torques during quadrotor motion. 
 

4.3. Performance of robust adaptive controller 

in presence of external disturbances 
 

In this section, robust control of the robot is 

investigated in the presence of the wind force as 

the external disturbance. It is assumed that the 

wind force 1.0N is applied from t=5 s by                 

t=25 s along the xR and yR axes with the desired 

trajectory defined in Eq. (54). Fig. 9 shows the 

tracking performance of the quadrotor during 

motion by the adaptive parameters εi=0.1   ,    

Γi=Iβ
i
   ,       ‖Φi‖M=1(i=1,...,5). Fig. 9 shows 

that the proposed controller can force the 

quadrotor to move near the reference motion in 

spite of the dynamic model uncertainties and 

external disturbances. 

The control inputs and joint torques are shown in 

Fig. 10 and  11, respectively. The effect of the 

external disturbances is manifest at 5 ≤t≤ 25 and 

the input values are limited in spite of the 

presence of the external disturbance and the 

dynamic uncertainties. 

In Fig. 12, the estimated values of nonlinear 

terms of the dynamic model are shown and 

compared with their actual values.  

 
Fig. 8. Actual and estimated nonlinear terms, solid 
lines show the actual values and dash line shows the 
estimated values. 

 
Fig. 9. Tracking performance of the quadrotor in 

presence of the external disturbance. 



JCARME                                         Robust adaptive projection . . .                                      Vol. 11, No. 2 

361 
 

 
Fig. 10. The control inputs u1, u2, u3and u4 during 

quadrotor motion in presence of the external 

disturbance 

 
Fig. 11. The joint torques during quadrotor motion 
 

 
Fig. 12. Actual and estimated nonlinear terms in 

dynamic model in the presence of the external 

disturbance, solid lines show the actual values and 

dash line shows the estimated values.  

5. Conclusions 
  
 

A quadrotor with two constrained manipulators 

was introduced and controlled on a constraint 

path in the presence of dynamic uncertainties. 

By adding two manipulators to quadrotor and 

moving the robot on the constraint path, the 

under-actuated robot becomes over-actuated and 

one can use this feature to accurately control the 

position of the robot. A robust adaptive method 

was presented to control the robot. In the 

proposed method, the nonlinear terms of the 

dynamic model were estimated by adaptive laws 

based on functional approximation technique 

and projection operator. Numerical 

implementation results showed that the 

quadrotor can move near the reference path in 

the presence of the dynamic uncertainties by the 

proposed controller. Also, the robustness of the 

presented control is evaluated by surveying its 

performance in the presence of the wind force. 

The results showed that the proposed controller 

can move the quadrotor near the reference path 

in spite of the dynamic uncertainties and external 

disturbances. 
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