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Recognizing a driver’s braking intensity plays a pivotal role in developing 

modern driver assistance and energy management systems. Therefore, it is 

especially important to autonomous and electric vehicles. This paper aims at 

developing a strategy for recognizing a driver’s braking intensity based on the 

pressure produced in the brake master cylinder. In this regard, a model-based, 

synthetic data generation concept is used to generate the training dataset. This 

technique involves two closed-loop controlled models: an upper-level 

longitudinal vehicle dynamics model and a lower-level brake hydraulic dynamic 

model. The adaptive particularly tunable fuzzy particle swarm optimization 

algorithm is recruited to solve the optimal K-means clustering. By doing so, the 

best number of clusters and positions of the centroids can be determined. The 

obtained results reveal that the brake pressure data for a vehicle traveling the 

new European driving cycle can be best partitioned into two clusters. A driver’s 

braking intensity may, therefore, be clustered as moderate or intensive. With the 
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well as in electric vehicles equipped with intelligent, electromechanical brake 

boosters. 
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1. Introduction

Driver behavior recognition systems play a 

pivotal role in the development of advanced 

driving assistance systems (ADAS) and 

automated or semi-automated vehicles. In this 

regard, a great deal of research has been 

conducted on the development of driver 

behavior recognition systems [1, 2]. 

To address the difficulty of identifying abnormal 

driving behaviors, Jia et al. [3] proposed a 

recognition system based on a long short-term 

memory network and convolutional neural 

network (LSTM-CNN).  

By this means, they were able to recognize 

dangerous driving behaviors (e.g., rapid 

acceleration, sudden braking, and rapid lane 

changing) that could jeopardize traffic safety. 

Zhang et al. [4] proposed a deep learning 

framework by combining convolutional neural 

networks (CNNs) and recurrent neural networks 

to learn features of driving behaviors from 

Controller Area Network-BUS sensor data. Xing 

et al. [5] proposed a driver intention inference 
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scheme to recognize the lane change intentions 

of drivers on highways. In another study, Xing et 

al. [6] took advantage of a low-cost camera and 

deep CNNs to develop a behavior recognition 

system that checks a driver’s normal condition 

or his/her distraction during driving. The 

developed system achieved an accuracy of 

91.4%.  

K-means is an iterative clustering algorithm in 

which each iteration includes two phases: 

assigning queries to the adjacent cluster and 

updating the centroid of each cluster. The 

iteration terminates either in a fixed number of 

rounds or when the updates of the cluster 

centroids reach a given threshold [7]. Although 

K-means clustering problems are 

straightforward conceptually, they are 

computationally difficult to handle (NP-hard) [8, 

9] and may require the application of powerful 

optimization algorithms [10].  

Das et al. [11] used the differential evolution 

(DE) algorithm to solve an automatic K-means 

clustering problem for unsupervised, large data 

sets. The term “automatic” implies that the 

optimization algorithm is responsible for finding 

the best positions of cluster centroids and the 

best number of clusters. Due to its outstanding 

capabilities, the adaptive particularly tunable 

fuzzy particle swarm optimization (APT-FPSO) 

algorithm [12] can be effectively used to solve 

optimal K-means clustering problems. 

This paper attempts to develop a system for 

recognizing a driver’s braking intensity in a 

vehicle passing through six consecutive NEDC 

cycles. The problem is presented in the form of 

optimal K-means clustering, and the APT-FPSO 

algorithm is applied to find the best number of 

clusters as well as the best positions of cluster 

centers. The dataset which was used in previous 

computations is synthetically generated by 

employing a model-based technique. The results 

of this research can be reliably used in the 

development of advanced vehicle safety and 

control systems.  

 

2. State of the art 
 

A driver’s behavior is manifested by the way 

he/she treats the gas/brake pedal. By using a 

combination of the gaussian mixture model 

(GMM) and hidden Markov model (HMM), 

Wang et al. [13] proposed a driver’s braking 

intent prediction method based on his/her 

driving history. Compared to the support vector 

machine (SVM) filtering method, the proposed 

technique outperformed the rival methods with 

an accuracy of 90%, sensitivity of 84%, and 

specificity of 97%. Based on a considered 

driving cycle and the recognition of driver 

behavior from the accelerator pedal position and 

its rate of change, Guo et al. [14] proposed an 

optimal control strategy for plug-in hybrid 

electric vehicles. They improved energy 

consumption by 3.69% in the new European 

driving cycle (NEDC). By exploiting a hybrid 

unsupervised-supervised learning technique, Lv 

et al. [15] attempted to estimate the pressure of 

the master cylinder and, thus, eliminate the 

pressure sensor from the electronic stability 

program (ESP) module. A GMM model 

categorized a driver’s braking intensity into 

three low, moderate, and intensive clusters for a 

vehicle traveling the NEDC. 

In many real-world phenomena, there is not 

sufficient information to be used to train a 

learning machine. Besides, experimental data 

collection can sometimes become arduous and 

time-consuming. In such cases, scientists can 

take an alternative approach to model an original 

phenomenon as closely and accurately as 

possible. This imitation model can then be used 

to provide a good approximation of the 

responses to the real phenomenon. Nikzadfar 

and Shamekhi [16-19] designed an MLP 

artificial neural network (ANN) to predict semi-

static in-cylinder phenomena in diesel engines. 

They used an engine dynamometer as an 

experimental test setup to generate a training 

dataset. The training data set was, though, 

insufficient in size. To deal with dataset scarcity, 

they used the experimental data to calibrate the 

thermodynamic model of an engine in AVL-

Boost software. Then using the engine’s 

calibrated model, they generated a dataset of 

sufficient size.  

Gao et al. [20] have proposed a hybrid PSO-K-

means algorithm that takes advantage of the 

Gaussian estimation of the distribution method 

to empower PSO. Compared with eight classic 

or state-of-the-art algorithms on five real-world 

datasets, the proposed method appeared to be 

superior in robustness and performance.  
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Bosch has developed an electromechanical brake 

booster (iBooster) that provides electric vehicles 

with unprecedented features such as a system of 

energy management through regenerative 

braking, adjustable pedal feel, automatic 

emergency braking (AEB), and so on [21, 22]. 

The driver of a car equipped with iBooster will 

be able to manually adjust the braking style to 

comfort or sport. However, iBoosters can be 

augmented with the technology that 

automatically recognizes a driver’s driving style 

by observing his/her interactions with the brake 

pedal. 

 

3. Concept of model-based synthetic data 

generation 

 

In this study, the training dataset was generated 

using a model-based, synthetic data generation 

technique. In this approach, a phenomenon of 

interest is not measured directly; instead, an 

accurate model of the phenomenon is employed 

to approximate it and generate the desired 

dataset. This method is helpful when it is 

difficult to collect rich data, and experimentation 

is costly or time-consuming. Two closed-loop 

control models were developed to generate the 

training dataset for this work, an upper-level 

model for vehicle longitudinal dynamics and a 

lower-level dynamic model for brake hydraulics. 

The block diagram for these closed-loop systems 

is shown in Fig. 1. These two models will be 

discussed in detail in the following two 

subsections. 

 

3.1. Vehicle longitudinal dynamics model 

 

Vehicle longitudinal dynamics include engine 

behavior analysis, tire tractive force generation, 

retarding longitudinal forces (i.e., rolling 

resistance, aerodynamic force, and grade force), 

and the drivers’ gear shifting habits [23-25]. In 

this paper, vehicle longitudinal dynamics are 

modeled by considering the simplifying 

assumption that the road ahead of the vehicle is 

straight and without slope. Also, the engine 

model is simplified to a first-order filter.  

The vehicle engine is of the TU5 model having 

the power of 105 hp at 5800 RPM and a 

maximum torque of 142 N.m. at 4000 RPM. The 

vehicle model and characteristics and the 

relevant governing equations will be presented 

in this subsection. Furthermore, a fuzzy 

controller that mimics a driver’s 

accelerating/braking habits will be described. At 

the end of the section, a flowchart that illustrates 

the interconnection between the different parts 

of the model will be presented. 

 

3.1.1. Governing equations 

 

An experimental dataset from the engine torque-

RPM map of the test car can be used to get the 

engine torque (𝑇𝑒) at any specified RPM and 

throttle opening. 𝑇𝑤  can be found from the 

following equation: 

 

𝑇𝑤 = 𝑇𝑒 ∗ 𝑛𝑔 ∗ 𝑛𝑓 , (1) 

 

in which  𝑛𝑔 is the gear ratios. Besides, 𝑛𝑓 is the 

differential (final drive) gear ratio. Engine torque 

(𝑇𝑒) is conveyed by the transmission system to 

the tires to generate a traction force, which is 

expressed as: 

 

𝐹𝑡 = (
𝑛𝑔 ∗ 𝑛𝑓

𝑟𝑤
) ∗ 𝑇𝑒 , 

(2) 

 

where 𝑟𝑤 is the wheel effective radius. Vehicle 

acceleration (𝑎𝑣𝑒ℎ) can then be found by using 

Newton’s second law of motion [23]: 

 

𝑎𝑣𝑒ℎ =
𝐹𝑇𝑜𝑡
𝑚𝑣𝑒ℎ

=
𝐹𝑡 − 𝐹𝑑 − 𝐹𝑟𝑟 − 𝐹𝑏

𝑚𝑣𝑒ℎ
, (3) 

 

where 𝑚𝑣𝑒ℎ is the vehicle mass. 𝐹𝑑 = 𝑐 𝑣𝑣𝑒ℎ
2 is 

the aerodynamic drag force with the overall aero 

drag coefficient of 𝑐. 𝐹𝑟𝑟 denotes the rolling 

resistance force that is commonly approximated 

as a polynomial function of the vehicle speed 

[23]. Finally, 𝐹𝑏 represents the brake force. 
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Six NEDC cycles

(vehicle reference speed)

Vehicle Longitudinal Dynamic Model

𝑚𝑣𝑒ℎ 𝑎𝑣𝑒ℎ

Vehicle longitudinal dynamic model

Braking torque

Brake hydraulics model

Master cylinder hydraulic 

pressure

PID

Fuzzy logic 

controller

Actual 𝑣veh  

Actual braking torque 

Desired braking torque 

 
Fig. 1. Block diagram of the model-based synthetic data generation procedure. 

 
All of the mentioned forces act in the opposite 

direction of the vehicle motion. Obviously, the 

integration of 𝑎𝑣𝑒ℎ  results in vehicle velocity 

(𝑣𝑣𝑒ℎ). Next, the engine speed (RPM𝑒) can be 

found using the following relationship: 

 

RPM 𝑒  =
30 ∗  𝑣𝑣𝑒ℎ ∗ 𝑛𝑓 ∗ 𝑛𝑔

𝜋 ∗ 𝑟𝑤
. (4) 

 

After each gear shift, a 0.5 sec time delay 

(known as shifting time) is considered in torque 

conversion to simulate a driver’s gear shifting 

habit more realistically [26]. In other words, the 

converted torque becomes zero after each gear 

shift for a period of shifting time. According to 

this table, the algorithm receives the engine 

operating point (engine load and RPM) and 

suggests the required gear number/ratio. For a 

more elaborate explanation of gear shifting 

thresholds, readers may refer to [27]. Table 1 

and  

Table 2 tabulate the specifications of the vehicle 

model and the gearbox, respectively. 

 
Table 1. Vehicle specifications. 

Parameter Value 

Vehicle mass 1300 kg 

Wheel radius 0.29 m 

Front area 2.18 m2 

Aero drag coefficient 0.4 

Engine type TU5 JP4 

Engine volume 1587 cc 

Engine power 105 hp @ 5800 rpm 

Engine maximum torque 142 N.m. @ 4000 rpm 

Gearbox 5 speed 

 

Table 2. Comparison of air-core diameter, discharge 

coefficient, and spray cone angle. 

Gear number Gear ratio (𝑛𝑔) 

1 3.6 

2 2.8 

3 2 

4 1.5 

5 1 

Final drive (𝑛𝑓) 4.29 
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3.1.2. Simulating the driver behavior 

 

A closed-loop control system is required for the 

vehicle model to track the NEDCs. In this work, 

two fuzzy logic controllers (FLCs) are used for 

this purpose. One of the developed FLCs is 

responsible for applying a traction force to 

vehicle tires, and the other is in charge of 

braking. The input to the FLCs is the error 

between the vehicle speed and the NEDC 

reference speed.   

The two outputs of the FLCs are the throttle 

pedal angle (when traction is needed) and the 

braking force. When the sign of the above-

mentioned error becomes negative, the FLC 

will issue a traction force command; otherwise, 

it will give a braking command when the error 

sign is positive. An “OR” logical operator is 

used between the two to avoid any interference 

between traction and braking commands. For 

more information on the membership functions 

of the FLCs, please refer to [28]. The setpoint 

of the mentioned control system is the vehicle 

speed in the NEDC cycle. The vehicle speed in 

the NEDC is compared to the vehicle’s current 

speed, and the resulting error is fed to the FLCs. 

Then, based on the error sign, the FLCs issue 

either traction or braking control command. The 

block diagram of the described vehicle model 

can be seen in Fig. 2. According to this figure, 

the yellow (2D) and the blue (1D) look-up 

tables correspond to part- and full-throttle 

engine torque-speed maps. These maps have 

been obtained experimentally through the 

previous works [27, 28].  

Fig. 3 demonstrates the output of the closed-

loop controlled vehicle longitudinal dynamics 

model. As is shown, owing to the performance 

of FLCs, the NEDC reference speed (the purple 

dashed line) is well tracked by the vehicle 

longitudinal speed (the solid black line). 

Fig. 3 also illustrates the braking torque (the 

solid green line), which may be considered as 

the essence of the vehicle longitudinal 

dynamics model. Braking torque is used as the 

reference (desired) value for the lower-level, 

closed-loop controlled brake hydraulics model, 

which will be discussed in the next section. 

 

 
Fig. 2. Block diagram of the closed-loop vehicle longitudinal dynamic model in Simulink. 
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Fig. 3. Tracking the six NEDC cycles and extraction 

of the braking torque. 

 
3.2. Modeling the brake hydraulics 

 

In the last subsection, a vehicle longitudinal 

model was set to track six consecutive NEDC 

cycles, and the associated braking torques were 

obtained as a result. Remember that the main 

objective here is to get brake pressure data from 

the master cylinder as the training dataset. In 

this regard, the dynamic model of brake 

hydraulics is used to relate vehicle braking 

torque to brake master cylinder pressure. 

This subsection is dedicated to the dynamic 

modeling of the closed-loop controlled brake 

hydraulics and, thus, extracting the hydraulic 

pressure data from the master cylinder.  

In this study, the plant under control is the brake 

system hydraulics, which can be modeled both 

statically and dynamically, depending on the 

application and area of use. For the sake of 

generating training datasets for data-driven 

applications, it would be particularly 

advantageous to model a phenomenon with 

slow transient dynamics [29, 30]. In this work, 

although static modeling of the brake system 

would have sufficed due to the relatively fast 

transient behavior of the hydraulic oil flow, the 

dynamic modeling method was adopted so that 

the hydraulic pressure behavior in the transient 

regime is not overlooked. Moreover, the 

dynamic modeling of brake hydraulics becomes 

vital when designing vehicle stability control 

systems  such  as  the  anti-lock  brake   system  

 

(ABS), electronic stability program (ESP). 

The dynamic modeling of brake hydraulics has 

been exhaustively discussed in the literature 

[31-35]. The approach is to model the pressure 

buildup phase in an ABS. Such a system 

consists of a booster, a tandem master cylinder 

(TMC), a hydraulic modulator block, four-

wheel cylinders (calipers), and the pipelines 

connecting the modulator to the TMC and the 

calipers. The overall pressure buildup process is 

schematically displayed in Fig. 4. Since the 

performance of the controller is of no concern 

here and the only thing that matters is the 

successful tracking of the braking force, we do 

not need to worry about the controller 

parameters. 

Therefore, the controller gains can be chosen 

arbitrarily so long as the braking force of the 

hydraulic model well tracks the considered 

reference (desired) value. In this study, the 

controller gains are chosen as 𝐾𝑝 = 100, 𝐾𝑖 =

50, and 𝐾𝑑 = 0.1.  The governing equations and 

the dynamic modeling of brake hydraulics will 

be discussed in the next section. As can be seen, 

the booster magnifies the pedal force and 

applies it to the master cylinder (MC), causing 

its piston to move. 

Owing to the fluid inertia, the displacement of 

the piston pressurizes the oil in the master 

cylinder. The difference between oil pressures 

in the MC and the MC2SCV pipeline generates 

an oil flow of 𝑄𝑚𝑐 from the MC into the 

MC2SCV pipeline. Because of the fluid inertia, 

the difference between the pressures of oil flows 

entering and exiting the MC2SCV pipeline 

increases the fluid pressure. This process 

continues until the oil in the caliper is 

pressurized. The pressurized oil in the caliper 

forces the wheel cylinder piston to move 

forward and tightly push the brake pad against 

the brake disc (rotor), thereby generating a 

clamping force at the interface of the pad and 

disc. 

  

Master 

cylinder
,

Caliper

Solenoid charge valve

(SCV)

SCV2C

pipeline

MC2SCV

pipeline

Fig. 4. Schematic view of the pressure build-up phase in the brake hydraulic system. 
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   𝑚𝑐   𝑑 𝑚𝑐   𝑛   𝑚𝑐

 
 
 

Fig. 5. Free body diagram of the master cylinder. 
 

The governing equations of the explained 

process will be given next. After the brake 

booster, the next component to be modeled is 

the MC, responsible for conveying pressurized 

oil through the pipelines. Fig. 5 depicts the free 

body diagram (FBD) of the MC and the forces 

exerted on the MC piston.  

The dynamic movement of the MC can be 

modeled as a one-degree of freedom (DOF), 

spring-mass-damper system. 

Fig. 6 delineates the closed-loop controlled 

brake hydraulics, dynamic model. As is 

observed, a proportional-integral-derivative 

(PID) controller is responsible for getting the 

actual braking torque to the desired value 

obtained from the longitudinal vehicle 

dynamics model. 

 

 𝑚𝑐 ̈𝑚𝑐 = 𝐹Booster − 𝑃𝑚𝑐𝐴𝑚𝑐

− 𝐾𝑚𝑐 𝑚𝑐 − 𝐶𝑚𝑐  𝑚𝑐

−    𝑚𝑐

−  𝑑 𝑚𝑐𝑡𝑎𝑛ℎ(  𝑚𝑐), 

(5) 

 

 

 

Newton’s second law of motion results in: 

where  𝑚𝑐, 𝐾𝑚𝑐, and 𝐶𝑚𝑐 are the MC piston 

mass, spring stiffness, and damping coefficient, 

respectively.  

𝑃𝑚𝑐 and 𝐴𝑚𝑐 denote, respectively, the MC 

pressure and cross-sectional area.  𝑚𝑐,   𝑚𝑐, and 

 ̈𝑚𝑐 stand for the MC piston displacement, 

velocity, and acceleration, respectively.    𝑚𝑐 

and  𝑑 𝑚𝑐   𝑛(  𝑚𝑐) represent the static and 

the dynamic friction forces applied to the MC 

piston, respectively. Note that in the governing 

equations, 𝑡𝑎𝑛ℎ(∙) is used instead of the   𝑛(∙) 
function; because   𝑛(∙) is a static function that 

adversely affects and hinders the dynamic 

simulation. 

The MC pressure in the above equation can be 

obtained by integrating its rate of change (𝑃 𝑚𝑐), 

as follows [36]:  

𝑃𝑚𝑐 = ∫𝛽𝑚𝑐

(𝐴𝑚𝑐  𝑚𝑐 − 𝑄𝑚𝑐)

𝑉𝑚𝑐
𝑑𝑡, 

𝑉𝑚𝑐 = 𝐴𝑚𝑐( 𝑚𝑎𝑥 −  𝑚𝑐), 

(6) 

 

where 𝛽𝑚𝑐 and 𝑉𝑚𝑐 are the bulk modulus and 

the volume of the MC chamber, respectively. 

Also, 𝑄𝑚𝑐 denotes the oil flow leaving the MC 

and entering the pipeline, and it can be 

calculated as [36]: 

 

𝑄𝑚𝑐 = 𝐶𝑚𝑐𝐶𝑑𝐴0𝑚𝑐√
2

𝜌
|𝑃𝑚𝑐 − 𝑃𝑟|

∗ 𝑡𝑎𝑛ℎ(𝑃𝑚𝑐 − 𝑃𝑟), 

(7) 

 

Actual braking torque

Brake disc and caliper
Hydraulic 

block

Master 

cylinder iBooster

PID

+ − 

Desired braking torque

𝐹𝑏𝑜𝑜 𝑡𝑒𝑟  𝑃𝑟  𝐹𝑝𝑒𝑑𝑎𝑙  𝑃 𝑛 _𝑐𝑎𝑙 𝑝𝑒𝑟  

Master cylinder hydraulic pressure

 
Fig. 6. Closed-loop controlled brake hydraulics and dynamic model. 
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where 𝐶𝑚𝑐𝐶𝑑 is the MC orifice discharge 

coefficient, and 𝐴0𝑚𝑐 is the MC outlet cross-

sectional area. 𝜌 is the brake oil density, and 𝑃𝑟 

is the oil pressure in the MC2SCV pipeline, 

which can be obtained by integrating its rate of 

change (𝑃 𝑟):  

 

𝑃𝑟 = ∫𝛽𝑟
(𝑄𝑚𝑐 − 𝑄𝑤𝑖𝑛)

𝑉𝑟
𝑑𝑡, (8) 

 

In the above equation, 𝛽𝑟 and 𝑉𝑟 are the bulk 

modulus and the volume of the MC2SCV 

pipeline, respectively. Also, the oil flow 𝑄𝑤𝑖𝑛 

leaving the MC2SCV pipeline can be obtained 

as: 

 

𝑄𝑤𝑖𝑛 = 𝐶𝑤𝑖𝑛𝐶𝑑𝐴0𝑤𝑖𝑛√
2

𝜌
|𝑃𝑟 − 𝑃𝑤𝑖𝑛|

∗ 𝑡𝑎𝑛ℎ(𝑃𝑟 − 𝑃𝑤𝑖𝑛), 

(9) 

 

where 𝑃𝑤𝑖𝑛 is the pressure of oil flowing 

between the solenoid charge valve (SCV) and 

the caliper. 𝐶𝑤𝑖𝑛𝐶𝑑 and 𝐴0𝑤𝑖𝑛 represent the 

SCV discharge coefficient and the SCV outlet 

cross-sectional area, respectively. 𝑃𝑤𝑖𝑛 can be 

determined using the following equation:  

 

𝑃𝑤𝑖𝑛 = ∫𝛽𝑤𝑖𝑛
(𝑄𝑤𝑖𝑛 −𝑄𝑐𝑎𝑙)

𝑉𝑤𝑖𝑛
𝑑𝑡, (10) 

 

In Eq. (10), 𝛽𝑤𝑖𝑛 and 𝑉𝑤𝑖𝑛 are the bulk modulus 

and the volume of the SCV2C pipeline, 

respectively. Besides, 𝑄𝑐𝑎𝑙 denotes the oil flow 

into the caliper from the SCV2C pipeline, and it 

is obtained as  

 

𝑄𝑐𝑎𝑙 = 𝐶𝑐𝑎𝑙𝐶𝑑𝐴0𝑐𝑎𝑙√
2

𝜌
|𝑃𝑤𝑖𝑛 − 𝑃𝑐𝑎𝑙|

∗ 𝑡𝑎𝑛ℎ(𝑃𝑤𝑖𝑛 − 𝑃𝑐𝑎𝑙), 

(11) 

 

where 𝐶𝑐𝑎𝑙𝐶𝑑 and 𝐴0𝑐𝑎𝑙 stand for the caliper 

inlet discharge coefficient and cross-sectional 

area, respectively. Also, 𝑃𝑐𝑎𝑙 is the oil pressure 

in the caliper, and it can be calculated from the 

following equation: 

 

𝑃𝑐𝑎𝑙 = ∫𝛽𝑐𝑎𝑙
(𝑄𝑐𝑎𝑙 − 𝐴𝑐𝑎𝑙  𝑐𝑎𝑙)

𝑉𝑐𝑎𝑙
𝑑𝑡, (12) 

𝑉𝑐𝑎𝑙 = 𝐴𝑐𝑎𝑙 𝑐𝑎𝑙, 
 

In the above equation, 𝛽𝑐𝑎𝑙 and 𝑉𝑐𝑎𝑙 are the bulk 

modulus and the volume of the caliper, 

respectively. 𝐴𝑐𝑎𝑙 is the caliper cross-sectional 

area, and   𝑐𝑎𝑙 and  𝑐𝑎𝑙 denote the caliper piston 

velocity and displacement, respectively. 

According to Eq. (12), to get the oil pressure in 

the caliper,   𝑐𝑎𝑙 and  𝑐𝑎𝑙 must be known and 

obtained. Like the MC, the brake caliper is 

commonly modeled as a one-DOF, spring-

mass-damper system. Therefore, by applying 

Newton’s second law of motion to the caliper 

FBD, the brake clamping force is determined 

as:  
 

 𝑐𝑎𝑙 ̈𝑐𝑎𝑙 = 𝑃𝑐𝑎𝑙𝐴𝑐𝑎𝑙
− 𝐾𝑐𝑎𝑙( 𝑐𝑎𝑙 −  𝑔𝑎𝑝)

− 𝐶𝑐𝑎𝑙  𝑐𝑎𝑙 −    𝑐𝑎𝑙
−  𝑑 𝑐𝑎𝑙𝑡𝑎𝑛ℎ(  𝑐𝑎𝑙), 

(13) 

 

where  𝑐𝑎𝑙, 𝐾𝑐𝑎𝑙, and 𝐶𝑐𝑎𝑙 represent, 

respectively, the brake pad mass, stiffness, and 

damping coefficient.    𝑐𝑎𝑙 and 

 𝑑 𝑐𝑎𝑙𝑡𝑎𝑛ℎ(  𝑐𝑎𝑙) indicate the static and 

dynamic friction forces applied to the pad, 

respectively.   𝑐𝑎𝑙 and  𝑐𝑎𝑙 are calculated from 

Eq. (13) and substituted into Eq. (12) to obtain 

𝑃𝑐𝑎𝑙, which will be used again in Eq. (13). 

Finally, the brake clamping force (𝑃𝑐𝑎𝑙𝐴𝑐𝑎𝑙) can 

be determined from Eq. (13). 

When using a model-based, synthetic data 

generation scheme, the dynamic models are run 

by software programs such as MATLAB/ 

Simulink. The corresponding solver often keeps 

step sizes small enough to maintain a high 

solution accuracy, which leads to the generation 

of excessive redundant data to be eliminated to 

reduce the data volume.  

ode23s is the selected type of solver used to 

solve stiff differential equations based on a 

modified Rosenbrock formula of order 2. In 

addition, the variable step size is selected for the 

numerical solution of ordinary differential 

equations. The reason for this is to control the 

errors of the method and to ensure stability 

properties. The final time of the simulation is set 

to 7080 (1180*6), which is equal to the time that 

six consecutive NEDC cycles would take. 
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4. Optimal K-means clustering 

 

Clustering refers to the idea of dividing 

unlabeled data samples into some clusters, such 

that the samples in the same cluster are 

distributed as densely as possible and those in 

different clusters as sparsely as possible. 

 

4.1. Clustering validity indexes 

 

The clustering validity index (CVI) is a 

quantitative measure of how well a given 

dataset is clustered. In other words, it provides 

a quantitative evaluation of the discrimination 

ability of a given clustering scheme. Ideally, 

this index is responsible for maintaining 

cohesion within-cluster data points and 

separation between cluster centers. This article 

has used the Davies-Bouldin (DB) and Chou-Su 

(CS) clustering validity indices. Generally, 

CVIs are represented by ratios in which the 

numerator indicates the scatter of data points 

within a cluster, and the denominator specifies 

the separation between cluster centers. Thus, 

from an optimization standpoint, each CVI can 

be thought of as a cost function, which may 

minimize the desired level of cohesion among 

data points and the optimal separation distance 

between cluster centers. The scatter of data 

points within the  𝑡ℎ cluster (𝑆𝑖,𝑞) and the 

distance between the  𝑡ℎ and the 𝑗𝑡ℎ cluster 

centers (𝑑𝑖𝑗,𝑡) are determined as:  

 

𝑆𝑖,𝑞 = √
1

 𝑖
∑‖𝑋⃗ − 𝑚⃗⃗⃗𝑖‖2

𝑞

𝑋⃗⃗∈𝐶𝑖

,
𝑞

 (14) 

𝑑𝑖𝑗,𝑡 = √∑|𝑚𝑖,𝑝 −𝑚𝑗,𝑝|
𝑡

𝑑

𝑝=1

𝑡

= ‖𝑚⃗⃗⃗𝑖 − 𝑚⃗⃗⃗𝑗‖𝑡, 

(15) 

 

where 𝑚⃗⃗⃗𝑖 denotes the  𝑡ℎ cluster center; 𝑞,𝑡 ≥
1. The integer 𝑞 specifies the norm type, and  

𝑞 = 2 (or the Euclidean norm) is used in this 

study.  𝑖 represents the number of data samples 

in the  𝑡ℎ cluster 𝐶𝑖.  The DB criterion is defined 

as: 

 

DB =
1

𝐾
∑𝑅𝑖,𝑞𝑡

𝐾

𝑖=1

, (16) 

 

where 

 

𝑅𝑖,𝑞𝑡 = max
𝑗∈𝐾,𝑗≠𝑖 

{
𝑆𝑖,𝑞+𝑆𝑗,𝑞

𝑑𝑖𝑗,𝑡
}. (17)  

 
Fig. 7 delineates the flowchart of the 

APTFPSO- based optimal clustering algorithm 

with the DB validity index for finding an initial, 

random solution with five cluster centroids. As 

can be seen in Fig. 7, first, the setting 

parameters of the algorithm are defined. The 

next step is initialization, where random 

solutions are produced. The cost function is 

then evaluated with respect to the generated 

solutions, and personal and global best 

solutions are specified. The fuzzy inference 

system (FIS) calculates the personal and global 

learning coefficients based on the particles’ 

fitness vectors and a number of iterations. The 

particles’ positions are updated and, then, 

limited. 

Finally, the algorithm goes to the cost function 

evaluation phase until the termination criterion 

(reaching a maximum number of iterations of 

100) is met. In addition to the DB clustering 

validity index, Chou et al. [37] introduced the 

following clustering validity index written in 

Eq. (18).  

 

CS

=

∑ [
1
 𝑖

∑ max
𝑋⃗⃗𝑞∈𝐶𝑖 

{𝑑(𝑋⃗𝑖, 𝑋⃗𝑞)}𝑋⃗⃗𝑖∈𝐶𝑖
]𝐾

𝑖=1

∑ [ min
𝑗∈𝐾,𝑗≠𝑖 

{𝑑(𝑚⃗⃗⃗𝑖, 𝑚⃗⃗⃗𝑞)}]
𝐾
𝑖=1

 
(18) 

 

In this equation, 𝑚⃗⃗⃗𝑖 =
1

𝑁𝑖
∑  ⃗𝑗𝑥𝑗∈𝐶𝑖  is the mean 

value of the data within the  𝑡ℎ cluster 𝐶𝑖. 

Additionally, 𝑑(𝑋⃗𝑖, 𝑋⃗𝑞) denotes the distance 

matrix between data points 𝑋⃗𝑖 and 𝑋⃗𝑞.  It can be 

seen that the minimization of both the DB and 

CS validity indices results in a lower datapoint 

scatter within the cluster and a greater 

separation distance between cluster centers. 
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Chou et al.’s findings [37] revealed that the CS 

is more efficient than other validity indices, 

albeit at a higher computational cost [11, 38]. 

 

4.2. APT-FPSO-based optimal clustering 

 

The adaptive particularly tunable fuzzy particle 

swarm optimization (APT-FPSO) algorithm is a 

novel variant of the PSO algorithm with 

improved exploitation ability [39]. The 

algorithm takes advantage of fuzzy membership 

functions to individually update, at each 

iteration, the global and personal learning 

coefficients [12].  

The parameters of the APT-FPSO algorithm are 

set as follows. The number of population 

individuals and the maximum number of 

iterations are both set to 100. The initial inertia 

weight  of  particles  is  equal  to  one,  but  it  is  

multiplied by a damping factor of 0.99 at the 

end of each iteration. For more detailed 

information on metaheuristic clustering, please 

refer to [40]. 

 

5. Results and discussion 

 

In this work, there are 𝑛 (= 5115), 𝐷 (= 2) 
dimensional data points, and the maximum 

number of clusters 𝑘 = 10. Thus, the position 

of each particle would constitute a 𝑘  𝑘 × 𝑑 =
30 dimensional vector. The first 𝑘 is a floating 

number in the range of [0, 1], and 𝑘 × 𝑑 

corresponds to 𝑘 cluster centers. In other words, 

the position of each particle is a 10×3 matrix in 

which the elements of the third column are 

responsible for the activation of their 

corresponding row (cluster centroids). This 

process is conducted so that for each element 

above 0.5, a corresponding centroid is activated, 

and vice versa [11].

 
Start

Define APT-FPSO setting parameters

(Maximum iterations No., particles No., etc.)

Initialize particles  position

 (produce random solutions)

Evaluate the fitness

Select personal and 

global minimum

Apply limits to the updated 

position of the particles

Termination 

criterion is met ?

End

YES

Normalize 

fitness vector 

of the particles

Update position of the particles
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Fig. 7. APT-FPSO-based optimal clustering for an initial candidate solution. 
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The subsequent computations were performed 

on a laptop computer with Intel® CoreTM2 Duo 

CPU @ 2.50 GHz and 12.00 GB of RAM. It 

took 16.071 and 6602.073 seconds of run time 

to execute the algorithm with the DB and the CS 

validity indexes, respectively. Ezugwu has 

pointed out that it is better to judge 

metaheuristic clustering algorithms based on 

the number of fitness functions they evaluate 

rather than the number of iterations [10].  Table 

3 lists the global best position found by the 

APT-FPSO algorithm with the CS validity 

index, at a global cost of 0.5597. Two cluster 

centroids with coordinates of [0.0047E6, 

3.0597E6] and [0.0059E6, 3.0288E6] are found 

by this algorithm. Accordingly, this position is 

a 10×3 matrix in which the first two columns 

are cluster centers, and the third column 

includes the activation values for each row 

(cluster centers). The activation thresholds 

above 0.5 are bolded, and their corresponding 

cluster centers are activated. 

Fig. 8 depicts the convergence of global best 

cost values versus the number of objective 

functions with the CS index. As is observed, the 

algorithm converges to the global cost of 0.5597 

after evaluating 10100 times of the objective 

function. 

Fig. 9 demonstrates that the obtained dataset 

can be best clustered into two intensive and 

moderate braking clusters.  

However, it is obvious from the figure that the 

algorithm with the CS validity index has 

performed poorly and failed to cluster the 

dataset correctly. Most likely, this is due to the 

high sensitivity of automatic clustering to the 

initial positions of cluster centroids, which 

makes the optimization algorithm prone to 

being trapped in local minima [41]. Repeated 

executions of the APT-FPSO-based algorithm 

with both the CS and DB validity indices have 

revealed that, for this problem, the above-

mentioned flaw can be rectified by using the 

algorithm with the DB index.  

Similarly,  

Table 4 tabulates the global best position found 

by the APT-FPSO-based optimal clustering 

algorithm with the DB validity index. The 

moderate and intensive braking cluster 

centroids are positioned at [3487, 0.0979E6] 

and [3526, 2.485E6], respectively.  

Fig. 10 shows the convergence diagram of 

global best cost values versus the number of 

objective functions evaluated by the APT-

FPSO clustering algorithm with the DB validity 

index.  

 
Table 3. Global best position found by APT-FPSO 

algorithm with CS validity index and fitness value of 

0.559710978219709. 

Cluster centroids (*1e6) 
Activation 

threshold 

0. 001476730455 1. 01798905886 0. 140745 

0. 001956470687 2. 04326686975 0. 382383 

0. 005405112725 1. 63246475301 0. 484018 

0. 003156021945 2. 78071619015 0. 358828 

0. 004001458180 1. 42496190681 0. 224604 

0. 004716198794 3. 05973551743 0. 556690 

0. 004451404928 0. 72963973787 0. 407020 

0. 003316182008 0. 63138054738 0. 354769 

0. 002873009563 1. 69800830197 0. 235816 

0. 005918633118 3. 02880037165 0. 779897 

 

 
Fig. 8. Convergence diagram of the APT-FPSO-

based optimal clustering algorithm with CS validity 

index. 
 

 
Fig. 9. Final results of the APT-FPSO-based optimal 

clustering algorithm with CS validity index. 
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Fig. 10. Convergence diagram of the APT-FPSO-

based optimal clustering algorithm with DB validity 

index. 

 
Fig. 11. Final results of the APT-FPSO-based 

optimal clustering algorithm with DB validity index. 

 

Table 4. Global best position found by APT-FPSO 

algorithm with DB validity index and fitness value 

of 0.378236535796813.  

Cluster centroids (*1e6) 
Activation 

threshold 

0.0041502239 1.20441068818 0.118583 

0.0021449900 1.78058173302 0.257461 

0.0030604892 2.12802088065 0.268538 

0.0035961987 1.32368268307 0.414962 

0.0034868318 0.09790430184 0.703775 

0.0055365881 0.97742164925 0.415209 

0.0047015273 1.81183429066 0.226196 

0.0035263679 2.48543309092 0.687508 

0.0020497855 2.07372070641 0.384973 

0.0055383731 0.79104425001 0.377243 

 

As can be seen, the algorithm converges to the 

global cost of 0.3782 after evaluating 10100 

times the objective function. 

Fig. 11 demonstrates a great improvement in the 

performance of the clustering algorithm with 

the DB validity index. The dataset is partitioned 

into two clusters with the centers given in  

Table 4. 

As for future research works in line with the 

current topic, and for the sake of generalization, 

this research could be replicated based on other 

driving cycles. In that case, a primary driving 

cycle recognition system may have to be used 

first to detect the driving cycle, and then a driver 

behavior recognizer would be exploited. 

Moreover, applications of the internet of things 

[42, 43], cloud computing [44], and vehicle 

communication [45, 46] could be investigated 

to facilitate the acquisition and assessment of 

large-scale brake pressure data generated while 

driving the vehicle. 

 

6. Conclusions 

 

In this paper, an optimal K-means clustering 

strategy was proposed for recognizing a driver’s 

braking behavior in a vehicle subjected to the 

NEDCs. The brake pressure data were 

generated synthetically with the help of two 

closed-loop controlled dynamic models: one for 

the higher-level vehicle longitudinal motion 

and the other for the lower-level brake 

hydraulics. APT-FPSO metaheuristic algorithm 

was used to find the optimal number of clusters 

and the associated cluster centers. It was 

observed that considering the DB validity 

index, the optimization algorithm performs well 

and clusters the brake pressure data into two 

clusters of moderate and intensive braking. The 

results of this research could be reliably used in 

the development of electromechanical brake 

boosters and intelligent driver assistance 

systems. For instance, such a system may be 

used in iBoosters from Bosch to automatically 

adjust the driver’s pedal feel based on his/her 

treatment with the brake pedal.  
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