
 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

Doi: 10.22061/JECEI.2021.7771.432 75

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Parallel Louvain Community Detection Algorithm Based on Dynamic
Thread Assignment on Graphic Processing Unit

M. Mohammadi1, M. Fazlali2,*, M. Hosseinzadeh3

1
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2
Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran,

Iran.
3
Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran,

Iran.

Article Info Abstract

Article History:
Received 06 February 2021
Reviewed 28 March 2021
Revised 12 April 2021
Accepted 17 June 2021

 Background and Objectives: Louvain is a time-consuming community
detection algorithm especially in large-scale networks. Using Graphic
Processing Unit (GPU) in order to calculate modularity sigma, which is a
major processing section in Louvain algorithm, can reduce algorithm
execution time and make it practical for large-scale networks.
Methods: The proposed algorithm Dynamic CUDA Louvain Method (DCLM)
blocks hardware threads dynamically on cores inside GPU. By considering the
properties of GPU, this algorithm allocates the maximal number of
processing cores to each Stream Multi-Processor (SM) as number of threads
in a block. If the number of nodes in the graph is smaller than all physical
cores on GPU, number of threads per block Is equal to the ratio number of
graph nodes over the number of SMs.
Results: The implementation results demonstrated that the proposed
algorithm is able to decrease the run time by 15% in comparison with the
best past method in the large-scale graph.
Conclusion: We have introduced DCLM algorithm based on GPU that
accelerates Louvain community detection algorithm. Dynamic allocation of
threads to each block has a significant effect on the reduction of algorithm
execution time. However, incrementing the number of threads per block
alone does not result to acceleration the speed of calculations.

©2022 JECEI. All rights reserved.

Keywords:
Louvain Algorithm
Community Detection
Modularity
Hardware Thread
CUDA

*
Corresponding Author’s Email

Address:
fazlali@sbu.ac.ir

Introduction
Community detection is one of topics in graph

decomposition and network analysis. It has a significance

role in many research fields such as social sciences,

biology, physics and medical fields. Networks (or Graphs)

are usually classified such that edges inside the group

have a higher density than edges in between the groups.

These important characteristics is called the network

structure and the detection of this groups or clusters is

called community detection [1]. Each community

consists of a number of nodes in graphs that

communicate a lot with each other. Nowadays

community detection is one of the most important fields

in order to comprehend topology and functions in

networks [2]. Clustering of nodes in a graph has been a

popular method to detect communities in a graph.

Although researchers have implemented parallel

algorithms for community detection, it remains time

consuming and computationally intensive in large-scale

networks. This is because communities have different

sizes and the number of communities is usually not

defined [3]. Bigger modularity parameter [4], [5]

http://jecei.sru.ac.ir/
mailto:fazlali@sbu.ac.ir

M. Mohammadi et al.

76 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

indicates there exists a larger number of edges inside

communities in comparison to edges between

communities. It is a parameter and function of a network

that evaluates the quality of the classification of graph to

clusters.

Parallelizing scalable community detection in large

scale graphs with high quality modularity has always

been a challenging topic and maximizing modularity is an

NP-Complete problem [6].

A number of algorithms have been proposed for

untangle community detection in large scale networks

[7], [8]. Most of these algorithms employ maximizing the

modularity as suitable criteria for community detection.

One of this modularity based algorithms is a hierarchical

method called Louvain method that Blondel et al.

proposed in [9]. This algorithm consists of a number of

stages.

At first each node of the graph is considered as a

community in each phase. Up until the time

communities are stable and the maximum modularity is

achieved, the nodes are separately transferred to

neighboring communities. A number of papers have

been presented that parallelize Louvain method [10],

[11], [12], [13], [14], [15], [16].

A Graphic Processing Unit (GPU), having wide

computational parallel capabilities, is an appropriate

select for speeding-up community detection in large-

scale graphs. Compute Unified Device Architecture

(CUDA) is a parallel computing platform

and programming model for Nvidia GPUs. It offers three

levels of programming abstractions: thread, thread

block, and grid. A warp consists of 32 threads ran

together as a working unit in a SIMT manner [17], [18].

 In this research, we propose Dynamic CUDA Louvain

Method (DCLM) in which the number of threads per

block is dynamically calculated and allocated in Louvain

algorithm. By considering the properties of GPU, this

algorithm allocates the maximal number of processing

cores to each Stream Multi-Processor (SM) as number of

threads per block.

However, if the number of nodes in the graph is

smaller than all physical cores on GPU, it allocates the

ratio number of graph nodes over the number of SMs as

number of threads per block. Considering the fact that in

this algorithm the number of threads per block depends

on the number of nodes in the networks, shared

memory per block is adaptively defined. We summarize

the main contributions in this paper as follows:

• Presenting DCLM parallel algorithm based on GPU.

• Calculating the optimal number of threads and

allocating them dynamically to each block.

 DCLM algorithm, calculates the number of required

SMs dynamically to calculate the modularity on

GPU. This results in using less number of threads in

comparison to previous methods and reducing

paralleling overhead.

 The proposed DCLM needs less memory usage

than the previous algorithm.

Implementation results indicates effective paralleling

of Louvain can be achieved by dynamic allocation of the

threads per block to reduce the executing time of the

algorithm.

Background

Here at first we explain Modularity parameter which

is important quality function in Louvain algorithm.

Afterwards Louvain algorithm is clarified. Then, previous

methods on paralleling of Louvain are reviewed.

A. Modularity

In order to evaluate the community structure in a

network, modularity is used as a quality function and

here it is shown as the letter Q. Based on the modularity

criteria, community detection in a graph is done

successfully when a great number of edges exist inside

the communities and smaller number of edges exist in

between communities.

In strategies based on modularity, the goal is to find a

partition in the graph that has the maximum value of Q.

Modularity has a value between -1 and 1. The closer Q

gets to 1 the better the communities are divided but it

never reaches 1. In practice a modularity of Q > 0.3

shows a suitable structure.

Consider Graph G= (V, E) is an undirected graph in

which n=|V| shows the number of nodes and m= |E|

shows the number of edges in the graph. Graph G is

described by matrix . Whenever node i is

linked to node j their corresponding index in the matrix

equals one, otherwise it equals zero. Also Ki is the degree

of node i. Modularity of the partitioning C= {C1, C2, …CL}

of graph G is calculated by (1) [19].

∑ (

)

 (1)

If node i and node j exist in the same community the

value of equals one, otherwise it equals zero.

Discovering the maximum value of Q is a NP-hard

problem. Therefore, a heuristic solution that

concurrently guarantees scalability and reasonable

calculation costs is needed.

In community detection algorithms usually it is

considered the edges are undirected and it is presumed

that the graph is undirected.

This results in a significant improvement in

partitioning the system. Until now different methods

have been presented for maximizing the value of

modularity [20]. Guo et al. developed a family of

generalized modularity measure, f-Modularity, which

includes the original modularity as a special case [21].

https://en.wikipedia.org/wiki/Parallel_computing

Parallelizing Louvain Community Detection Algorithm Based on Dynamic Threads Assignment on Graphic Processing Unit

J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 77

One of the most famous algorithms is a greedy

algorithm that was presented by Newman and Girvan

[4]. This algorithm starts by putting each node in a

separate community. At the start of this algorithm all

nodes are communities connected by edges. By adding

the edges one by one the communities that exists on the

two sides of the edges are merged if it results in an

increase in modularity. If by adding, an edge a merge

does not happen between the communities, that edge is

an inner edge of the community. Therefore, the

modularity is not changed. The number of the divisions

found in the process equals the number of nodes. Each

of this divisions have a specific modularity. After adding

the edges, the division that has the largest modularity is

chosen as the output.

B. Louvain Community Detection Method

Between community detection methods based on

modularity, Blondel et al. [9] presented a heuristic

method called Louvain that has a lower time complexity.

This algorithm includes two phases and they are

repeated iteratively. In starting, each node in graph is

assumed as a community.

Therefore, a high number of communities exists in the

first partitioning. Then for every node i all of its j

neighbors are considered and modularity is computed. If

modularity increases node i is added to its neighbor j,

otherwise it remains as an initial community.

This process is reiterated consecutively for the nodes

in graph until no extra increase on modularity is

achieved.

In the seconds phase new communities are created

from the communities in the first phase. In this phase

each community is considered as a super node and the

inner edge’s weights of the super node is demonstrated

as a loop. In addition, the weight of the communication

edge between each super node to its neighboring super

node (outer edge) equals to the weights of the node’s

edges to its neighboring super node. After the

completion of the second phase, the algorithm may be

repeated again.

The effectiveness of the algorithm arises from the fact

that the benefit of the modularity is obtained from

the transition of node i into community C which is

demonstrated in (2):

 [
∑

 (
∑

)

]

 [
∑

 (
∑

)

 (

)

]

(2)

 In (2) ∑ is the total of the weight for the internal

edges of community C also ∑ is the total of the weight

for all the edges that have one end to community C. is

the total of the weights for the edges that enter node i

and is the total of the weight of the edges which

exist from node i to inner nodes of the community C. m

is the sum of the weights for all edges inside the graph.

The next phase consists of creating a new graph that

nodes are the created communities in the previous

phase. In order to perform so the weight of the edges in

between the new nodes are created from the weight of

the edges between the two communities. The edges

between nodes from the same community result to

loops in that community in the new graph. Afterwards

the finishing the second phase, again the first phase is

applied to the weighted graph and this operation is to be

iterated.

Related Work on the Paralleling of Louvain

Community Detection Method

Decomposition and analysis of large-scale graphs by

Louvain algorithm needs a powerful machine. This is

commonly costly and is not affordable. hence,

researchers have tried to speed up the algorithm

exploiting parallel platforms.

Meyerhenke and Stuadt [11] have proposed an

algorithm named Parallel Louvain Method (PLM) based

on OpenMp using label propagation in which the

transition of nodes in the Louvain is performed in

parallel. In [22] researchers have presented a framework

which benefits from the overlapping of shared memory

called Ensemble Preprocessing (EPP) for community

detection. In this framework Parallel Label Propagation

(PLP), which was presented by Raghavan et al. [23], used

as the basis algorithm. Parallel Louvain Method with

Refinement (PLMR) [22] adds a reformation to each level

of Louvain to increase the modularity but it slightly

increased the algorithm execution time.

To reduce the time of the first round of the Louvain

method, Carnivali et al. [24], proposed a Coarse-Grained

Vertex Clustering (CoVeC) method. CoVeC pre-process

the original graph in order to forward a graph of reduced

size to the Louvain method. According to their

evaluation, CoVeC outperforms the Louvain method and

its variations, attaining a mean execution time reduction

of 47% and a mean modularity reduction of only 0.4%.

 In [25] Que et al. proposed an algorithm for

paralleling of Louvain that improves convergence,

modularity and quality of the detected communities. The

main aspect of this algorithm is a general strategy for

coordination of transfer of vertices to neighbor

communities using the adaptive threshold that is

executed exponentially in each iteration of the inner

loop.

In [26] Zeng and Yu proposed a graph clustering

framework for Louvain algorithms based on an

asynchronous approach. Also in [27], a Gradient Descent

M. Mohammadi et al.

78 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

framework of modularity optimization called vector-

label propagation algorithm (VLPA), where a node is

associated with a vector of continuous community labels

instead of one label, have been proposed.

In [28] Sarmento has tried to apply a density

optimization of communities found by the label

propagation algorithm and has investigated what

happens regarding modularity of optimized results. He

introduced a metric called Average Density per

Community (ADC).

Also a novel model, named Modularized Deep Non

Negative Matrix Factorization (MDNMF) for community

detection, which preserves both the topology

information and the instinct community structure

properties of the community, has been proposed in [29].

In our previous research [10] we have utilized a

course-grained paralleling method in order to accelerate

Louvain algorithm on multicore systems.

This method uses a processing thread in order to

compute the modularity for each neighbor node in the

graph. Then, we proposed a parallel algorithm at thread

level in [14], for accelerating Louvain algorithm on

multicore systems.

This method assigns threads adaptively in parallel to

compute the modularity of adding eligible neighbor

nodes to the community.

The algorithm finds the idle cores and obtains the

appropriate number of threads to calculate the sigma in

the modularity formula. This results in improving speed-

up in comparison to previous methods while the quality

of the resulted modularity remains approximately the

same.

Cheong et al. presented the GPU-based parallelized

Louvain algorithm in [12]. It uses three levels of

paralleling in Louvain algorithm and uses Single-GPU and

Multiple-GPU platforms.

Evaluating the method in [12] on multiple large web

based graphs and popular social networks show that it is

able to speed up community detection however it leads

to 3% decrement in the quality of the community

detection. SOURAVLAS et al. [30] presented an extension

of threaded binary tree approach for community

detection. They share the computational load between

the two units: the CPU takes specific samples of the

network communities and organizes them in the form of

threaded binary trees. The GPU takes over the heavy

load of reading this data and transforming it into a path-

matrix. Finally, this matrix is sent back to the CPU for

analysis, community detection and overlaps, as well as

network information upgrades.

 Shoa et al. [31], suggested the attractor technique

which uses distance metric instead of similarity.

However, the suggested technique is slower than

Louvain method. Zhu et al. proposed a new central node

indicator and a new modularity function in [32]. Authors

firstly suggested a new local centrality indicator (LCI) to

extract local important nodes that are well distinguished

from their neighbors. Then, they proposed a new local

modularity function F2. F2 can overcome certain

problems of other modularity functions such as the

resolution limit problem. In [33] Guti´errez et al.

proposed a modification of Louvain algorithm, which

allows to take into account some additional information

about affinity among nodes when detecting

communities. This additional information is defined by a

fuzzy measure, μ, which is aggregated to the weight of

the classical relations among nodes when optimizing the

modularity of the clusters throughout the algorithm.

In [34] Miasnikof, et al. have described a new set of

statistically rooted clustering quality measures that allow

formal clustering quality assessments and comparisons

of clustering algorithm performances. Their measures

are shown to be more robust than the commonly used

modularity and conductance. In [35], Jin et al. have

proposed a new MRF approach, namely ModMRF, to

formalize modularity as the energy function for

community detection in undirected static networks.

ModMRF has reduced the time complexity to a nearly

linear case.

In [36] a distributed scalable community detection

method was presented by Konstantinos et al., that is

according to the combination of the characteristics of

the topology of graph. In [37] Palacio-Nino and Berzal

have advocated for the use of the local network

structural properties employed by local link prediction

methods in hierarchical community detection. Mahabadi

and Hosseini [38] presented an online parallel

overlapping community detection approach based on a

speaker-listener propagation algorithm by proposing a

novel parallel algorithm and applying three new metrics.

This approach is presented to improve modularity and

expand scalability for getting a significantly speedup in

low time-consuming and usage memory through an

agent-based parallel implementation in a multi-core

architecture. But this algorithm is the overlapping

method which is different from Louvain which is non-

overlapped method.

Naim et al. [39], suggested a GPU-based Louvain

algorithm. It works on load balancing by scaling the

number of threads assigned to each node, according to

node’s degree. In the first phase of the algorithm, it

partitions the nodes to subsets based on their degrees.

Then the algorithm computes and updates the

destination community of each vertex by using a various

number of threads per node for the set. The defect of

this method is high memory usage. Here we have tried

to do this by presenting a new parallel Louvain

algorithm. Hence, we presented Adaptive CUDA Louvain

https://scholar.google.com/citations?user=4VejZpUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=7htCi8YAAAAJ&hl=en&oi=sra

Parallelizing Louvain Community Detection Algorithm Based on Dynamic Threads Assignment on Graphic Processing Unit

J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 79

Method (ACLM) [40], which employs GPU to accelerate

Louvain method. ACLM algorithm computes the

modularity sigma from by adding a community with the

neighbor nodes in parallel, in a fine-grained way, by

CUDA cores on GPU. This can reduce the overhead of

paralleling and speed up the computation of modularity.

ACLM assigns threads per block according to the

number of SMs and warps needed to calculate

modularity. This algorithm, computes the number of

needed SMs before assigning hardware threads. This is

because processing time of the warps is fast. Therefore,

ACLM obtains the number of thread in the block

according to the multiplication of warps. This result of

executing ACLM on various web-based graphs

demonstrates which it can successfully accelerate

algorithm execution time up to 77% in comparison to the

past paralleling of Louvain method in the large graph

benchmarks.

The Proposed Dynamic CUDA Louvain Method

Algorithm

In order to accelerate Louvain community detection

method, we propose DCLM algorithm, which employs

CPU and GPU on the computational heterologous

processing platform. It calculates the modularity of

graph using cores in GPU. Efficient allocation of threads

per block to compute modularity sigma in this algorithm

can decrease the algorithm run time.

A. Investigating the Number of Neighbors for Vertices in
Each Pass of the DCLM Algorithm

Blocking and assigning the desired number of threads

per block leads to an effectual decrement in the run time

of the DCLM algorithm to find communities. Increasing

the number of threads per block may not increase the

speed of the algorithm.

In each phase of the Louvain algorithm, the

communities are formed randomly. Before running the

algorithm, it is not possible to accurately predict how

many processing threads should be assigned to each

block to obtain the best result.

I dynamically based on the multiplication of warps

and considering the maximum number of CUDA cores.

On the NVIDIA Tesla K20Xm graphics card, each SM has

192 CUDA hardware cores, every block has the

maximum number of 1024 threads, and the warps have

32 threads.

Therefore, we categorized the number of graph

vertices in each pass of the DCLM algorithm according to

the number of their neighbors and extracted the graph

vertex statistics. Fig. 1 and Fig. 2 show the number of

graph vertices that have 0 to 32, 33 to 192, 193 to 1024

and more than 1024 neighbors in the smallest graph and

the largest graph, respectively.

As Fig. 1 shows, in CNR-2000 benchmark, the first

three passes have a major number of graph nodes, and

most nodes have 0 to 32 neighbors. In subsequent

passes, although the number of vertices with 0 to 32

neighbors is low, the number of graph vertices is much

less than the initial passes. In this benchmark, there are

a total number of 349951 nodes in the total number of

passes in DCLM algorithm. 85.4% of vertices have up to

32 neighbors, 12.5% have 33 to 192 neighbors, 1.5%

have 193 to 1024 neighbors and 0.6% have more than

1024 neighbors.

Fig. 2 shows the number of graph vertices based on

the number of neighbors in 8 passes for the large Cage-

15 benchmark. In all passes of the algorithm, the vertices

have more than 0 to 32 neighbors. In this benchmark,

there are 394,303,332 vertices in all passes in DCLM

algorithm, of which 82.9% have up to 32 neighbors, 7%

have 33 to 192 neighbors, 5.5% have 193 to 1,024

neighbors, and 4.6% have more than 1,024 neighbors.

B. Dynamic CUDA Louvain Method (DCLM)

In DCLM algorithm, the modularity of the network is

computed using cores in a fine-grained manner and

threads execute the items in the modularity sigma in

parallel manner. This algorithm usages the base

modularity in (3) [41].

 ∑

 (3)

In (3) i is the indicator of a supernode. Modularity for

each supernode equals
 . is the ratio of the

number of edges that connect the inner nodes of the

community i over all the edges of the graph with random

distribution.

In other words, it equals the number of internal edges

of the supernode i. We consider to be half of the ratio

of edges which link the nodes of community i with

community j. Therefore ∑ equals the ratio of

the number of edges which have at least one node in

community i over all the edges of the graph with random

distribution. To be more clear equals the number of

outer edges of supernode i.

The calculation of the resulted modularity of merging

two neighbor nodes is done using cores available in SMs

on GPU and other calculations are done sequentially on

the CPU.

 According to the number of cores in the graphics card

of the system, which is divided on the SMs and operates

in parallel, the maximum number of threads per block is

defined as the same number of processing cores of each

SM. Although each block can have more threads but

each SM can process the block in parallel at the same

time as the same number of its processing cores.

Therefore, it would be better to use the maximum cores

of all SMs at the same time.

 If the number of nodes in the graph is more than all

M. Mohammadi et al.

80 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

the physical cores of the graphics card of the system, the

computation of the items of the modularity sigma is

performed concurrently using the cores in SMs. In this

situation we propound the maximum number of threads

in the block to be equal to the maximum number of

cores in each SM. If the number of nodes is less than the

number of cores, we allocate the threads to each block

in proportion to the number of nodes over the number

of SMs.

In DCLM algorithm, all threads are divided to blocks

and in each block there exists a shared memory between

the threads of the block. Threads in the block can use

data inside the shared memory or store their calculation

results inside it.

Considering the fact that the number of threads vary

adaptively in this algorithm, we define the shared

memory adaptively.

This results in an optimal usage of the shared

memory. When calculating the modularity, we consider

the graph to be compromised of super nodes. We have

the total of the weights of the self-loops of any

supernode in vector in and the total of the weights of all

edges of each supernode in vector total_weighted. In

fact vector in equals ∑ and vector total_weighted

equals ∑

 .

Algorithms 1 and 2 demonstrate the stages of DCLM

algorithm.

In algorithm 1, on line 3, total of weights for all edges

at graph is stored into g.total_weight variable. On line 6,

degree of node i is stored in size variable. On line 7, total

of weights for internal edges of each neighbor node is

stored in vector in.

On line 8, total of weight of outer edges of each

neighbor node is stored in total_weighted vector. The

number of SMs required is specified in line 11. On lines

12 and 13 the number of threads per block and on line

14 number of blocks per grid are set. The size of shared

memory is determined in line 15. After that in the

second algorithm, modularity is calculated in parallel

using GPU cores.

In algorithm 2, CUDA kernel is called by input

parameters and on line 9, items of modularity sigma are

computed. Then computing the modularity by threads in

block, on line 13 threads are synced and on line 14 total

of the amount of computed modularity in blocks is saved

in quality vector. Afterwards the quality vector is sent to

CPU.

On line 2 of algorithm 2, the calculated modularity

value in an SM is achieved by dividing the total of

computed modularity amounts in blocks (quality vector)

over the total of weights of all edges of the graph

(g.total_weight). Then modularity of supernode vi is

obtained by adding the computed modularity amounts

in SMs. In Continue algorithm 1 (lines 18 onwards), if the

modularity increases, node i is attached to the j

community. This action is done frequently and

consecutively for all nodes until no further

improvements can be made.

Algorithm 1: DCLM G(V, E)

1: repeat
2: NC ← G
3: g.total_weight ← Total of the weights of all the

connections in the NC
4: for all nodes in NC do
5: Choose a random vi
6: size ← Degree (vi)
7: in *+ ← self-loops of each neighbor's j of node i
8: total_weighted [] ← weighted degree of each

neighbor's j of node i
9: //NVIDIA

Tesla K20Xm architecture has 14 SMs
10: //NVIDIA

Tesla K20Xm architecture has 192 cores in each
SM

11: { ⌈

⌉}

 // number of streams (needed SMs)

12:

13: {

14: ⌈

⌉

15:
16: while true do
17: modnew ← Compute Modularity ()
18: if modnew < = modcurrent then
19: break
20: end if
21: modcurrent ← modnew
22: G ← new input graph
23: end while
24: end for
25: until No improvement of modularity

Algorithm 2: Compute Modularity (Inputs)

Inputs:
blocksPerGrid: // Number of blocks per grid.
threadsPerBlock: // Number of threads per block.
sharedMemSize: // Size of shared memory.
streams: // Vector of needed SMs
total_weighted: // Vector of the weighted

degree of any vj {(vi, vj) E}.

in: // Vector of self loops of any vj

{(vi, vj) E}.
g.total_weight: // Total of the weights of all the

connections in NC.

Parallelizing Louvain Community Detection Algorithm Based on Dynamic Threads Assignment on Graphic Processing Unit

J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 81

quality: // Vector of Modularity sections.
size: // Degree of vi.
stream_number: // number of streams (needed

SMs)
Output:

Resulting Modularity

1: Modularity Kernel <<<blocksPerGrid,
threadsPerBlock, sharedMemSize,
streams[stream_number]>>> (total_weighted,
in, g.total_weight, quality, size,
stream_number);

2: Modularity _Value_SM ← sum of quality vector /
g.total_weight;

 // The Modularity_Value_SM variable includes
the calculated modularity values in an SM.

3: Resulting Modularity ← Total of the computed
modularity amounts in SMs.

4: return Resulting Modularity

In Modularity Kernel:
5. for each neighbor j of node i
6: tid = threadIdx + blockIdx*blockDim
 // The amounts of the variables "threadIdx",

"blockIdx", "blockDim" and "gridDim" come
from input parameters "threadsPerBlock” and
"blocksPerGrid”.

7: extern __shared__ float cache []
8: while (tid < size) do
9: temp += in[tid] - (total_weighted [tid] ×

total_weighted [tid]) / g.total_weight
10: tid += blockDim*gridDim
11: end while
12: cache[threadIdx] = temp
13: syncthreads ()
 // This call assurances that each thread in the

block has perfected commands. Prior to
__syncthreads() before the hardware will run
the next command on every threads.

14: atomicAdd (&quality[stream_number], cache);
 // Sum of values in cache vector is stored in

quality vector.
15: return quality

Results and Discussion

We compared our proposed algorithm with four of

the parallel techniques for Louvain community detection

algorithm.

The first one is PLM [22] that computes the

modularity in parallel. The second one is APLM [14] in

which allocates the appropriate number of execution

threads on CPU and calculate modularity of each two

neighbor communities adaptively. The third one is NAIM,

a previous GPU-based Louvain method presented in [39].

The last algorithm is ACLM [40] that uses the shared

memory on GPU, as well as the optimal number of

threads on GPU blocks. Table 1 and Table 2

demonstrates the specifications of our implementation

platforms that we ran all the algorithms.

We utilized CUDA in order to run DCLM, ACLM, and

NAIM algorithms in the GPU and nvcc compiler was used

for compiling the codes. Nvidia’s latest CUDA enables a

diversity of synchronization techniques. The

specifications current version of CUDA (10.0) is described

in [17].

For compare our results with APLM and PLM

algorithms these algorithms were executed on CPU by

using gcc compiler version 4.8.2 on Platform 1 and using

gcc compiler version 7.4.0 on Platform 2. The algorithms

are implemented with C++. Large graphs of the real

world include heterogeneous data that leads to the fact

that selecting an ideal sample data and popularizing it to

be infeasible. We have used four benchmarks that

particularities are offered in Table 3. The graphs have

various sizes from small size similar to CNR-2000 to scale

graphs same as Cage-15.

CNR-2000 benchmark is a small crawl for

Italian CNR domain, mainly useful for debugging and

testing purposes. EU-2005 benchmark is a small crawl of

the .eu zone.

This graph displays a very low locality, perhaps

because the crawl was small and the elected domain is

dummy howsoever. IN-2004 benchmark is a small crawl

for .in area performed for the Nagaoka University of

Technology. Cage-15 graph is the DNA electrophoresis,

15 monomers in polymer. A. van Heukelum, Utrecht U.

A. Comparison of Algorithm Execution Times

Here for a fair comparison, we selected those related

works that employ paralleling to accelerate the Louvain

method. We compare our proposed DCLM algorithm

with the parallel Louvain algorithms based on algorithm

execution time.

Parallel Louvain Method (PLM) and Adaptive Parallel

Louvain Method (APLM) are the fastest parallel Louvain

method that use multicore system. The previous GPU

implementation of Louvain was proposed in [39] (NAIM).

ACLM an Adaptive CUDA Louvain Method algorithm

which profits from the graphic processing unit. The

execution times of DCLM, ACLM, PLM, APLM, and NAIM

algorithms on the Platform 1 are demonstrated in Table

4 and running times on Platform 2 are demonstrated in

Table 5.

With attention the results presented in Table 4, run

time of the DCLM algorithm by using 2688 processing

cores in platform 1 is better than other algorithms.

Reduction in the run time of this algorithm in

comparison to PLM is 97% in CNR-2000, 92% in EU-2005

and 89% in IN-2004 and 81% in Cage-15. As well as the

reduction in run time of DCLM in comparison to APLM

M. Mohammadi et al.

82 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

are 40% in CNR-2000, 43% in EU-2005, 30% in IN-2004

and 31% in Cage-15. The results indicate that the

paralleling overhead of using GPU in DCLM algorithm is

proper and it defeats the implementations of multicore

platforms.

However, NAIM algorithm cannot overcome

multicore implementation effectively for benchmarks.

The main reason behind this is the communication

overhead of GPU platform.

 The run time of DCLM algorithm in evaluation to

NAIM algorithm is better 78% in CNR-2000, 79% in EU-

2005, 51% in IN-2004 and 46% in Cage-15. This

demonstrates the DCLM algorithm is better than NAIM

algorithm.

The reason is adaptively assign of the cores on GPU to

threads in our algorithm.

DCLM algorithm running time is reduced by 10% in

the CNR-2000 and EU-2005 benchmarks, by 11% in the

IN-2004 and by 15% in the Cage-15 compared to the

ACLM algorithm.

With attention, the results presented in Table 5, the

run time of the GPU-based implementations are better

than multicore implementation for all benchmarks. This

demonstrates that utilizing GPU to speed up Louvain

community detection is suitable manner in modern GPU

platforms.

The proposed DCLM algorithm outperform NAIM

algorithm for all benchmarks. Although dynamic thread

creation in the proposed method has extra overhead, it

can have a better load balancing in comparison to the

previous (especially NAIM) methods. We could not run

the NAIM algorithm on platform 2 for Cage-15

benchmark because of its memory usage in the biggest

graph.

Nevertheless, the DCLM algorithm can execute and

end the program on the platform. Again it shows that

the proposed DCLM algorithm needs less memory usage

than the NAIM algorithm in Cage-15 benchmark. Again

this demonstrates the effectiveness of dynamically

allocating cores in SMs to the threads. The running time

of the DCLM algorithm in CNR-2000 12%, in the EU-2005

11%, in the IN-2004 14% and in the Cage-15 15% is less

than ACLM algorithm.

B. Comparison of modularity

While DCLM algorithm leads to acceleration of

Louvain method, Table 6 and Table 7 demonstrate that

the modularity values that are achieved from running

this algorithm is comparable and near the same as the

results of other algorithms.

Generally, these algorithms are very resisting to

changes in modularity and random communities that are

achieved have a similar modularity.

Conclusion

In this paper, we have suggested DCLM algorithm

based on GPU, which accelerates Louvain method. In

DCLM algorithm, by using a heterogeneous CUDA

calculation model and benefiting from the processing

cores of GPU, calculation of the modularity resulted from

merging two neighbor communities is done in parallel.

By optimal usage of the shared memory inside blocks,

DCLM algorithm allocates the optimal number of

processing cores in SM as number of threads per block.

 The evaluation results on a number of large scale

web based graphs demonstrates that the proposed

algorithm reduces the execution time up to 15% in

comparison to the best previous parallel

implementations of Louvain method. The results also

demonstrate that dynamic allocation of the number of

threads to each block has a notable result on the

reduction of execution time of the algorithm, but

incrementing the number of threads per block alone

does not result to acceleration the calculations.

Author Contributions
M. Mohammadi carried out the design and

implementation of the algorithm and wrote the

manuscript. M. Fazlali and M. Hosseinzadeh explicate

the outcomes and contributed to edit the manuscript.

Acknowledgment

We thank the editor and all anonymous reviewers.

Conflict of Interest

The author declares that there is no conflict of

interests regarding the publication of this manuscript. In

addition, the ethical issues, including plagiarism,

informed consent, misconduct, data fabrication and/or

falsification, double publication and/or submission, and

redundancy have been completely observed by the

authors.

Abbreviations

CUDA Compute Unified Device Architecture

SM Stream Multi-Processor

DCLM Dynamic CUDA Louvain Method

ACLM Adaptive CUDA Louvain Method

APLM Adaptive Parallel Louvain Method

PLM Parallel Louvain Method

PLMR Parallel Louvain Method with Refinement

PLP Parallel Label Propagation

EPP Ensemble Preprocessing

Parallelizing Louvain Community Detection Algorithm Based on Dynamic Threads Assignment on Graphic Processing Unit

J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 83

Fig. 1: Classify the number of neighbors of nodes in the CNR-2000 benchmark.

M. Mohammadi et al.

84 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

Fig. 2: Classify the number of neighbors of nodes in the Cage-15 benchmark.

Parallelizing Louvain Community Detection Algorithm Based on Dynamic Threads Assignment on Graphic Processing Unit

J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 85

Table 3: Characteristics of the benchmark graphs

Specifications / Benchmark CNR-2000 EU-2005 IN-2004 Cage-15

number of Nodes 325557 862664 1382908 5154859

number of Links 2,738,969 16,138,468 13591473 47022346

average degree 9.879 22.297 12.233 18.24

maximum in degree 18235 68922 21866 46

maximum out degree 2716 6985 7753 -

Table 1: Platform 1 for examinations

Machine Specifications

CPU AMD Opteron(tm) Processor 6344

GPU NVIDIA Tesla K20Xm

RAM 128 GB

OS Linux: CentOS release 6.3 (Final)

Compiler
- nvcc: NVIDIA (R) CUDA compiler driver

- gcc 4.8.2

CUDA compilation tools release 6.5, V6.5.12

Table 2: Platform 2 for examinations

device specifications

CPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

GPU Nvidia Geforce GTX 1080 ti

RAM 64 GB

OS Linux: Ubuntu server 18.04 LTS

Compiler
- nvcc: NVIDIA (R) CUDA compiler driver

- gcc version 7.4.0

CUDA compilation tools release 10.0, V10.0.130

M. Mohammadi et al.

86 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

Table 4: Execution time (Second) in platform 1

benchmarks / Algorithms PLM APLM NAIM ACLM DCLM

CNR-2000 2.74 0.15 0.4 0.10 0.09

EU-2005 3.69 0.49 1.32 0.31 0.28

IN-2004 3.71 0.60 0.95 0.47 0.42

Cage-15 36.88 10.17 13.1 8.32 7.07

Table 5: Execution time (Second) in platform 2

benchmarks / Algorithms PLM APLM NAIM ACLM DCLM

CNR-2000 0.78 0.12 0.11 0.09 0.079

EU-2005 2.1 0.36 0.34 0.28 0.25

IN-2004 1.65 0.49 0.42 0.36 0.31

Cage-15 14.52 9.14 --- 8.01 6.79

Table 6: Modularity in platform 1

benchmarks /
Algorithms

PLM APLM NAIM ACLM DCLM

CNR-2000 0.912728 0.912667 0.912909 0.912807 0.912807

EU-2005 0.938786 0.937441 0.936152 0.937365 0.937365

IN-2004 0.98031 0.980058 0.978909 0.979802 0.979802

Cage-15 0.893829 0.866638 0.850144 0.866638 0.866638

Table 7: Modularity in Platform 2

benchmarks /
Algorithms

PLM APLM NAIM ACLM DCLM

CNR-2000 0.912812 0.912667 0.912909 0.912807 0.912807

EU-2005 0.938533 0.937441 0.936152 0.937365 0.937365

IN-2004 0.980364 0.980058 0.978909 0.979802 0.979802

Cage-15 0.893814 0.866638 --- 0.866638 0.866638

Parallelizing Louvain Community Detection Algorithm Based on Dynamic Threads Assignment on Graphic Processing Unit

J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 87

References

[1] M. Guendouz, A. Amine, R. M. Hamou, "Discrete modified
fireworks algorithm for community detection in complex
networks," Appl. Intell., 46: 373–385, 2017.

[2] D. Sudhakaran, S. Renjith, "Survey of community detection
algorithms to identify the best community in real-time networks,"
Int. J. Sci. Eng. Appl. Sci., (IJSEAS), 2: 529-533, 2016.

[3] S. Fortunato, "Community detection in graphs," Phys. Rep., 486:
75-174, 2010.

[4] M.E.J. Newman, M. Girvan, "Finding and evaluating community
structure in networks," Phys. Rev. E, 69: 026113, 2004.

[5] A. Clauset, M.E.J. Newman, C. Moore, "Finding community
structure in very large networks," Phys. Rev. E, 70: 066111, 2004.

[6] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z.
Nikoloski, D. Wagner, "On modularity clustering," IEEE Trans.
Knowl. Data Eng., 20: 172-188, 2008.

[7] M. Faysal, S. Arifuzzaman, "Distributed community detection in
large networks using an information-theoretic approach," in Proc.
2019 IEEE International Conference on Big Data (Big Data): 4773-
4782, 2019.

[8] Q. Ni, J. Guo, W. Wu, C. Huang, "Continuous inuence-based
community partition for social networks," arXiv:2002.08554v1
[cs.SI] 20 Feb 2020, 2020.

[9] V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, "Fast
unfolding of communities in large networks," J. Stat. Mech., 10:
P10008, 2008.

[10] E. Moradi, M. Fazlali, H. Tabatabaee Malazi, "Fast parallel
community detection algorithm based on modularity," in proc.
2015 18th CSI International Symposium on Computer
Architecture and Digital Systems (CADS), IEEE, 2015.

[11] C.L. Staudt, H. Meyerhenke, "Engineering parallel algorithms for
community detection in massive networks," in proc. 42nd
International Conference on Parallel Processing, 2013.

[12] C.Y. Cheong, H.P. Huynh, D. Lo, R.S.M. Goh, "Hierarchical parallel
algorithm for modularity-based community detection using
GPUs," in proc. 19th International Conference on Parallel
Processing, Euro-Par’13: 775–787, 2013.

[13] H. Lu, M. Halappanavar, A. Kalyanaraman, "Parallel heuristics for
scalable community detection," Parallel Comput., 47: 9–37, 2015.

[14] M. Fazlali, E. Moradi, H. Tabatabaee Malazi, "Adaptive parallel
Louvain community detection on a multicore platform,"
Microprocess. Microsyst., 54: 26–34, 2017.

[15] J. Zeng, H. Yu, "A scalable distributed louvain algorithm for large-
scale graph community detection," in proc. 2018 IEEE
International Conference on Cluster Computing (CLUSTER), 2018.

[16] R. Forster, "Louvain community detection with parallel heuristics
on GPUs," presented at the IEEE 20th Jubilee International
Conference on Intelligent Engineering Systems (INES), Budapest,

 Hungary, 2016.

[17] L. Zhang, M. Wahib, H. Zhang, S. Matsuoka, "A study of single and
multi-device ynchronization methods in nvidia GPUs," in proc.
IEEE International Parallel & Distributed Processing Symposium
2020.

[18] Y. Wang, M. Guo, Y. Zhao, J. Jiang, "GPUs‑RRTMG_LW: high-
efficient and scalable computing for a longwave radiative transfer
model on multiple GPUs," J. Supercomput. 77: 4698–4717, 2020.

[19] M.E.J. Newman, "Modularity and community structure in
networks," in proc. Natl. Acad. Sci, 103: 8577–8582, 2006.

[20] D. LaSalle, G. Karypis, "Multi-threaded modularity based graph
clustering using the multilevel paradigm," J. Parallel Distrib.
Comput., 76: 66-80, 2015.

[21] Y. Guo, Z. Huang, Y. Kong, Q. Wang, "Modularity and mutual
information in networks: two sides of the same coin," arXiv
preprint arXiv:2103.02542, 2021.

[22] C.L. Staudt, H. Meyerhenke, "Engineering parallel algorithms for
community detection in massive networks," IEEE Trans. Parallel
Distrib. Syst., 27: 171–184, 2016.

[23] U.N. Raghavan, R. Albert, S. Kumara, "Near linear time algorithm
to detect community structures in large-scale networks," Phys.
Rev. E, 76: 036106, 2007.

[24] G.S. Carnivali, A.B. Vieira, A. Ziviani, P.A.A. Esquef, "CoVeC:
Coarse-Grained vertex clustering for efficient community
detection in sparse complex networks," Inf. Sci., 522: 180-192,
2020.

[25] X. Que, F. Checconi, F. Petrini, J. Gunnels, "Scalable community
detection with louvain algorithm," in proc. 2015 IEEE 29th
International Parallel and Distributed Processing Symposium,
2015.

[26] J. Zeng, H. Yu, "Effectively unified optimization for large-scale
graph community detection," in proc. 2019 IEEE International
Conference on Big Data (Big Data): 475-482, 2019.

[27] W. Fang, X. Wang, L. Liu, Z. Wu, S. Tang, Z. Zheng, "Community
detection through vector-label propagation algorithms," arXiv
preprint arXiv:2011.08342, 2020.

[28] R.P. Sarmento, "Density-based community
detection/optimization" arXiv preprint arXiv: 1904.12593, 2019.

[29] J. Huang, T. Zhang, W. Yu, J. Zhu, E. Cai, "Community
detection based on modularized deep nonnegative matrix
factorization," Int. J. Pattern Recognit Artif Intell., 35(2):
21590061-215900617, 2020.

[30] S. Souravlas, A. Sifaleras, S. Katsavounis, "Hybrid CPU-GPU
community detection in weighted networks," IEEE Access, 8:
57527 – 57551, 2020.

[31] J. Shao, Z. Han, Q. Yang, T. Zhou, "Community detection based on
distance dynamics," in proc. 21th ACM SIGKDD international
conference on knowledge discovery and data mining. New York:
ACM: 1075-1084, 2015.

https://doi.org/10.1007/s10489-016-0840-9
https://doi.org/10.1007/s10489-016-0840-9
https://doi.org/10.1007/s10489-016-0840-9
https://doi.org/10.1007/s10489-016-0840-9
https://www.semanticscholar.org/paper/Survey-of-Community-Detection-Algorithms-to-the-in-Dhanya-Renjith/e49401707d6e971e918357a1b53205b093d7394b
https://www.semanticscholar.org/paper/Survey-of-Community-Detection-Algorithms-to-the-in-Dhanya-Renjith/e49401707d6e971e918357a1b53205b093d7394b
https://www.semanticscholar.org/paper/Survey-of-Community-Detection-Algorithms-to-the-in-Dhanya-Renjith/e49401707d6e971e918357a1b53205b093d7394b
https://www.semanticscholar.org/paper/Survey-of-Community-Detection-Algorithms-to-the-in-Dhanya-Renjith/e49401707d6e971e918357a1b53205b093d7394b
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://arxiv.org/abs/cond-mat/0308217v1
https://arxiv.org/abs/cond-mat/0308217v1
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
https://ieeexplore.ieee.org/document/4358966
https://ieeexplore.ieee.org/document/4358966
https://ieeexplore.ieee.org/document/4358966
https://ieeexplore.ieee.org/document/4358966
https://ieeexplore.ieee.org/document/9005562
https://ieeexplore.ieee.org/document/9005562
https://ieeexplore.ieee.org/document/9005562
https://ieeexplore.ieee.org/document/9005562
https://arxiv.org/abs/2002.08554
https://arxiv.org/abs/2002.08554
https://arxiv.org/abs/2002.08554
https://arxiv.org/abs/0803.0476
https://arxiv.org/abs/0803.0476
https://arxiv.org/abs/0803.0476
https://arxiv.org/abs/0803.0476
https://ieeexplore.ieee.org/document/7377794
https://ieeexplore.ieee.org/document/7377794
https://ieeexplore.ieee.org/document/7377794
https://ieeexplore.ieee.org/document/7377794
https://arxiv.org/abs/1304.4453
https://arxiv.org/abs/1304.4453
https://arxiv.org/abs/1304.4453
https://arxiv.org/abs/1304.4453
https://doi.org/10.1007/978-3-642-40047-6_77
https://doi.org/10.1007/978-3-642-40047-6_77
https://doi.org/10.1007/978-3-642-40047-6_77
https://doi.org/10.1007/978-3-642-40047-6_77
https://doi.org/10.1016/j.parco.2015.03.003
https://doi.org/10.1016/j.parco.2015.03.003
https://doi.org/10.1016/j.micpro.2017.08.002
https://doi.org/10.1016/j.micpro.2017.08.002
https://doi.org/10.1016/j.micpro.2017.08.002
https://doi.org/10.1016/j.micpro.2017.08.002
https://10.0.4.85/CLUSTER.2018.00044
https://10.0.4.85/CLUSTER.2018.00044
https://10.0.4.85/CLUSTER.2018.00044
https://10.0.4.85/CLUSTER.2018.00044
https://10.0.4.85/INES.2016.7555126
https://10.0.4.85/INES.2016.7555126
https://10.0.4.85/INES.2016.7555126
https://10.0.4.85/INES.2016.7555126
https://10.0.4.85/INES.2016.7555126
https://arxiv.org/abs/2004.05371
https://arxiv.org/abs/2004.05371
https://arxiv.org/abs/2004.05371
https://arxiv.org/abs/2004.05371
https://doi.org/10.1007/s11227-020-03451-3
https://doi.org/10.1007/s11227-020-03451-3
https://doi.org/10.1007/s11227-020-03451-3
https://doi.org/10.1007/s11227-020-03451-3
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1016/j.jpdc.2014.09.012
https://doi.org/10.1016/j.jpdc.2014.09.012
https://doi.org/10.1016/j.jpdc.2014.09.012
https://doi.org/10.1016/j.jpdc.2014.09.012
https://arxiv.org/abs/2103.02542
https://arxiv.org/abs/2103.02542
https://arxiv.org/abs/2103.02542
https://arxiv.org/abs/2103.02542
https://ieeexplore.ieee.org/document/7006796
https://ieeexplore.ieee.org/document/7006796
https://ieeexplore.ieee.org/document/7006796
https://ieeexplore.ieee.org/document/7006796
https://arxiv.org/abs/0709.2938#:~:text=Near%20linear%20time%20algorithm%20to%20detect%20community%20structures%20in%20large%2Dscale%20networks,-Usha%20Nandini%20Raghavan&text=We%20validate%20the%20algorithm%20by,what%20was%20possible%20so%20far.
https://arxiv.org/abs/0709.2938#:~:text=Near%20linear%20time%20algorithm%20to%20detect%20community%20structures%20in%20large%2Dscale%20networks,-Usha%20Nandini%20Raghavan&text=We%20validate%20the%20algorithm%20by,what%20was%20possible%20so%20far.
https://arxiv.org/abs/0709.2938#:~:text=Near%20linear%20time%20algorithm%20to%20detect%20community%20structures%20in%20large%2Dscale%20networks,-Usha%20Nandini%20Raghavan&text=We%20validate%20the%20algorithm%20by,what%20was%20possible%20so%20far.
https://arxiv.org/abs/0709.2938#:~:text=Near%20linear%20time%20algorithm%20to%20detect%20community%20structures%20in%20large%2Dscale%20networks,-Usha%20Nandini%20Raghavan&text=We%20validate%20the%20algorithm%20by,what%20was%20possible%20so%20far.
https://doi.org/10.1016/j.ins.2020.03.004
https://doi.org/10.1016/j.ins.2020.03.004
https://doi.org/10.1016/j.ins.2020.03.004
https://doi.org/10.1016/j.ins.2020.03.004
https://ieeexplore.ieee.org/document/7161493
https://ieeexplore.ieee.org/document/7161493
https://ieeexplore.ieee.org/document/7161493
https://ieeexplore.ieee.org/document/7161493
https://ieeexplore.ieee.org/document/9005481
https://ieeexplore.ieee.org/document/9005481
https://ieeexplore.ieee.org/document/9005481
https://ieeexplore.ieee.org/document/9005481
https://arxiv.org/abs/2011.08342
https://arxiv.org/abs/2011.08342
https://arxiv.org/abs/2011.08342
https://arxiv.org/abs/1904.12593
https://arxiv.org/abs/1904.12593
https://doi.org/10.1142/S0218001421590060
https://doi.org/10.1142/S0218001421590060
https://doi.org/10.1142/S0218001421590060
https://doi.org/10.1142/S0218001421590060
https://ieeexplore.ieee.org/document/9043552
https://ieeexplore.ieee.org/document/9043552
https://ieeexplore.ieee.org/document/9043552
https://ieeexplore.ieee.org/document/9043552
http://dx.doi.org/10.1145/2783258.2783301
http://dx.doi.org/10.1145/2783258.2783301
http://dx.doi.org/10.1145/2783258.2783301
http://dx.doi.org/10.1145/2783258.2783301

M. Mohammadi et al.

88 J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022

[32] J. Zhu, X. Ren, P. Ma, K. Gao, "Community detection on complex
networks based on a new centrality indicator and a
new modularity function," arXiv preprint arXiv:2003.13609, 2020.

[33] I. Gutiérrez, D. Gómez, J. Castro, R. Espínola, "A new community
detection algorithm based on fuzzy measures," in Proc.
International Conference on Intelligent and Fuzzy Systems: 133-
140, 2019.

[34] P. Miasnikof, A.Y. Shestopaloff, A.J. Bonner, "A density-based
statistical analysis of graph clustering algorithm performance," J.
Complex Networks, 8(3): 1-33, 2020.

[35] D. Jin, B. Zhang, Y. Song, D. He, Z. Feng, S. Chen, W. Li, K. Musial,
"ModMRF: A modularity-based Markov Random Field method
for community detection," Neurocomputing, 405: 218-228, 2020.

[36] G. Konstantinos, M. Christos, P. Georgios, "A distributed hybrid
community detection methodology for social networks,"
Algorithms, 12(8): 175, 2019.

[37] J.O. Palacio-Niño, F. Berzal "On the use of local structural
properties for improving the efficiency of hierarchical community
detection methods," arXiv preprint arXiv:2009.06798, 2020.

[38] A. Mahabadi, M. Hosseini, "SLPA-based parallel overlapping
community detection approach in
large complex social networks," Multimed. Tool. Appl., 80: 6567–
6598, 2021.

[39] M.d. Naim, F. Manne, M. Halappanavar, A. Tumeo, "Community
detection on the GPU," in proc. 2017 IEEE International Parallel
and Distributed Processing Symposium, 2017.

[40] M. Mohammadi, M. Fazlali, M. Hosseinzadeh, "Accelerating
Louvain community detection algorithm on graphic processing
unit," J. Supercomput., 77: 6056–6077, 2021.

[41] M.E.J. Newman, "Fast algorithm for detecting community
structure in networks," Phys. Rev. E, 69: 066133, 2004.

Maryam Mohammadi received M.Sc. degrees
in Computer Engineering from Science and
Research Branch, Islamic Azad University,
Kerman, Iran in 2013. She is currently
pursuing the Ph.D. degree in the Faculty of
Electrical and Computer Engineering, Science
and Research Branch, Islamic Azad University,
Tehran, Iran. Her research interests include
parallel processing, hardware
implementation, and residue number

systems.

Mahmood Fazlali received B.Sc. in
Computer Engineering from Shahid
Beheshti University (SBU) in 2001. Then
he received M.Sc. from University of
Isfahan in 2004, and PhD from SBU in
2010 in Computer Architecture. He
performed researches on reconfigurable
computing systems in computer
engineering lab at Technical University

of Delft (TUDelft) as a postdoc researcher. Now, he is working as
assistant professor at department data and computer sciences at SBU.
His research interest includes big data processing, parallel computing
and data science.

Mehdi HosseinZadeh received his B.Sc.

degree in computer hardware

engineering, from Islamic Azad University,

Dezfol branch, Iran in 2003. He also

received his M.Sc. and the Ph.D. degree in

computer system architecture from the

Science and Research Branch, Islamic Azad

University, Tehran, Iran in 2005 and 2008,

respectively. He is currently an Associate

professor in Iran University of Medical Sciences (IUMS), Tehran, Iran.

He is the author/co-author of more than 120 publications in technical

journals and conferences, and his research interests include SDN,

Information Technology, Data Mining, Big data analytics, E-

Commerce, E-Marketing, and Social Networks.

Copyrights

©2022 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
M. Mohammadi, M. Fazlali, M. Hosseinzadeh, “Parallel louvain community detection
algorithm based on dynamic thread assignment on graphic processing unit,” J. Electr.
Comput. Eng. Innovations, 10(1): 75-88, 2022.

DOI: 10.22061/JECEI.2021.7771.432

URL: https://jecei.sru.ac.ir/article_1565.html

Biographies

https://arxiv.org/abs/2003.13609
https://arxiv.org/abs/2003.13609
https://arxiv.org/abs/2003.13609
https://arxiv.org/abs/2003.13609
https://doi.org/10.1007/978-3-030-23756-1_18
https://doi.org/10.1007/978-3-030-23756-1_18
https://doi.org/10.1007/978-3-030-23756-1_18
https://doi.org/10.1007/978-3-030-23756-1_18
https://doi.org/10.1093/comnet/cnaa012
https://doi.org/10.1093/comnet/cnaa012
https://doi.org/10.1093/comnet/cnaa012
https://doi.org/10.1093/comnet/cnaa012
https://doi.org/10.1016/j.neucom.2020.04.067
https://doi.org/10.1016/j.neucom.2020.04.067
https://doi.org/10.1016/j.neucom.2020.04.067
https://doi.org/10.1016/j.neucom.2020.04.067
https://doi.org/10.3390/a12080175
https://doi.org/10.3390/a12080175
https://doi.org/10.3390/a12080175
https://scholar.google.com/citations?user=fLt2BGcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=RbaQAtoAAAAJ&hl=en&oi=sra
https://arxiv.org/abs/2009.06798
https://arxiv.org/abs/2009.06798
https://arxiv.org/abs/2009.06798
https://doi.org/10.1007/s11042-020-09993-1
https://doi.org/10.1007/s11042-020-09993-1
https://doi.org/10.1007/s11042-020-09993-1
https://doi.org/10.1007/s11042-020-09993-1
https://ieeexplore.ieee.org/document/7967153
https://ieeexplore.ieee.org/document/7967153
https://ieeexplore.ieee.org/document/7967153
https://ieeexplore.ieee.org/document/7967153
https://doi.org/10.1007/s11227-020-03510-9
https://doi.org/10.1007/s11227-020-03510-9
https://doi.org/10.1007/s11227-020-03510-9
https://doi.org/10.1007/s11227-020-03510-9
https://arxiv.org/abs/cond-mat/0309508
https://arxiv.org/abs/cond-mat/0309508
https://arxiv.org/abs/cond-mat/0309508
https://arxiv.org/abs/cond-mat/0309508
https://jecei.sru.ac.ir/article_1565.html

