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 Background and Objectives: Louvain is a time-consuming community 
detection algorithm especially in large-scale networks. Using Graphic 
Processing Unit (GPU) in order to calculate modularity sigma, which is a 
major processing section in Louvain algorithm, can reduce algorithm 
execution time and make it practical for large-scale networks. 
Methods: The proposed algorithm Dynamic CUDA Louvain Method (DCLM) 
blocks hardware threads dynamically on cores inside GPU. By considering the 
properties of GPU, this algorithm allocates the maximal number of 
processing cores to each Stream Multi-Processor (SM) as number of threads 
in a block.  If the number of nodes in the graph is smaller than all physical 
cores on GPU, number of threads per block Is equal to the ratio number of 
graph nodes over the number of SMs. 
Results: The implementation results demonstrated that the proposed 
algorithm is able to decrease the run time by 15% in comparison with the 
best past method in the large-scale graph. 
Conclusion: We have introduced DCLM algorithm based on GPU that 
accelerates Louvain community detection algorithm. Dynamic allocation of 
threads to each block has a significant effect on the reduction of algorithm 
execution time. However, incrementing the number of threads per block 
alone does not result to acceleration the speed of calculations. 
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Introduction 
Community detection is one of topics in graph 

decomposition and network analysis. It has a significance 

role in many research fields such as social sciences, 

biology, physics and medical fields. Networks (or Graphs) 

are usually classified such that edges inside the group 

have a higher density than edges in between the groups. 

These important characteristics is called the network 

structure and the detection of this groups or clusters is 

called community detection [1]. Each community 

consists of a number of nodes in graphs that 

communicate a lot with each other. Nowadays 

community detection is one of the most important fields 

in order to comprehend topology and functions in 

networks [2]. Clustering of nodes in a graph has been a 

popular method to detect communities in a graph.  

Although researchers have implemented parallel 

algorithms for community detection, it remains time 

consuming and computationally intensive in large-scale 

networks. This is because communities have different 

sizes and the number of communities is usually not 

defined [3]. Bigger modularity parameter [4], [5] 
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mailto:fazlali@sbu.ac.ir


M. Mohammadi et al. 

76  J. Electr. Comput. Eng. Innovations, 10(1): 75-88, 2022 
 

indicates there exists a larger number of edges inside 

communities in comparison to edges between 

communities. It is a parameter and function of a network 

that evaluates the quality of the classification of graph to 

clusters.  

Parallelizing scalable community detection in large 

scale graphs with high quality modularity has always 

been a challenging topic and maximizing modularity is an 

NP-Complete problem [6]. 

A number of algorithms have been proposed for 

untangle community detection in large scale networks 

[7], [8]. Most of these algorithms employ maximizing the 

modularity as suitable criteria for community detection. 

One of this modularity based algorithms is a hierarchical 

method called Louvain method that Blondel et al. 

proposed in [9]. This algorithm consists of a number of 

stages.  

At first each node of the graph is considered as a 

community in each phase. Up until the time 

communities are stable and the maximum modularity is 

achieved, the nodes are separately transferred to 

neighboring communities. A number of papers have 

been presented that parallelize Louvain method [10], 

[11], [12], [13], [14], [15], [16].  

A Graphic Processing Unit (GPU), having wide 

computational parallel capabilities, is an appropriate 

select for speeding-up community detection in large-

scale graphs. Compute Unified Device Architecture 

(CUDA) is a parallel computing platform 

and programming model for Nvidia GPUs. It offers three 

levels of programming abstractions: thread, thread 

block, and grid. A warp consists of 32 threads ran 

together as a working unit in a SIMT manner [17], [18]. 

 In this research, we propose Dynamic CUDA Louvain 

Method (DCLM) in which the number of threads per 

block is dynamically calculated and allocated in Louvain 

algorithm. By considering the properties of GPU, this 

algorithm allocates the maximal number of processing 

cores to each Stream Multi-Processor (SM) as number of 

threads per block.  

However, if the number of nodes in the graph is 

smaller than all physical cores on GPU, it allocates the 

ratio number of graph nodes over the number of SMs as 

number of threads per block. Considering the fact that in 

this algorithm the number of threads per block depends 

on the number of nodes in the networks, shared 

memory per block is adaptively defined. We summarize 

the main contributions in this paper as follows: 

• Presenting DCLM parallel algorithm based on GPU. 

• Calculating the optimal number of threads and 

allocating them dynamically to each block. 

 DCLM algorithm, calculates the number of required 

SMs dynamically to calculate the modularity on 

GPU. This results in using less number of threads in 

comparison to previous methods and reducing 

paralleling overhead.  

 The proposed DCLM needs less memory usage 

than the previous algorithm. 

Implementation results indicates effective paralleling 

of Louvain can be achieved by dynamic allocation of the 

threads per block to reduce the executing time of the 

algorithm.  

Background 

Here at first we explain Modularity parameter which 

is important quality function in Louvain algorithm. 

Afterwards Louvain algorithm is clarified. Then, previous 

methods on paralleling of Louvain are reviewed. 

A.  Modularity 

In order to evaluate the community structure in a 

network, modularity is used as a quality function and 

here it is shown as the letter Q. Based on the modularity 

criteria, community detection in a graph is done 

successfully when a great number of edges exist inside 

the communities and smaller number of edges exist in 

between communities.  

In strategies based on modularity, the goal is to find a 

partition in the graph that has the maximum value of Q. 

Modularity has a value between -1 and 1. The closer Q 

gets to 1 the better the communities are divided but it 

never reaches 1. In practice a modularity of Q > 0.3 

shows a suitable structure.  

Consider Graph G= (V, E) is an undirected graph in 

which n=|V| shows the number of nodes and m= |E| 

shows the number of edges in the graph. Graph G is 

described by matrix        . Whenever node i is 

linked to node j their corresponding index in the matrix 

equals one, otherwise it equals zero. Also Ki is the degree 

of node i. Modularity of the partitioning C= {C1, C2, …CL} 

of graph G is calculated by (1) [19]. 

     
 

  
∑ (    

    

  
)    

 

     

 (1) 

If node i and node j exist in the same community the 

value of      equals one, otherwise it equals zero. 

Discovering the maximum value of Q is a NP-hard 

problem. Therefore, a heuristic solution that 

concurrently guarantees scalability and reasonable 

calculation costs is needed. 

In community detection algorithms usually it is 

considered the edges are undirected and it is presumed 

that the graph is undirected.  

This results in a significant improvement in 

partitioning the system. Until now different methods 

have been presented for maximizing the value of 

modularity [20]. Guo et al.  developed a family of 

generalized modularity measure, f-Modularity, which 

includes the original modularity as a special case [21]. 

https://en.wikipedia.org/wiki/Parallel_computing
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One of the most famous algorithms is a greedy 

algorithm that was presented by Newman and Girvan 

[4]. This algorithm starts by putting each node in a 

separate community. At the start of this algorithm all 

nodes are communities connected by edges. By adding 

the edges one by one the communities that exists on the 

two sides of the edges are merged if it results in an 

increase in modularity. If by adding, an edge a merge 

does not happen between the communities, that edge is 

an inner edge of the community. Therefore, the 

modularity is not changed. The number of the divisions 

found in the process equals the number of nodes. Each 

of this divisions have a specific modularity. After adding 

the edges, the division that has the largest modularity is 

chosen as the output. 

B.  Louvain Community Detection Method 

Between community detection methods based on 

modularity, Blondel et al. [9] presented a heuristic 

method called Louvain that has a lower time complexity. 

This algorithm includes two phases and they are 

repeated iteratively. In starting, each node in graph is 

assumed as a community.  

Therefore, a high number of communities exists in the 

first partitioning. Then for every node i all of its j 

neighbors are considered and modularity is computed. If 

modularity increases node i is added to its neighbor j, 

otherwise it remains as an initial community.  

This process is reiterated consecutively for the nodes 

in graph until no extra increase on modularity is 

achieved.  

In the seconds phase new communities are created 

from the communities in the first phase. In this phase 

each community is considered as a super node and the 

inner edge’s weights of the super node is demonstrated 

as a loop. In addition, the weight of the communication 

edge between each super node to its neighboring super 

node (outer edge) equals to the weights of the node’s 

edges to its neighboring super node. After the 

completion of the second phase, the algorithm may be 

repeated again. 

The effectiveness of the algorithm arises from the fact 

that the benefit of the modularity    is obtained from 

the transition of node i into community C which is 

demonstrated in (2): 
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 In (2) ∑    is the total of the weight for the internal 

edges of community C also ∑     is the total of the weight 

for all the edges that have one end to community C.    is 

the total of the weights for the edges that enter node i 

and       is the total of the weight of the edges which 

exist from node i to inner nodes of the community C. m 

is the sum of the weights for all edges inside the graph. 

The next phase consists of creating a new graph that 

nodes are the created communities in the previous 

phase. In order to perform so the weight of the edges in 

between the new nodes are created from the weight of 

the edges between the two communities. The edges 

between nodes from the same community result to 

loops in that community in the new graph. Afterwards 

the finishing the second phase, again the first phase is 

applied to the weighted graph and this operation is to be 

iterated. 

Related Work on the Paralleling of Louvain 

Community Detection Method 

Decomposition and analysis of large-scale graphs by 

Louvain algorithm needs a powerful machine. This is 

commonly costly and is not affordable. hence, 

researchers have tried to speed up the algorithm 

exploiting parallel platforms. 

Meyerhenke and Stuadt [11] have proposed an 

algorithm named Parallel Louvain Method (PLM) based 

on OpenMp using label propagation in which the 

transition of nodes in the Louvain is performed in 

parallel. In [22] researchers have presented a framework 

which benefits from the overlapping of shared memory 

called Ensemble Preprocessing (EPP) for community 

detection. In this framework Parallel Label Propagation 

(PLP), which was presented by Raghavan et al. [23], used 

as the basis algorithm. Parallel Louvain Method with 

Refinement (PLMR) [22] adds a reformation to each level 

of Louvain to increase the modularity but it slightly 

increased the algorithm execution time. 

To reduce the time of the first round of the Louvain 

method, Carnivali et al. [24], proposed a Coarse-Grained 

Vertex Clustering (CoVeC) method. CoVeC pre-process 

the original graph in order to forward a graph of reduced 

size to the Louvain method. According to their 

evaluation, CoVeC outperforms the Louvain method and 

its variations, attaining a mean execution time reduction 

of 47% and a mean modularity reduction of only 0.4%. 

 In [25] Que et al. proposed an algorithm for 

paralleling of Louvain that improves convergence, 

modularity and quality of the detected communities. The 

main aspect of this algorithm is a general strategy for 

coordination of transfer of vertices to neighbor 

communities using the adaptive threshold that is 

executed exponentially in each iteration of the inner 

loop.  

In [26] Zeng and Yu proposed a graph clustering 

framework for Louvain algorithms based on an 

asynchronous approach. Also in [27], a Gradient Descent 
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framework of modularity optimization called vector-

label propagation algorithm (VLPA), where a node is 

associated with a vector of continuous community labels 

instead of one label, have been proposed. 

In [28] Sarmento has tried to apply a density 

optimization of communities found by the label 

propagation algorithm and has investigated what 

happens regarding modularity of optimized results. He 

introduced a metric called Average Density per 

Community (ADC).  

Also a novel model, named Modularized Deep Non 

Negative Matrix Factorization (MDNMF) for community 

detection, which preserves both the topology 

information and the instinct community structure 

properties of the community, has been proposed in [29]. 

In our previous research [10] we have utilized a 

course-grained paralleling method in order to accelerate 

Louvain algorithm on multicore systems.  

This method uses a processing thread in order to 

compute the modularity for each neighbor node in the 

graph. Then, we proposed a parallel algorithm at thread 

level in [14], for accelerating Louvain algorithm on 

multicore systems.  

This method assigns threads adaptively in parallel to 

compute the modularity of adding eligible neighbor 

nodes to the community.  

The algorithm finds the idle cores and obtains the 

appropriate number of threads to calculate the sigma in 

the modularity formula. This results in improving speed-

up in comparison to previous methods while the quality 

of the resulted modularity remains approximately the 

same. 

Cheong et al. presented the GPU-based parallelized 

Louvain algorithm in [12]. It uses three levels of 

paralleling in Louvain algorithm and uses Single-GPU and 

Multiple-GPU platforms.  

Evaluating the method in [12] on multiple large web 

based graphs and popular social networks show that it is 

able to speed up community detection however it leads 

to 3% decrement in the quality of the community 

detection. SOURAVLAS et al. [30] presented an extension 

of threaded binary tree approach for community 

detection. They share the computational load between 

the two units: the CPU takes specific samples of the 

network communities and organizes them in the form of 

threaded binary trees. The GPU takes over the heavy 

load of reading this data and transforming it into a path-

matrix. Finally, this matrix is sent back to the CPU for 

analysis, community detection and overlaps, as well as 

network information upgrades. 

 Shoa et al. [31], suggested the attractor technique 

which uses distance metric instead of similarity. 

However, the suggested technique is slower than 

Louvain method. Zhu et al. proposed a new central node 

indicator and a new modularity function in [32]. Authors 

firstly suggested a new local centrality indicator (LCI) to 

extract local important nodes that are well distinguished 

from their neighbors. Then, they proposed a new local 

modularity function F2. F2 can overcome certain 

problems of other modularity functions such as the 

resolution limit problem. In [33] Guti´errez et al. 

proposed a modification of Louvain algorithm, which 

allows to take into account some additional information 

about affinity among nodes when detecting 

communities. This additional information is defined by a 

fuzzy measure, μ, which is aggregated to the weight of 

the classical relations among nodes when optimizing the 

modularity of the clusters throughout the algorithm.  

In [34] Miasnikof, et al. have described a new set of 

statistically rooted clustering quality measures that allow 

formal clustering quality assessments and comparisons 

of clustering algorithm performances. Their measures 

are shown to be more robust than the commonly used 

modularity and conductance. In [35], Jin et al. have 

proposed a new MRF approach, namely ModMRF, to 

formalize modularity as the energy function for 

community detection in undirected static networks. 

ModMRF has reduced the time complexity to a nearly 

linear case. 

In [36] a distributed scalable community detection 

method was presented by Konstantinos et al., that is 

according to the combination of the characteristics of 

the topology of graph. In [37] Palacio-Nino and Berzal 

have advocated for the use of the local network 

structural properties employed by local link prediction 

methods in hierarchical community detection. Mahabadi 

and Hosseini [38] presented an online parallel 

overlapping community detection approach based on a 

speaker-listener propagation algorithm by proposing a 

novel parallel algorithm and applying three new metrics. 

This approach is presented to improve modularity and 

expand scalability for getting a significantly speedup in 

low time-consuming and usage memory through an 

agent-based parallel implementation in a multi-core 

architecture.  But this algorithm is the overlapping 

method which is different from Louvain which is non-

overlapped method. 

Naim et al. [39], suggested a GPU-based Louvain 

algorithm. It works on load balancing by scaling the 

number of threads assigned to each node, according to 

node’s degree. In the first phase of the algorithm, it 

partitions the nodes to subsets based on their degrees. 

Then the algorithm computes and updates the 

destination community of each vertex by using a various 

number of threads per node for the set. The defect of 

this method is high memory usage. Here we have tried 

to do this by presenting a new parallel Louvain 

algorithm. Hence, we presented Adaptive CUDA Louvain 

https://scholar.google.com/citations?user=4VejZpUAAAAJ&hl=en&oi=sra
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Method (ACLM) [40], which employs GPU to accelerate 

Louvain method. ACLM algorithm computes the 

modularity sigma from by adding a community with the 

neighbor nodes in parallel, in a fine-grained way, by 

CUDA cores on GPU. This can reduce the overhead of 

paralleling and speed up the computation of modularity. 

ACLM assigns threads per block according to the 

number of SMs and warps needed to calculate 

modularity. This algorithm, computes the number of 

needed SMs before assigning hardware threads. This is 

because processing time of the warps is fast. Therefore, 

ACLM obtains the number of thread in the block 

according to the multiplication of warps. This result of 

executing ACLM on various web-based graphs 

demonstrates which it can successfully accelerate 

algorithm execution time up to 77% in comparison to the 

past paralleling of Louvain method in the large graph 

benchmarks.  

The Proposed Dynamic CUDA Louvain Method 

Algorithm 

In order to accelerate Louvain community detection 

method, we propose DCLM algorithm, which employs 

CPU and GPU on the computational heterologous 

processing platform. It calculates the modularity of 

graph using cores in GPU. Efficient allocation of threads 

per block to compute modularity sigma in this algorithm 

can decrease the algorithm run time. 

A.  Investigating the Number of Neighbors for Vertices in 
Each Pass of the DCLM Algorithm 

Blocking and assigning the desired number of threads 

per block leads to an effectual decrement in the run time 

of the DCLM algorithm to find communities. Increasing 

the number of threads per block may not increase the 

speed of the algorithm.  

In each phase of the Louvain algorithm, the 

communities are formed randomly. Before running the 

algorithm, it is not possible to accurately predict how 

many processing threads should be assigned to each 

block to obtain the best result. 

I dynamically based on the multiplication of warps 

and considering the maximum number of CUDA cores. 

On the NVIDIA Tesla K20Xm graphics card, each SM has 

192 CUDA hardware cores, every block has the 

maximum number of 1024 threads, and the warps have 

32 threads.  

Therefore, we categorized the number of graph 

vertices in each pass of the DCLM algorithm according to 

the number of their neighbors and extracted the graph 

vertex statistics. Fig. 1 and Fig. 2 show the number of 

graph vertices that have 0 to 32, 33 to 192, 193 to 1024 

and more than 1024 neighbors in the smallest graph and 

the largest graph, respectively. 

As Fig. 1 shows, in CNR-2000 benchmark, the first 

three passes have a major number of graph nodes, and 

most nodes have 0 to 32 neighbors. In subsequent 

passes, although the number of vertices with 0 to 32 

neighbors is low, the number of graph vertices is much 

less than the initial passes. In this benchmark, there are 

a total number of 349951 nodes in the total number of 

passes in DCLM algorithm. 85.4% of vertices have up to 

32 neighbors, 12.5% have 33 to 192 neighbors, 1.5% 

have 193 to 1024 neighbors and 0.6% have more than 

1024 neighbors.  

Fig. 2 shows the number of graph vertices based on 

the number of neighbors in 8 passes for the large Cage-

15 benchmark. In all passes of the algorithm, the vertices 

have more than 0 to 32 neighbors. In this benchmark, 

there are 394,303,332 vertices in all passes in DCLM 

algorithm, of which 82.9% have up to 32 neighbors, 7% 

have 33 to 192 neighbors, 5.5% have 193 to 1,024 

neighbors, and 4.6% have more than 1,024 neighbors. 

B.  Dynamic CUDA Louvain Method (DCLM) 

In DCLM algorithm, the modularity of the network is 

computed using cores in a fine-grained manner and 

threads execute the items in the modularity sigma in 

parallel manner. This algorithm usages the base 

modularity in (3) [41]. 

  ∑       
  

 

 (3) 

In (3) i is the indicator of a supernode. Modularity for 

each supernode equals       
 .     is the ratio of the 

number of edges that connect the inner nodes of the 

community i over all the edges of the graph with random 

distribution.  

In other words, it equals the number of internal edges 

of the supernode i. We consider     to be half of the ratio 

of edges which link the nodes of community i with 

community j. Therefore    ∑      equals the ratio of 

the number of edges which have at least one node in 

community i over all the edges of the graph with random 

distribution. To be more clear    equals the number of 

outer edges of supernode i. 

The calculation of the resulted modularity of merging 

two neighbor nodes is done using cores available in SMs 

on GPU and other calculations are done sequentially on 

the CPU.  

 According to the number of cores in the graphics card 

of the system, which is divided on the SMs and operates 

in parallel, the maximum number of threads per block is 

defined as the same number of processing cores of each 

SM. Although each block can have more threads but 

each SM can process the block in parallel at the same 

time as the same number of its processing cores. 

Therefore, it would be better to use the maximum cores 

of all SMs at the same time. 

 If the number of nodes in the graph is more than all 
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the physical cores of the graphics card of the system, the 

computation of the items of the modularity sigma is 

performed concurrently using the cores in SMs. In this 

situation we propound the maximum number of threads 

in the block to be equal to the maximum number of 

cores in each SM. If the number of nodes is less than the 

number of cores, we allocate the threads to each block 

in proportion to the number of nodes over the number 

of SMs. 

In DCLM algorithm, all threads are divided to blocks 

and in each block there exists a shared memory between 

the threads of the block. Threads in the block can use 

data inside the shared memory or store their calculation 

results inside it.  

Considering the fact that the number of threads vary 

adaptively in this algorithm, we define the shared 

memory adaptively.  

This results in an optimal usage of the shared 

memory. When calculating the modularity, we consider 

the graph to be compromised of super nodes. We have 

the total of the weights of the self-loops of any 

supernode in vector in and the total of the weights of all 

edges of each supernode in vector total_weighted. In 

fact vector in equals ∑      and vector total_weighted 

equals ∑   
 

 .  

Algorithms 1 and 2 demonstrate the stages of DCLM 

algorithm. 

In algorithm 1, on line 3, total of weights for all edges 

at graph is stored into g.total_weight variable. On line 6, 

degree of node i is stored in size variable. On line 7, total 

of weights for internal edges of each neighbor node is 

stored in vector in.  

On line 8, total of weight of outer edges of each 

neighbor node is stored in total_weighted vector. The 

number of SMs required is specified in line 11. On lines 

12 and 13 the number of threads per block and on line 

14 number of blocks per grid are set. The size of shared 

memory is determined in line 15. After that in the 

second algorithm, modularity is calculated in parallel 

using GPU cores. 

In algorithm 2, CUDA kernel is called by input 

parameters and on line 9, items of modularity sigma are 

computed. Then computing the modularity by threads in 

block, on line 13 threads are synced and on line 14 total 

of the amount of computed modularity in blocks is saved 

in quality vector. Afterwards the quality vector is sent to 

CPU.  

On line 2 of algorithm 2, the calculated modularity 

value in an SM is achieved by dividing the total of 

computed modularity amounts in blocks (quality vector) 

over the total of weights of all edges of the graph 

(g.total_weight). Then modularity of supernode vi is 

obtained by adding the computed modularity amounts 

in SMs. In Continue algorithm 1 (lines 18 onwards), if the 

modularity increases, node i is attached to the j 

community. This action is done frequently and 

consecutively for all nodes until no further 

improvements can be made. 
 

 

Algorithm 1: DCLM G(V, E) 

1:   repeat 
2:       NC ← G 
3:       g.total_weight ← Total of the weights of all the 

connections in the NC 
4:        for all nodes in NC do 
5:           Choose a random vi 
6:           size ← Degree (vi) 
7:           in *+ ← self-loops of each neighbor's j of node i    
8:           total_weighted [] ← weighted degree of each 

neighbor's j of node i 
9:                                       //NVIDIA 

Tesla K20Xm architecture has 14 SMs 
10:                                        //NVIDIA 

Tesla K20Xm architecture has 192 cores in each 
SM 

11:                           {     ⌈
    

 
⌉}   

                // number of streams (needed SMs) 

12:              
    

             
 

13:                            {

         
         
           
                  

 

14:                           ⌈
 

               
⌉   

15:                                         
16:           while true do 
17:                    modnew ← Compute Modularity ()      
18:                    if  modnew < = modcurrent   then 
19:                           break 
20:                       end if 
21:                    modcurrent ← modnew 
22:                    G ← new input graph 
23:              end while 
24:          end for 
25: until No improvement of modularity 

 

 

Algorithm 2: Compute Modularity (Inputs)  

Inputs: 
blocksPerGrid:            // Number of blocks per grid. 
threadsPerBlock:       // Number of threads per block.  
sharedMemSize:       // Size of shared memory. 
streams:                     // Vector of needed SMs 
total_weighted:       // Vector of the weighted 

degree of any vj {(vi, vj) E}. 

in:                               // Vector of self loops of any vj 

{(vi, vj) E}. 
g.total_weight:        // Total of the weights of all the 

connections in NC.  
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quality:                      // Vector of Modularity sections.   
size:                           // Degree of vi. 
stream_number:    // number of streams (needed 

SMs) 
Output:         

Resulting Modularity   
 

1:  Modularity Kernel <<<blocksPerGrid, 
threadsPerBlock, sharedMemSize,  
streams[stream_number]>>> (total_weighted, 
in, g.total_weight, quality, size, 
stream_number);                        

2:  Modularity _Value_SM ← sum of quality vector / 
g.total_weight;   

         // The Modularity_Value_SM variable includes 
the calculated modularity values in an SM. 

3:  Resulting Modularity ← Total of the computed 
modularity amounts in SMs. 

4: return     Resulting Modularity   
 

In Modularity Kernel: 
5.     for each neighbor j of node i         
6:          tid = threadIdx + blockIdx*blockDim      
        // The amounts of the variables "threadIdx", 

"blockIdx", "blockDim" and "gridDim" come 
from input parameters "threadsPerBlock” and 
"blocksPerGrid”. 

7:   extern __shared__ float cache []      
8:     while (tid < size) do 
9:         temp += in[tid] - (total_weighted [tid]  ×

total_weighted [tid]) / g.total_weight 
10:        tid += blockDim*gridDim 
11:      end while  
12:  cache[threadIdx] = temp 
13:  syncthreads ()        
           // This call assurances that each thread in the 

block has perfected commands. Prior to 
__syncthreads() before the hardware will run 
the next command on every threads. 

14: atomicAdd (&quality[stream_number], cache);  
          // Sum of values in cache vector is stored in 

quality vector. 
15:   return quality  

 

 
Results and Discussion  

We compared our proposed algorithm with four of 

the parallel techniques for Louvain community detection 

algorithm.  

The first one is PLM [22] that computes the 

modularity in parallel. The second one is APLM [14] in 

which allocates the appropriate number of execution 

threads on CPU and calculate modularity of each two 

neighbor communities adaptively. The third one is NAIM, 

a previous GPU-based Louvain method presented in [39]. 

The last algorithm is ACLM [40] that uses the shared 

memory on GPU, as well as the optimal number of 

threads on GPU blocks. Table 1 and Table 2 

demonstrates the specifications of our implementation 

platforms that we ran all the algorithms.  

We utilized CUDA in order to run DCLM, ACLM, and 

NAIM algorithms in the GPU and nvcc compiler was used 

for compiling the codes. Nvidia’s latest CUDA enables a 

diversity of synchronization techniques. The 

specifications current version of CUDA (10.0) is described 

in [17].  

For compare our results with APLM and PLM 

algorithms these algorithms were executed on CPU by 

using gcc compiler version 4.8.2 on Platform 1 and using 

gcc compiler version 7.4.0 on Platform 2. The algorithms 

are implemented with C++. Large graphs of the real 

world include heterogeneous data that leads to the fact 

that selecting an ideal sample data and popularizing it to 

be infeasible. We have used four benchmarks that 

particularities are offered in Table 3. The graphs have 

various sizes from small size similar to CNR-2000 to scale 

graphs same as Cage-15.  

CNR-2000 benchmark is a small crawl for 

Italian CNR domain, mainly useful for debugging and 

testing purposes. EU-2005 benchmark is a small crawl of 

the .eu zone.  

This graph displays a very low locality, perhaps 

because the crawl was small and the elected domain is 

dummy howsoever. IN-2004 benchmark is a small crawl 

for .in area performed for the Nagaoka University of 

Technology. Cage-15 graph is the DNA electrophoresis, 

15 monomers in polymer. A. van Heukelum, Utrecht U. 

A.  Comparison of Algorithm Execution Times 

Here for a fair comparison, we selected those related 

works that employ paralleling to accelerate the Louvain 

method. We compare our proposed DCLM algorithm 

with the parallel Louvain algorithms based on algorithm 

execution time.  

Parallel Louvain Method (PLM) and Adaptive Parallel 

Louvain Method (APLM) are the fastest parallel Louvain 

method that use multicore system. The previous GPU 

implementation of Louvain was proposed in [39] (NAIM). 

ACLM an Adaptive CUDA Louvain Method algorithm 

which profits from the graphic processing unit. The 

execution times of DCLM, ACLM, PLM, APLM, and NAIM 

algorithms on the Platform 1 are demonstrated in Table 

4 and running times on Platform 2 are demonstrated in 

Table 5.  

With attention the results presented in Table 4, run 

time of the DCLM algorithm by using 2688 processing 

cores in platform 1 is better than other algorithms. 

Reduction in the run time of this algorithm in 

comparison to PLM is 97% in CNR-2000, 92% in EU-2005 

and 89% in IN-2004 and 81% in Cage-15. As well as the 

reduction in run time of DCLM in comparison to APLM 
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are 40% in CNR-2000, 43% in EU-2005, 30% in IN-2004 

and 31% in Cage-15. The results indicate that the 

paralleling overhead of using GPU in DCLM algorithm is 

proper and it defeats the implementations of multicore 

platforms.  

However, NAIM algorithm cannot overcome 

multicore implementation effectively for benchmarks. 

The main reason behind this is the communication 

overhead of GPU platform. 

 The run time of DCLM algorithm in evaluation to 

NAIM algorithm is better 78% in CNR-2000, 79% in EU-

2005, 51% in IN-2004 and 46% in Cage-15. This 

demonstrates the DCLM algorithm is better than NAIM 

algorithm.  

The reason is adaptively assign of the cores on GPU to 

threads in our algorithm.  

DCLM algorithm running time is reduced by 10% in 

the CNR-2000 and EU-2005 benchmarks, by 11% in the 

IN-2004 and by 15% in the Cage-15 compared to the 

ACLM algorithm. 

With attention, the results presented in Table 5, the 

run time of the GPU-based implementations are better 

than multicore implementation for all benchmarks. This 

demonstrates that utilizing GPU to speed up Louvain 

community detection is suitable manner in modern GPU 

platforms.  

The proposed DCLM algorithm outperform NAIM 

algorithm for all benchmarks. Although dynamic thread 

creation in the proposed method has extra overhead, it 

can have a better load balancing in comparison to the 

previous (especially NAIM) methods. We could not run 

the NAIM algorithm on platform 2 for Cage-15 

benchmark because of its memory usage in the biggest 

graph.  

Nevertheless, the DCLM algorithm can execute and 

end the program on the platform. Again it shows that 

the proposed DCLM algorithm needs less memory usage 

than the NAIM algorithm in Cage-15 benchmark. Again 

this demonstrates the effectiveness of dynamically 

allocating cores in SMs to the threads.  The running time 

of the DCLM algorithm in CNR-2000 12%, in the EU-2005 

11%, in the IN-2004 14% and in the Cage-15 15% is less 

than ACLM algorithm. 

B.  Comparison of modularity  

While DCLM algorithm leads to acceleration of 

Louvain method, Table 6 and Table 7 demonstrate that 

the modularity values that are achieved from running 

this algorithm is comparable and near the same as the 

results of other algorithms.  

Generally, these algorithms are very resisting to 

changes in modularity and random communities that are 

achieved have a similar modularity. 

Conclusion 

In this paper, we have suggested DCLM algorithm 

based on GPU, which accelerates Louvain method. In 

DCLM algorithm, by using a heterogeneous CUDA 

calculation model and benefiting from the processing 

cores of GPU, calculation of the modularity resulted from 

merging two neighbor communities is done in parallel. 

By optimal usage of the shared memory inside blocks, 

DCLM   algorithm   allocates   the   optimal    number    of 

processing cores in SM as number of threads per block. 

 The evaluation results on a number of large scale 

web based graphs demonstrates that the proposed 

algorithm reduces the execution time up to 15% in 

comparison to the best previous parallel 

implementations of Louvain method. The results also 

demonstrate that dynamic allocation of the number of 

threads to each block has a notable result on the 

reduction of execution time of the algorithm, but 

incrementing the number of threads per block alone 

does not result to acceleration the calculations. 
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Fig. 1: Classify the number of neighbors of nodes in the CNR-2000 benchmark. 
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Fig. 2: Classify the number of neighbors of nodes in the Cage-15 benchmark. 
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Table 3:  Characteristics of the benchmark graphs 

 

Specifications / Benchmark CNR-2000 EU-2005 IN-2004 Cage-15 

number of Nodes 325557 862664 1382908 5154859 

number of Links 2,738,969 16,138,468 13591473 47022346 

average degree 9.879 22.297 12.233 18.24 

maximum in degree 18235 68922 21866 46 

maximum out degree 2716 6985 7753 - 

 
 
 
 
 

Table 1: Platform 1 for examinations 

 

Machine Specifications 

CPU AMD Opteron(tm) Processor 6344 

GPU NVIDIA Tesla K20Xm 

RAM 128 GB 

OS Linux: CentOS release 6.3 (Final) 

Compiler 
- nvcc: NVIDIA (R) CUDA compiler driver 

- gcc 4.8.2 

CUDA compilation tools release 6.5, V6.5.12 

 

Table 2: Platform 2 for examinations 

 

device specifications 

CPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 

GPU Nvidia Geforce GTX 1080 ti 

RAM 64 GB 

OS Linux: Ubuntu server 18.04 LTS 

Compiler 
- nvcc: NVIDIA (R) CUDA compiler driver 

-  gcc version 7.4.0 

CUDA compilation tools release 10.0, V10.0.130 
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Table 4: Execution time (Second) in platform 1 

 

benchmarks / Algorithms PLM APLM  NAIM ACLM DCLM 

CNR-2000 2.74 0.15 0.4 0.10 0.09 

EU-2005 3.69 0.49 1.32 0.31 0.28 

IN-2004 3.71 0.60 0.95 0.47 0.42 

Cage-15 36.88 10.17 13.1 8.32 7.07 

 

Table 5: Execution time (Second) in platform 2 

 

benchmarks / Algorithms PLM APLM NAIM ACLM DCLM 

CNR-2000 0.78 0.12 0.11 0.09 0.079 

EU-2005 2.1 0.36 0.34 0.28 0.25 

IN-2004 1.65 0.49 0.42 0.36 0.31 

Cage-15 14.52 9.14 --- 8.01 6.79 

Table 6: Modularity in platform 1 
 

benchmarks / 
Algorithms 

PLM APLM NAIM ACLM DCLM 

CNR-2000 0.912728 0.912667 0.912909 0.912807 0.912807 

EU-2005 0.938786 0.937441 0.936152 0.937365 0.937365 

IN-2004 0.98031 0.980058 0.978909 0.979802 0.979802 

Cage-15 0.893829 0.866638 0.850144 0.866638 0.866638 

 

Table 7: Modularity in Platform 2 

 

benchmarks / 
Algorithms 

PLM APLM NAIM ACLM DCLM 

CNR-2000 0.912812 0.912667 0.912909 0.912807 0.912807 

EU-2005 0.938533 0.937441 0.936152 0.937365 0.937365 

IN-2004 0.980364 0.980058 0.978909 0.979802 0.979802 

Cage-15 0.893814 0.866638 --- 0.866638 0.866638 
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