
 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

Doi: 10.22061/JECEI.2021.7905.448 25

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

On Multiple Objective of Software Rejuvenation Models with

Several Policies

Z. Rahmani Ghobadi1, H. Rashidi2*, S.H. Alizadeh3

1
Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

2
Department of Mathematics and Computer Science, Allameh Tabataba University, Tehran, Iran.

3
ICT Research Institute, Iran Telecommunication Research Center, Tehran, Iran.

Article Info Abstract

Article History:
Received 12 January 2021
Reviewed 25 February 2021
Revised 14 March 2021
Accepted 15 April 2021

 Background and Objectives: Applications and systems software that are
running constantly become obsolete due to the accumulation of error
conditions or the depletion of resources like physical memory or
performance degradation. In this regard, software rejuvenation has been
proposed to deal with such a phenomenon and prevent software failure in
the future. This paper proposes a multiple objective of software
rejuvenation models with several policies. The purpose is to identify the
right rejuvenation policy in practical situations.
Methods: We model software system with four policies using the Markov
process. These policies are: (a) Software system without rejuvenation; (b)
Software system with partial rejuvenation; (c) Software system with partial
and full rejuvenation; and (d) Software system with four different types of
rejuvenation. In the models and each policy, we consider assigning the level
of performance on which the availability and operating costs are calculated.
Results: To evaluate the models with the four policies, many numerical
experiments were performed. For each policy, we evaluated and compared
three objectives, namely performance, availability and operating costs. The
experimental results states that for Software System with the policy of four
different type of rejuvenation have about 18 and 16 percent improvement
in performance and availability, respectively, compared with those other
policies. Moreover, the operating cost of the software system with partial
rejuvenation policy is lower and more efficient than other policies.
Conclusion: According to the calculated objectives and the results of the
policies, it can be concluded that in systems with lower operational costs,
the most appropriate policy is the software system with four different types
of rejuvenation because this policy bring the maximum possible value for
the performance and availability. The result of this study showed that the
combined method is not always a suitable method because its operating
cost is higher than other methods and in systems that are more important
in terms of cost, this policy is not appropriate.

©2022 JECEI. All rights reserved.

Keywords:
Software rejuvenation

Performance

Availability

Cost

*
Corresponding Author’s Email

Address:

hrashi@gmail.com

Introduction

Given the accumulation of errors like memory leaks,

numerical errors, fragmentation of storage space,

system and application software can get obsolete during

its continuous operation and aging. Moreover, their

performance gradually declines and eventually breaks in

http://jecei.sru.ac.ir/
mailto:hrashi@gmail.com

Z. Rahmani Ghobadi et al.

26 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

case of lack of maintenance ‎[1]. Aging has been seen in

various software systems, from critical systems like

spacecraft systems ‎[2] to commercial ones like web

servers ‎[3], embedded systems ‎[4], billing software ‎[5],

transaction processing systems ‎[6], and

telecommunication switching ‎[7]. Software rejuvenation

is a commonly technique used to fight software aging

and minimize system failure. This technique can remove

the accumulated errors and frees operating system

resources ‎[8], also neutralize the effect of software aging

and restore system function by occasionally stopping

running‎software,‎cleaning‎the‎software’s‎internal‎state,‎

and restarting the system (‎[9], ‎[10]).

The performance of software rejuvenation could
drastically affect the rejuvenation program or policy.
Particularly, system performance can be enhanced by
frequent rejuvenation processes. In this respect,
reaching optimal rejuvenation policy and enhancing the
performance criteria of the system is of great
significance ‎[4].

In order to determine to what extent the rejuvenation

policies can be applied in practice, this paper followed

the research done in ‎[10]. The rest of this paper is

organized as follows. Next section reviews the related

rejuvenation models. Then proposes the multiple

objective software rejuvenation models with several

policies and then shows the numerical experiments to

evaluate and determine the best rejuvenation policy,

and finally provides the conclusions of this research.

Literature Review

In this section, we review the latest studies dedicated

to software rejuvenation. Generally, software aging

refers to the escalation of failure rate or reduction of

performance for a long-running time. More specifically,

software aging effects can be associated with error

accumulation and degrading resources that are leaked or

corrupted states. Such impacts can be detected through

aging indicators. In fact, system variables can be

measured directly and can be associated with software

aging ‎[11]. Software rejuvenation has been defined as

preemptive rollback of applications continuously running

to prevent failures. Since an application might be

unavailable during rejuvenation, it can exacerbate the

downtime and lead to extra costs (e.g., financial losses).

These costs, nonetheless, can be mitigated by

rejuvenation scheduling during occasions when an

application remains idle. Several studies have focused on

the concepts of software aging and rejuvenation over

the last few years. These studies have covered different

aspects including the type of analysis, type of system,

aging indicators, and rejuvenation techniques ‎[9].

Regarding analysis, the rejuvenation methods are

divided into three types of analysis: model-based,

measurement-based, and hybrid. The model-based

analyses involve a mathematical model, that includes

states in which the system is correctly operating, states

where the system is failure-proof, and states where

software rejuvenation is underway. Several types of the

model have been adopted for this purpose, including

Markov Decision Processes and Stochastic Petri Nets

(‎[12], ‎[13]). The model-based method provides an

abstract view of the system as well as a mathematical

treatment. Capable of being grouped in time series

analysis, the measurement-based method involves

machine learning and other areas. The measurement-

based rejuvenation approaches mainly serve to directly

monitor system variables, e.g. aging indicators reflecting

the onset of software aging, and predicting the incident

of aging failures through analyzing the runtime data

collected from a statistical perspective. This method

provides accurate predictions on aging but requires

direct monitoring and is difficult to generalize ‎[14]. The

hybrid method combines the benefits of model-based

and measurement-based approaches. In this paper, we

adopted the hybrid model as well ‎[9]. An important

problem concerns the type of system on which aging is

analyzed. Moreover, it covers the rejuvenation actions

implemented. It has been proven that software aging

can affect numerous types of long-running software

systems. Such systems are divided into three categories:

safety-critical, non-safety-critical, and unspecified ‎[15].

During the past 20 years, software rejuvenation has

been extensively studied with the aim to design

rejuvenation policies that optimize system availability

and performance, mainly in terms of operational

costs ‎[16]. In ‎[17] , refer to software availability modes

with rejuvenation. Moreover, in ‎[18], the authors

presented a comprehensive availability model that

considers failures and recovery behaviors of multiple

virtual machines, various failure modes, and recovery

behaviors and dependencies between different system

subcomponents. A comprehensive model for availability

evaluation of cloud computing with virtual machine

monitor rejuvenation through virtual machine migration

scheduling was presented in ‎[19], where rejuvenation

policies that maximize system availability through two

migration approaches were proposed. A three-level

rejuvenation policy under a Markov modeling framework

was proposed for an active/standby cluster system

in ‎[20], where the steady-state availability and the

downtime cost were the measures of interest.

To sum up, there are four policies for rejuvenation:

(a) Check out completed applications ‎[11]; (b)

Application restart or partial rejuvenation (i.e. the whole

application is restarted) ‎[21], ‎[22], ‎[23], ‎[24], (c) OS

Reboot or full rejuvenation (i.e. it restarts the

OS) ‎[21], ‎[22]; and (d) Turn off the system (at the level of

the physical machine) ‎[11].

On Multiple Objective of Software Rejuvenation Models with Several Policies

J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022 27

The main idea in this paper is to evaluate the four

policies of rejuvenation for a system that is always in

service with lower performance. Hence, it aims to model

the system's performance during software

implementation from a powerful and robust mode to a

failure mode. Moreover, some measures are suggested

for preventing the complete failure of the system during

the implementation by applying different types of

rejuvenation.

The Proposed Multiple Objective Software

Rejuvenation Models

In this section, the multiple objective software

rejuvenation models are proposed. In the models, we

consider four policies‎with leveling the performance of

systems. System performance could be perceived as the

ability of the system to provide services at an acceptable

level. This ability that is known as performance was

modeled and evaluated in the present study. The

modeling shows the change in the performance of the

system through destruction from a robust state to a

state of failure.

It is supposed that the system will go into a state with

lower performance during the rejuvenation activity. In

this state, a performance is defined, followed by

estimating the effect of various rejuvenation policies‎on

it. Hence, we have considered the assumptions to

implement rejuvenation policies, as follows:

 First, the system works in a full performance state.

Due to aging, the level of performance diminishes with a

decrease in the resources including memory usage. The

policy used includes partial ‎[23], full ‎[25], and policy with

four different types of rejuvenation ‎[11]. One of the

rejuvenation types will be activated when the system

performance decreases and reaches 80%, 60%, 40% and

20%. In the case of a fault, the performance level

decreases to 0%.

 While the rejuvenation activity is running, the level

of software performance declines due to the nature and

the type of rejuvenation. For partial rejuvenation, the

performance rate is assumed to be 30%. This reduction

in performance level during the partial rejuvenation

activity involves stopping and restarting the program

process. Meanwhile, the system can still provide

services, although the levels are decreased. This number

is 30% of an indicator level and is used to indicate the

effect of partial rejuvenation on system performance.

 Full rejuvenation includes restarting the operating

system. All running programs must be stopped before

the operating system restart. Thus, a full rejuvenation

can be considered a two-part operation: The first part is

the proper termination of all running programs and the

second restarting is the operating system. Here, it is

assumed that the system performance during the full

rejuvenation is 10%.

 Four different types of rejuvenation may be used.

The first type is a partial restart of services during which

some services are down and unused but still take up

memory space. Instead of shutting down the system

completely, these services shut down completely and

free up the memory they had. As the programs running

in these conditions continue to run, no change occurs in

the level of system performance during this type of

rejuvenation. In the second type, in addition to the

terminated services, the service running is stopped and

memory is freed; thus, it is supposed that system

performance will be 30% by doing so. In the third type, a

total restart happens; i.e., the termination of the

terminated services, the running service, and the

operating system. Accordingly, a large amount of

memory is freed and the system is transferred to a more

efficient mode. The performance of the system will be

10% while performing this type of rejuvenation. The

fourth approach is the operation that occurs at the level

of the physical machine. This approach, which is the

most common method used, is based on turning on and

off. This rejuvenation mode is the most expensive one,

as well, and transfers the system to a powerful and

robust state. The performance of the system is assumed

0% during this type of rejuvenation.

In the policies‎presented, each policy‎corresponds to

a level of performance where a software system can

serve. Software rejuvenation has been proposed to deal

with errors that can lead to possible malfunctions. Four

types of policies have been assumed to examine the

effects of all possible software rejuvenation: (a) Software

system without rejuvenation (SSWR) policy;(b) Software

system with partial rejuvenation (SSPR) policy; (c)

Software system with partial and full rejuvenation

(SSPFR) policy;and (d) Software system with four

different types of rejuvenation (SS4DTR) policy.

Each of these policies is modeled separately in the

next subsections. To investigate this rejuvenation

policies‎ effectiveness, it is necessary to calculate some

criteria. Considering that most of the articles,

including ‎[26], ‎[27] and ‎[28] reviewed and discussed the

criteria of performance, availability and cost, we also in

this study has evaluated performance, availability, and

operating‎cost.‎The‎time‎Markov‎process‎{Z‎(t),‎t≥0}‎used‎

to evaluate the above criteria. Markov process is {Z (t),

t≥0},‎m‎∈ {Policy1, Policy2, Policy3, Policy4} be used to

describe the evaluation of any policy. Abbreviations

provide the definitions needed to calculate performance,

reliability, and cost for any policy.

System availability is defined, the probability of the

system working at moment t.

Z. Rahmani Ghobadi et al.

28 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

To mathematically define availability, we must first

divide the system state-space SP into two subsets of

operational states (UP) and down states (DP) such that

SP=UP∪DP, UP∩DP = 0.

The UP =‎ {1,…,‎ r}‎ is‎ the‎ set‎ of‎ active‎ states‎ of‎ the‎

system and DP =‎{r‎+‎1,…,‎s}‎is‎the‎set‎of‎inactive‎states‎of‎

the system. Availability for each policies expressed as

(1) ‎[29].

(1)‎ ()

Although rejuvenation can delay the failure, it can be

costly. If partial or full, or a four types rejuvenation is a

plan, it costs less than unplanned failure. In the second

case (i.e., unplanned failure), a repair process begins that

is costly and time-consuming. However, not all

rejuvenation policiescan benefit from a software

system ‎[28].

A. Policy 1: Software System without Rejuvenation

(SSWR)

In this software policy, no rejuvenation activity

occurs. Figure 1 shows the state transition diagram for

the SSWR policy. At first, the system starts in a robust

state, fully capable of providing services. In this case, it is

assumed that the system's amount of free memory is at

its highest level, that is 100%, and the system is

operating at the highest possible performance. This

state, as shown in Fig. 1, is indicated by the state S0. Due

to memory consumption, the system experiences other

states before failure. To model the performance drop

due to performance degradation, four states of SH, SM, SL,

and SU have considered which the system performance

levels are assumed to be 80%, 60%, 40%, and 20%,

respectively. State F indicates a failure state in which the

system can't provide any service, and its performance

level is 0%.

The exponential distribution time in each system

state‎assumes‎that‎λH is the constant transition rate from

the robust state S0 to the degraded state SH.

Correspondingly,‎λM is the fixed transition rate from the

state SH to the medium performance state SM,‎and‎λL is

the fixed transition rate from the SM mode to the low-

performance state SL.‎ λU is the constant transition rate

from the state SL to the unstable state SU. Finally, the

system‎with‎λF rate reaches a failure in the state F. After

a failure occurs, the repair process begins to restore the

system to a robust shape. The corresponding constant

transition‎rate‎is‎express‎by‎μrep. Note after the repair is

complete, the system is as good as the new system.

Fig. 1: The state transition diagram for SSWR policy.

To evaluate the system's performance, we must

define the level of performance in each case in which the

system may be located and examine each of the

proposed policies (Policies 1, 2, 3, and 4). The system

performance level is defined as (2):

(2)‎ [()، ∈]،

 ∈ { ، ، ، }

PLP is the performance level of the Policy P.

Therefore, the indicator that calculates the overall

performance of the software system at any given time is

as (3):

(3)‎ ()
 ()

 ، ،

 ∈ { ، ، ، }

where the QP is the transition rate matrix for the Markov

process,‎ and‎ αP is the initial probability distribution of

the Policy P. PIP (t) indicates the system performance at

any time t. It indicates whether the system is enabled

(UP) or disabled (DP) mode.

Since the software systems work continuously in

runtime, the relevant criterion for the policy P, according

to the above equation, is evaluated as (4):

(4)‎ ()

where the πP is the constant state probability

distribution for the policy P obtained by solving the

linear (5):

(5)

∑

 ∈

For the SSWR policy, the corresponding state-space is

SP1={S0, SH, SM, SL, SU, F}. The state transition matrix for

this policy, which is required for PIP evaluation, is

formulated as (6):

[

]

 (6)

Based on the state-space of SP1 and QP1 matrix and

according to (3), the performance index for the SSWR

policy can evaluate as (7):

(7) ()
 ()

Assuming that the software system starts from state

S0, that is, the performance level is 100%, then PIP1 (t) is

calculated as (8):

 () , -

, -

 () () ()
 () ()

 (8)

On Multiple Objective of Software Rejuvenation Models with Several Policies

J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022 29

(16)

By solving linear equations in (5) and with using (4),

the software system performance can be expressed as

(9):

(9)

To model the availability in the SSWR policy, the

state-space SP1 = {S0, SH, SM, SL, SU, F} can be divided into

UP1 = {S0, SH, SM, SL} and DP1 = {SU, F} (see Fig. 1). Note that

the states S0, SH, SM, SL are the operating states, and the

states SU, F are the unstable and failure states of the

system in which the system does not work properly.

Based on the state-space SP1and the QP1 matrix in (6), the

availability of the SSWR policies evaluated according to

(10):

(10)‎

Availability is evaluated according to the (11) and (12):

(11)‎

(12)‎‎

The system designer must carefully decide on the

rejuvenation policy, to determine whether rejuvenation

is beneficial in terms of operational cost, at first, the cost

for the SSWR policy is evaluated. Therefore, the cost of

downtime for a SSWR policy is defined as (13):

 (13)

where Crep is the system repair cost. The total downtime

cost per unit time for the SSWR policies calculated as

(14):

(14)‎

B. Policy 2: Software System with Partial Rejuvenation

(SSPR)

The partial rejuvenation can counteract system

performance degradation ‎[22], ‎[23]. The partial

rejuvenation has minimal effect and can make running

applications more usable ‎[22].

Fig. 2 shows the state transition diagram for the SSPR

policy.

The system initially starts in a robust state. This state

is expressed by S0, where the system performance level

is 100%. Over time, with performance degradation, the

system state change and reaches the level of

performance 80% and then 60% and then 40%, and

finally to the unstable state, that is 20% of the

performance level. If the performance degradation

continues, system failure will occur.

In each of these states, the partial rejuvenation can

occur and bring the system into a better situation. The

change of situation between the states occurs when the

partial rejuvenation is applied, for example, from SH to

SHPR with transition rate rp.

Fig. 2: The state transition diagram for the SSPR policy.

In the software system where only the partial

rejuvenation is active, the corresponding state-space is

SP2= {S0, SH, SM, SL, SU, F,SHPR,SMPR,SLPR,SUPR} which states

SHPR, SMPR, SLPR, SUPR are rejuvenation states. The

performance in each case can obtain according to Fig. 2.

The state transition matrix for this policy is defined as

(15):

𝑄𝑃2

[

 𝜆𝐻 𝜆𝐻
 (𝜆𝑀 𝑟𝑝) 𝜆𝑀 𝑟𝑝

 (𝜆𝐿 𝑟𝑝) 𝜆𝐿 𝑟𝑝

 (𝜆𝑈 𝑟𝑝) 𝜆𝑈 𝑟𝑝

 (𝜆𝐹 𝑟𝑝) 𝜆𝐹 𝑟𝑝
𝜇𝑅𝑒𝑝 𝜇𝑅𝑒𝑝

𝜇𝑃𝑅 𝜇𝑃𝑅
 𝜇𝑃𝑅 𝜇𝑃𝑅
 𝜇𝑃𝑅 𝜇𝑃𝑅
 𝜇𝑃𝑅 𝜇𝑃𝑅]

 (15)

Like the SSWR policy, the software system starts from

state S0, which the performance is 100%. The

performance for the SSPR policies calculated as (16):

Z. Rahmani Ghobadi et al.

30 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

By solving the linear equations, the software system

performance is expressed as (17):

(17)

 2 2 2 2
 2 (2
 2 2)
 2

To model the availability in the SSPR policy according

to Fig. 2, the state-space is SP2= {S0, SH, SM, SL, SU, F, SHPR,

SMPR, SLPR, SUPR} and the state-space can be divided

into active UP2={S0, SH, SM, SL} and down DP2={ SU, F,SHPR,

SMFR, SUPR , SLFR}. Although during system rejuvenation,

the system's performance is 30%, they are considered

down states. The availability of the SSPR policies

expressed as (18):

(18)‎ 2 2 2 2 2

In the case of partial rejuvenation, the system can

continue the service at a low level of performance, and

the total downtime cost is calculated as (19):

(19) 2() {

 ∈ * +

 ∈ * +

where Crep is the system repair cost and CPR is the cost of
performing partial rejuvenation. Therefore, the total cost
of downtime per unit time for SSPR policies expressed as
(20):

(20)
 2 2 (2 2

 2)

C. Policy 3: Software system with the partial and full
rejuvenation (SSPFR)

Fig. 3 shows the state transition diagram for the

SSPER policy. Here, the system initially starts in a robust

state. This state is expressed as S0, where the

performance level is 100%. Over time, the system’s‎

performance degradation increases, and the system

performance level is assumed to be reduced to 80% and

then 60% and 40%, and finally, to the unstable state,

that is, 20%.

If the performance degradation continues, the system

may experience a software failure. In each of these

states, the partial or full rejuvenation can occur and

improve the system's state depending on the

performance level. As shown in Fig. 3, when the system

reaches the state SH, it is better to perform a partial

rejuvenation activity to move the system state to the

optimal condition. In states with performance levels

60%, 40%, and 20%, it is better to have a full

rejuvenation to optimize the system.

The partial and full rejuvenation occurs with the rate

rp and rF, respectively. In full rejuvenation, the system

will have a low performance for a more extended period.

When the rejuvenation activity is performed, the system

will go into a state of low performance.

𝑄𝑃3

[

 𝜆𝐻 𝜆𝐻
 (𝜆𝑀 𝑟𝑝) 𝜆𝑀 𝑟𝑝

 (𝜆𝐿 𝑟𝐹) 𝜆𝐿 𝑟𝐹

 (𝜆𝑈 𝑟𝐹) 𝜆𝑈 𝑟𝐹
 (𝜆𝐹 𝑟𝑝) 𝜆𝐹 𝑟𝑝

𝜇𝑅𝑒𝑝 𝜇𝑅𝑒𝑝

𝜇𝑃𝑅 𝜇𝑃𝑅
𝜇𝐹𝑅 𝜇𝐹𝑅
𝜇𝑃𝑅 𝜇𝐹𝑅
 𝜇𝑃𝑅 𝜇𝑃𝑅]

 (21)

Fig. 3: The state transition diagram for the SSPFR policy.

On Multiple Objective of Software Rejuvenation Models with Several Policies

J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022 31

In the SSPFR policy, the corresponding state-space is

SP3= {S0, SH, Sm, SL, SU, F, SHPR, SMFR, SLFR, SUPR}, which the

states SHPR and SUPR are for partial rejuvenations and the

states SMFR and SLFR are for full rejuvenations. The

performance can be obtained according to Fig. 3. The

state transition matrix for this policy is defined as (21).

Similar to the previous policy, the software system

starts from the state S0, which the performance is 100%.

The performance for the SSPFR is calculated as (22):

 3() , -

, -

 3 () 3 () 3 ()
 3 () 3 ()
 3 ()

 (3 () 3 ()

 3 ())

(22)

By solving the linear equations, the performance of

software system is expressed as (23):

(23)

 3 3 3 3
 3 3
 3

 (3 3 3)

When both partial and full rejuvenation are used, the

state-space divided two subsets: up UP3 = {S0, SH, SM, SL}

and down DP3 = {SU, F, SHPR, SMFR, SUPR, SLFR}. The

availability of the SSPFR policies expressed as (24):

(24) 3 3 3 3 3

In the SSPFR policy, reduced the level of performance,

the costs imposed on the system is considered as (25):

(25) 3()

{

 ∈ * +

 ∈ { }

 ∈ * +

Therefore, the total cost of downtime per unit time

can be calculated as (26):

(26)‎

 3 3
 (3 3
 3) (3)

D. Policy 4: Software system with four different types of

rejuvenation (SS4DTR)

This policy keeps the system in its best situation by

applying four rejuvenation types at four different levels.

Fig. 4 shows the state transition diagram for the

SS4DTR policy.

At first, the system starts in a robust state, where the

performance level is 100%; this state is shown as S0.Over

time, the performance level degrades to 80% and then

60% and 40%, finally, to the unstable state 20%. If the

performance degradation continues, the system will

eventually go to failure. Each of the four types of

rejuvenation can occur in these states and improve the

system's condition depending on the performance levels.

When the system reaches the state SH, which is a

performance level 80%, it is better to have a type I

rejuvenation, which will have the lowest downtime cost

rejuvenation activity, as shown in Fig. 4. In the state SP1R,

the system runs and continues to work without reducing

the level of performance. After the rejuvenation activity,

the system is transferred to the optimal state with a

performance level 100%.

Fig. 4: The state transition diagram for the SS4DTR policy.

Z. Rahmani Ghobadi et al.

32 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

When the system reaches SM state with a

performance level 60%, it can apply type II rejuvenation.

During this type of rejuvenation, the system

performance level will be 50% (the state SP2R) and after

completion, the system is transferred to the optimal

state 100%. When the system reaches SL state with a

performance level 40%, type III rejuvenation can be

performed. During this type's rejuvenation, the system

performance level will be 10% (the state SP3R), and after

rejuvenation completion, the system is going to the

optimal state (performance level 100%).Type IV

rejuvenation is the best choice when the system reaches

an unstable state with a performance level 20%.

Similar to the previous policy, the software system

starts from the state S0, which the performance is 100%.

The performance for SS4DTR policy is calculated as (28):

 4() , -

, -

 4 () (4 () 4 ())

 4 () 4 2 ()

 4 () 4 ()
 4 3 ()

 (28)

By solving the linear equations, the software system

performance is expressed as (29):

 (29)
 4 4 (4 4) 4

 4 2 4 4
 4 3

when SS4DTR policy is used, the state-space is divided

into two up and down subsets, UP4={S0, SH, SM,

SL,SP1R,SP2R}and DP4={SU, F,SP4R,SP3R}.

The availability of the SS4DTR policy is expressed as

(30):

 (30)
 4 4 4 4 4 4

 4 2

In this policy, four different types of rejuvenation

have applied, and the costs imposed on the system are

considered as (31):

However, the system downtime increase, and the

performance level is 0% during this type of rejuvenation

but compared to the time it takes to repair, this

rejuvenation will be more appropriate. It will eventually

bring the system back to the optimal situation. Finally,

when the system fails (the state F), the only solution is to

repair, which has a high operational cost and downtime.

In the SS4DTR policy, the state-space is SP4={S0, SH, SM,

SL, SU, F,SP1R,SP2R,SP3R , SP4R }, which each of states SP1R,

SP2R, SP3R, SP4R are related to the first, second, third and

fourth type of rejuvenation, respectively. The

performance can be obtained according to Fig. 4. The

state transition matrix for this policy is defined as (27).

(31) 4()

{

 ∈ * +

 4 ∈ * 4 +

 3 ∈ * 3 +

 2 ∈ * 2 +

 ∈ * +

Therefore, the total cost of downtime per unit time is

calculated as (32):

(32)

 4 4 4 4 4

 3 4 3 2 4 2
 4

Numerical Experiments

In this section, we intend to provide a comparison

between the four policies with numerical experiments.

The data used are present in Table 1, do not come out of

real-life software systems, but it is under the relevant

software rejuvenation literature ‎[17], ‎[30].

Figs. 5, 6, and 7 shows the system's performance,

availability, and operational cost for SSWR, SSPR, SSPFR,

and SS4DTR‎policies‎in‎48‎hours’‎period.‎As‎can‎be‎seen,‎

for SSWR policy, the system performance and availability

decrease with the operational time since without any

proactive actions, performance and availability

degradation cannot be avoided either an eventual

failure. The high probability of an eventual failure affects

 (27)

On Multiple Objective of Software Rejuvenation Models with Several Policies

J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022 33

the cost indicator, which increases with the operational

time.

Table 1: Parameter values for comparing policies

Parameter Value

λH 8 h
-1

λM 16 h
-1

λL 24 h
-1

λU 32 h
-1

λF 40 h
-1

µrep 6 h
-1

µPR = µP3R 4 h
-1

µFR= µP4R 5 h
-1

rP= rP3 4 h
-1

rF= rP4 20 h
-1

rP1 0.5 h
-1

rP2 2 h
-1

µP1R 1 h
-1

µP2R 2 h
-1

Crep 50 cost units per hour

CPR = CP3R 5 cost units per hour

CFR= CP4R 10 cost units per hour

CP2R 2 cost units per hour

CP1R 1 cost units per hour

In the SSPR policy, the rejuvenation policy does every

4 h; as seen in the previous policy, over time, the

performance of the system will decrease, but in this

policy due to the partial rejuvenation is expected to

occur at a slower rate, and often expected to provide a

higher level of performance. It should also consider that

rejuvenation activities will incur costs, including

unavailability of the system during software

rejuvenation, so that rejuvenation activities will reduce

availability. Fig. 6 shows the performance, availability,

and operational costs for the SSPR policy.

In the SSPFR policy, the partial rejuvenation does

once every 4 h and the full rejuvenation does once every

20h. Over time, system performance will decrease, but

given the partial and full rejuvenation enabled, this

performance reduction be expected to occur at a slower

rate, as shown in Fig. 3 when performance is 80%, the

partial rejuvenation performed. When performance is

60% or 40% or 20%, the full rejuvenation performed.

According to the values of Table 1 and the equations

obtained in the previous section, the performance,

availability, and operating cost diagrams are present in

Fig. 5, 6, and 7.

In the SS4DTR policy, as shown in Fig. 4, when the

performance is 80%, the first type of rejuvenation, in the

case of 60% performance, the second type of

rejuvenation, in the case of 40% performance, the third

type and in the case with 20% performance, the fourth

type is rejuvenated. According to the values of Table 2

and the equations obtained in the previous section, the

performance, availability, and operating cost diagrams

are present in Fig. 5, 6, and 7.

Fig 5. The performance of the policies.

Fig 6: The availability of the policies.

Fig 7: The cost of the policies.

Comparison of Numerical Results Expressed

Policies
According to the obtained results, the policies can be

compared in terms of performance, availability, and

Z. Rahmani Ghobadi et al.

34 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

operating costs. According to Fig. 5, it seems that the

SS4DTR policy provides the highest performance among

all policies.

As shown in Fig. 6, SS4DTR policy is also more

efficient in terms of availability, and this is since the

system in situations where the first and second type of

rejuvenation be performed with a slight reduction in

performance, Still available.

Fig. 7 shows the operating cost of each policy. As can

be seen, in contrast to the performance and availability

that was optimal for the SS4DTR policy, the operating

cost for the SSPR policy is proportional. It is lower and

more efficient than other policies.

Conclusion

This paper followed the research done in ‎[10] that its

main purpose was to find out the best policy in the

rejuvenation models for software systems and in order

to determine to what extent the existing polices can be

applied in practice. For this purpose, we consider three

objectives, namely performance, availability and,

operating costs. In the rejuvenation models, we

investigated four different policies, including software

system without rejuvenation (SSWR), with the partial

rejuvenation (SSPR), with the partial and full

rejuvenation (SSPFR), and system with four different

types of rejuvenation (SS4DTR). For each policy, the

performance, availability, and operational cost are

calculated. According to the presented policies,

calculated objectives, and the values of each of these

objectives, we saw that SS4DTR policy in terms of

performance and availability works better than other

policies. On the other hand, applying SS4DTR policy

caused more costs, and the SSPR policy had a lower

operating costs than other policies. Therefore, it can be

concluded that in systems with lower operational costs,

the most appropriate policy is the SS4DTR, because it

has the maximum possible value in the performance and

availability. The result of this study showed that the

combined method is not always a suitable method

because its operating cost is higher than other methods

and in systems that are more important in terms of cost,

this policy is not appropriate.

Author Contributions

Z. Rahmani Ghobadi, H. Rashidi, and S. Hoseinalizadeh

presented the multiple objective of software

rejuvenation models with four policies. Z. Rahmani

Ghobadi examined each policy and wrote the

manuscript. H. Rashidi and S. Hoseinalizadeh interpreted

the results and improved the structure of paper.

Acknowledgment

The authors gratefully thank the anonymous

reviewers and the editor of JECEI for their useful

comments and suggestions.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

Abbreviations

EP‎ State-Space for the policy P

It is a square matrix whose

elements represent the

probability transition matrix

between the states.

The initial probability

distribution of the ZP (t)

process for the policy P

The column vector s is the

next in which r is the first

element equal to 1, and the

remainder s-r is equal to

zero.

It is a next r column vector

whose elements have a value

of 1.

λH

constant transition rate from

the robust state S0 to the

degraded state SH

λM

fixed transition rate from the

SH state to the medium

performance state SM

λL

fixed transition rate from the

SM mode to the low-

performance state SL

λU
constant transition rate from

SL to unstable state SU

λF
rate reaches a failure in state

F

µrep
repair rate for restore the

system to a robust shape

µPR = µP3R
constant transition rate for

partial rejuvenation

µFR= µP4R
constant transition rate for

full rejuvenation

rP= rP3
Probability transition from SL

to SP3R

rF= rP4
Probability transition from SU

to SP4R

rP1
Probability of partial

rejuvenation

On Multiple Objective of Software Rejuvenation Models with Several Policies

J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022 35

rP2
Probability of full

rejuvenation

µP1R
constant transition rate for

type I rejuvenation

µP2R
constant transition rate for

type II rejuvenation

Crep Cost of repair

CPR = CP3R Cost of partial rejuvenation

CFR= CP4R Cost of full rejuvenation

CP1R Cost of type I rejuvenation

CP2R Cost of type II rejuvenation

References

[1] M. Grottke, R. Matias, K. &Trivedi, "The fundamentals of software
aging," in Proc. IEEE First International Workshop on Software
Aging and Rejuvenation, Washington, DC, USA, 2008.

[2] T. Tai, S. N. Chau, L. Alkalaj, H. Hecht, "On-Board Preventive
Maintenance: Analysis of Effectiveness and Optimal Duty Period,"
in‎ Proc.‎ Third‎ Int’l‎ Workshop‎ Object‎ Oriented‎ Real-Time
Dependable Systems, CA, 1997.

[3] L. Lei, K. Vaidyanathan, K.S. Trivedi, "An approach for estimation
of software aging in a web server," in‎ Proc. International
Symp.on Empirical Software Engineering, 2002.

[4] C.M. Kintala, "Software rejuvenation in embedded systems," J.
Autom., Lang. , 14: 63–73, 2009.

[5] K. Iwamoto, T. Dohi, H. Okamura, N. Kaio, "Discrete-time cost
analysis for a telecommunication billing application with
rejuvenation," Comput. Math. Appl., 51(2): 335-344, 2006.

[6] J. Zhao, Y. Wang, G. Ning, K. Trivedi, R. Matias, K. Cai, "A
comprehensive approach to optimal software rejuvenation,"
Perform. Eval., 70(11): 917-933, 2013.

[7] A. Avritzer, E.J. Weyuker, "Monitoring Smoothly Degrading
Systems for Increased Dependability," Empirical Software Eng.,
2(1): 59-77, 1997.

[8] G.‎ Levitin,‎ L.‎ Xing,‎ H.‎ Huang,‎ “Optimization‎ of‎ partial‎ software‎
rejuvenation‎policy,”‎Reliab. Eng. Syst. Saf., 182: 63-72, 2019.

[9] D. Cotroneo, R. Natella, R. Pietrantuono and S. Russo, "A survey
of software aging and rejuvenation studies," J. Emerg. Technol.
Comput. Syst, 10(1), 2014.

[10] G. Rahmani, H. Rashidi, "software availability model based on
multilevel software rejuvenation and markov chain," Turk. J. Elec.
Eng. & Comp. Sci., 29: 730-744, 2021.

[11] Y. Bao, X. Sun, K. Trivedi, "A workload-based analysis of software
aging, and rejuvenation," IEEE Trans. Reliab., 54(3): 541-548,
2005.

[12] S. Garg, A. Pulia, M. Telek, K. Trivedi, "Analysis of software
rejuvenation using markov regenerative stochastic petri net," in
Proc. Sixth International Symposium on Software Reliability
Engineering, 1995.

[13] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, Y. Liu,
"Software aging and multifractality of memory resources," in
Proc. International Conference on Dependable Systems and
Networks, 2003.

[14] D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, "Software
aging and rejuvenation: Where we are and where we are going,"
in Proc. IEEE Third International Workshop, 2011.

[15] H. Okamura, K. Yamamoto, T. Dohi, "Transient analysis of
software rejuvenation policies in virtualized system: Phase-type

expansion approach," Qual. Technol. Quant. Manage., 11(3): 336-
351, 2014.

[16] G. Ning, J. Zhao, Y. Lou, J. Alonso, R. Matias, et al. "Optimization
of two-granularity software rejuvenation policy based on the
Markov regenerative process," IEEE Trans. Reliab., 65(4): 1630–
1646, 2016.

[17] T.‎Dohi,‎H.‎Okamura,‎ “Dynamic‎ software‎availability‎model‎with‎
rejuvenation,”‎J. Oper. Res. Soc. Jpn., 59(4): 270–290, 2016.

[18] T.A.‎ Nguyen,‎ D.‎ Kim,‎ J.‎ Park,‎ “A‎ comprehensive‎ availability‎
modeling and analysis of a virtualized servers system using
stochastic‎reward‎nets,” Sci. World J., 2014: 1-18, 2014.

[19] M. Torquato, I.M.‎Umesh,‎P.J.‎Maciel,‎“Models‎for‎availability‎and‎
power consumption evaluation of a private cloud with VMM
rejuvenation‎ enabled‎ by‎ VM‎ live‎ migration,”‎ J. Supercomput.,
74(9): 1–25, 2018.

[20] J.M.‎ Preeti,‎ “Availability‎ analysis‎ of‎ software‎ rejuvenation‎ in‎
active/standby‎ cluster‎ system,”‎ Int. J. Ind. Syst. Eng., 19(1): 75–
93, 2015.

[21] W. Xie, Y. Hong, K.S. Trivedi, "Analysis of a two-level software
rejuvenation policy," Reliab. Eng. Syst. Saf., 87(1): 13-22, 2005.

[22] V.P. Koutras, "Two-level software rejuvenation model with
increasing failure rate degradation," Berlin Heidelberg: Springer-
Verla, 97: 101– 115, 2011.

[23] Y. Fang, B. Yin, G. Ning, Z. Zheng, K. Cai, "A rejuvenation strategy
of two-granularity software based on adaptive control," in Proc.
IEEE 22nd Pacific Rim International Symposium on dependable
computing (PRDC), Christchurch, 2017.

[24] V.P. Koutras, A.N. Platis, N. Limnios, "Availability and reliability
estimation for a system undergoing minimal, perfect and failed
rejuvenation," in Proc. IEEE International Conference on Software
Reliability Engineering Workshops, Seattle, 2008.

[25] A. Sadek, N. Limnios, "Nonparametric estimation of reliability and
survival function for continuoustimefinite Markov processes," J.
Stat. Plann. Inference , 133(1): 1–21, 2005.

[26] Y. Lee, H.‎ Kim,‎ “Availability‎ analysis of systems with time-based
software rejuvenation,”‎ Reliab. Eng. Syst. Saf., 23(2): 201-206,
2019.

[27] Q. Qiu, L.‎Cui,‎“Availability‎analysis‎for‎general repairable systems
with‎ repair‎ time‎ threshold,”‎ Commun. Stat.- Theory Methods,
48(3): 628-64, 2019.

[28] V.P. Koutras, A.N.‎ Platis,‎ “On the performance of software
rejuvenation models with multiple degradation levels,”‎Software
Qual. J., 28(1): 1-37, 2020.

[29] Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, "Software
rejuvenation: Analysis, module andapplications," in Proc. Twenty-
Fifth International Symposium on Fault-Tolerant Computing.
Digest of Papers, 1995.

[30] X. Hua, C. Guo, H. Wu, D. Lautner, S. Ren, "Schedulability analysis
for real-time task set onresource with performance degradation
and dual-level periodic rejuvenations," IEEE Trans. Comput.,

66(3): 553-559, 2017.

Biographies
Zahra Rahmani Ghobadi received the B.Sc.
degree in Software Engineering from the Shomal
University, Amol, Iran, the M.Sc. degree in
Software Engineering from the Islamic Azad
University, Qazvin, Iran, and she is attending the
Ph.D. degree in Software Engineering from the
Islamic Azad University, Qazvin, Iran. In 2015, she
joined the department of, Computer and
Information Technology, the Islamic Azad

University, Ramsar, Iran. Her current research interests include
software engineering, software quality, and software availability.

https://ieeexplore.ieee.org/document/5355512
https://ieeexplore.ieee.org/document/5355512
https://ieeexplore.ieee.org/document/5355512
https://ieeexplore.ieee.org/document/609924
https://ieeexplore.ieee.org/document/609924
https://ieeexplore.ieee.org/document/609924
https://ieeexplore.ieee.org/document/609924
https://ieeexplore.ieee.org/document/1166929
https://ieeexplore.ieee.org/document/1166929
https://ieeexplore.ieee.org/document/1166929
https://dl.acm.org/doi/10.5555/1643359.1643364
https://dl.acm.org/doi/10.5555/1643359.1643364
https://dl.acm.org/doi/10.5555/1643359.1643364
https://www.sciencedirect.com/science/article/pii/0898122105004712
https://www.sciencedirect.com/science/article/pii/0898122105004712
https://www.sciencedirect.com/science/article/pii/0898122105004712
https://www.sciencedirect.com/science/article/abs/pii/S0166531613000618
https://www.sciencedirect.com/science/article/abs/pii/S0166531613000618
https://www.sciencedirect.com/science/article/abs/pii/S0166531613000618
https://link.springer.com/article/10.1023/A:1009794200077
https://link.springer.com/article/10.1023/A:1009794200077
https://link.springer.com/article/10.1023/A:1009794200077
https://link.springer.com/article/10.1023/A:1009794200077
https://www.sciencedirect.com/science/article/abs/pii/S095183201831319X
https://www.sciencedirect.com/science/article/abs/pii/S095183201831319X
https://dl.acm.org/doi/10.1145/2539117
https://dl.acm.org/doi/10.1145/2539117
https://dl.acm.org/doi/10.1145/2539117
https://dl.acm.org/doi/10.1145/2539117
https://journals.tubitak.gov.tr/elektrik/issues/elk-21-29-2/elk-29-2-17-2003-159.pdf
https://journals.tubitak.gov.tr/elektrik/issues/elk-21-29-2/elk-29-2-17-2003-159.pdf
https://journals.tubitak.gov.tr/elektrik/issues/elk-21-29-2/elk-29-2-17-2003-159.pdf
https://ieeexplore.ieee.org/document/1505059
https://ieeexplore.ieee.org/document/1505059
https://ieeexplore.ieee.org/document/1505059
https://ieeexplore.ieee.org/document/497656
https://ieeexplore.ieee.org/document/497656
https://ieeexplore.ieee.org/document/497656
https://ieeexplore.ieee.org/document/497656
https://ieeexplore.ieee.org/document/1209987
https://ieeexplore.ieee.org/document/1209987
https://ieeexplore.ieee.org/document/1209987
https://ieeexplore.ieee.org/document/1209987
https://ieeexplore.ieee.org/document/6141717
https://ieeexplore.ieee.org/document/6141717
https://ieeexplore.ieee.org/document/6141717
https://ieeexplore.ieee.org/document/6141717
https://www.tandfonline.com/doi/abs/10.1080/16843703.2014.11673349
https://www.tandfonline.com/doi/abs/10.1080/16843703.2014.11673349
https://www.tandfonline.com/doi/abs/10.1080/16843703.2014.11673349
https://www.tandfonline.com/doi/abs/10.1080/16843703.2014.11673349
https://ieeexplore.ieee.org/document/7493613
https://ieeexplore.ieee.org/document/7493613
https://ieeexplore.ieee.org/document/7493613
https://ieeexplore.ieee.org/document/7493613
https://www.orsj.or.jp/~archive/pdf/e_mag/Vol.59_04_270.pdf
https://www.orsj.or.jp/~archive/pdf/e_mag/Vol.59_04_270.pdf
https://www.hindawi.com/journals/tswj/2014/165316/
https://www.hindawi.com/journals/tswj/2014/165316/
https://www.hindawi.com/journals/tswj/2014/165316/
https://link.springer.com/article/10.1007/s11227-018-2485-4
https://link.springer.com/article/10.1007/s11227-018-2485-4
https://link.springer.com/article/10.1007/s11227-018-2485-4
https://link.springer.com/article/10.1007/s11227-018-2485-4
https://ideas.repec.org/a/ids/ijisen/v19y2015i1p75-93.html
https://ideas.repec.org/a/ids/ijisen/v19y2015i1p75-93.html
https://ideas.repec.org/a/ids/ijisen/v19y2015i1p75-93.html
https://www.sciencedirect.com/science/article/abs/pii/S095183200400047X
https://www.sciencedirect.com/science/article/abs/pii/S095183200400047X
https://link.springer.com/chapter/10.1007/978-3-642-21393-9_8
https://link.springer.com/chapter/10.1007/978-3-642-21393-9_8
https://link.springer.com/chapter/10.1007/978-3-642-21393-9_8
https://ieeexplore.ieee.org/document/7920603
https://ieeexplore.ieee.org/document/7920603
https://ieeexplore.ieee.org/document/7920603
https://ieeexplore.ieee.org/document/7920603
https://ieeexplore.ieee.org/document/5355519
https://ieeexplore.ieee.org/document/5355519
https://ieeexplore.ieee.org/document/5355519
https://ieeexplore.ieee.org/document/5355519
https://www.sciencedirect.com/science/article/abs/pii/S0378375804001120
https://www.sciencedirect.com/science/article/abs/pii/S0378375804001120
https://www.sciencedirect.com/science/article/abs/pii/S0378375804001120
https://www.sciencedirect.com/science/article/abs/pii/S0378375804001120
https://www.koreascience.or.kr/article/JAKO201912964892264.page
https://www.koreascience.or.kr/article/JAKO201912964892264.page
https://www.koreascience.or.kr/article/JAKO201912964892264.page
https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1417430
https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1417430
https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1417430
https://www.researchgate.net/publication/339011346_On_the_performance_of_software_rejuvenation_models_with_multiple_degradation_levels
https://www.researchgate.net/publication/339011346_On_the_performance_of_software_rejuvenation_models_with_multiple_degradation_levels
https://www.researchgate.net/publication/339011346_On_the_performance_of_software_rejuvenation_models_with_multiple_degradation_levels
https://ieeexplore.ieee.org/document/466961
https://ieeexplore.ieee.org/document/466961
https://ieeexplore.ieee.org/document/466961
https://ieeexplore.ieee.org/document/466961
https://dl.acm.org/doi/10.1109/TC.2016.2602833
https://dl.acm.org/doi/10.1109/TC.2016.2602833
https://dl.acm.org/doi/10.1109/TC.2016.2602833
https://dl.acm.org/doi/10.1109/TC.2016.2602833

Z. Rahmani Ghobadi et al.

36 J. Electr. Comput. Eng. Innovations, 10(1): 25-36, 2022

Hassan Rashidi is a Professor in Department of
Mathematics and Computer Science of Allameh
Tabataba'i University. He received the B.Sc.
degree in Computer Engineering and M.Sc.
degree in Systems Engineering and Planning,
both from the Isfahan University of Technology,
Iran. He obtained Ph.D. from Computer Science
and Electronic System Engineering department
of University of Essex, UK. His research interests

include software engineering, software testing, and scheduling
algorithms. He has published many research papers in International
conferences and Journals.

Sasan H. Alizadeh is an Assistant Professor in
IRAN Telecommunication Research Center. He
received the B.Sc. degree in Computer from the
Shiraz University, Shiraz, Iran, the M.Sc. degree
in Computer from the Amirkabir University,
Tehran, Iran, and He obtained Ph.D. from
Computer Science from the Amirkabir
University, Tehran, Iran.

Copyrights

©2022 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
Z. Rahmani Ghobadi, H. Rashidi, S.H.‎ Alizadeh,‎ “On‎ multiple objective of software
rejuvenation models with several policies,” J. Electr. Comput. Eng. Innovations, 10(1): 25-
36, 2022.

DOI: 10.22061/JECEI.2021.7905.448

URL: https://jecei.sru.ac.ir/article_1551.html

https://jecei.sru.ac.ir/article_1551.html

