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 Background and Objectives: One major problem in the minimum power 
distortionless response (MPDR) beamformer is the signal cancellation 
problem, i.e., the desired signal is canceled by the reflected signal, even 
though the distortionless response constraint is satisfied. Solving this 
problem is the objective of this paper.  
Methods:  It is well known that the signal cancellation problem can be 
avoided by minimizing the cross-spectrum matrix of noise, i.e., using the 
minimum variance distortionless response (MVDR) beamformer. But, in the 
case of disturbance signals which have correlation with the desired signal, 
estimation of this matrix is a challenging problem. In this paper we propose 
an approach for estimating the cross-spectrum matrix of noise signal from 
which we can solve the signal cancellation problem.  
Results:  Simulation examples show that using the proposed method we can 
bypass the signal cancellation problem completely.   
Conclusion: A common belief is that in the case of a disturbance that is a 
reflected version of the desired signal, due to cohesive appearance and 
disappearance of both the disturbance and the desired signal, the estimation 
of cross-spectrum matrix of noise signal is typically not possible in practice. 
So, based on this common belief, we can’t use the MVDR beamformer in this 
case. In this paper we show that this common belief is a fault. We propose a 
general approach for estimating the cross-spectrum matrix of noise signal 
that is applicable even in the case of correlated disturbances. 
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Introduction 
Spherical microphone array is a type of microphone 

arrays that has a spherical structure in which 

microphones are placed on a sphere surface. This kind of 

microphone arrays has been an interesting field of study 

for the past decade [1], [2], [3], [4], [5], [6]. The 

microphone array produces an output signal with some 

desired properties from the microphones input signals. 

One such desired property is to enhance signal coming 

from a particular direction and to weaken signals coming 

from other directions, therefore forming a directional, or 

spatial filter. This filter forms the beam that looks at a 

desired direction, so it is called beamformer [1], [2], [3], 

[7]. Noise minimization bemformer is one important 

type of beamformer in which the beam pattern is 

adapted to the actual sound field.  

This beamformer discerns the desired signal from the 

noise and, therefore achieves better performance in 

real, and noisy sound fields. When the noise field is not 

perfectly diffuse, the optimality of the beamformers 

which are optimal in decreasing noise due to diffuse 

sound field, such as maximum directivity beamformer, is 
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not maintained any more [1]. In this case an optimum 

beam pattern, adapted to the true measured noise, 

should be constructed. The minimum power 

distortionless response (MPDR) is one such a 

construction in which the beam pattern is restricted to 

be unity in the look direction, meanwhile the power of 

the array output is minimized [1], [2]. The MPDR 

beamformer is beneficial especially when the desired 

signal propagates with a plane wave coming from the 

look direction, and all other signals considered as noise 

that to be minimized.  

One of the main problems in the MPDR beamformer 

is signal cancellation [1], [8], [9], [10], [11], [12], [13]. 

This problem occurs when the disturbance signals 

contain some signals that have correlation with the 

desired signal. For example, whenever the desired signal 

being reflected from neighboring surfaces such as walls 

in a room, signal cancellation may happen. So, these 

disturbance signals are the weakened and phase shifted 

versions of the desired signal. The signal cancellation 

means that, in place of retaining the desired signal 

unchanged and weakening the disturbances, the 

distortionless response constraint in the look direction is 

satisfied by the beamformer, but then it uses the 

correlated disturbances to remove the desired signal via 

minimizing the cross-spectrum matrix of the overall 

signal that involves contributions from both [1].  

One approach to overcome the signal cancellation 

problem is by introducing nulls at the directions of the 

disturbances through additional constraints. The linearly 

constrained minimum variance (LCMV) beamformer 

employs this approach [14], [15], [16]. Although the null 

is obtained irrespective of the characteristic of 

disturbance signals, we need to determine the arriving 

direction of the disturbances in the LCMV beamformer. 

On the other hand, in the MPDR beamformer the nulls in 

the direction of disturbances are achieved via minimizing 

the cross-spectrum matrix of the overall signal, and as 

we have mentioned above, if the disturbance has 

correlation with the desired signal, MPDR design is 

remarkably degraded, due to signal cancellation [1]. 

Another approach to avoid the signal cancellation 

problem is by minimizing the cross-spectrum matrix of 

the noise. This approach is called minimum variance 

distortionless response (MVDR) beamforming [1], [17], 

[18]. Estimation of this matrix in presence of correlated 

disturbance is a challenging problem. For example, a 

common belief is that in a situation where a disturbance 

is a reflected form of the desired signal, due to cohesive 

appearance and disappearance of both the disturbance 

and the desired signal, estimation of cross-spectrum 

matrix of the noise signal is typically not possible in 

practice. So, based on this common belief, we cannot 

use the MVDR beamformer in this case for the purpose 

of solving the signal cancellation problem. 

In this paper we show that this common belief is a 

fault. We propose a general approach for estimating the 

cross-spectrum matrix of noise signal that is applicable 

even on situation of correlated disturbance. For that, at 

first we determine the amplitude densities and arrival 

directions of the disturbance signals from which we can 

estimate the cross-spectrum matrix of overall noise. 

Then, using this matrix we are able to bypass the signal 

cancellation problem effectively using MVDR 

beamformer equipped with this matrix. Note that, it is in 

contrast to the classical MVDR beamformer in which we 

don’t need to specify the arriving direction of 

disturbance signals. 

This paper is organized as follows. The second section  

reviews the spherical array processing fundamentals. 

The third section presents the proposed method for 

solving the signal cancellation problem. Simulation 

examples are presented in the fourth section, and the 

end section  concludes the paper. 

Spherical Array Processing 

This section shortly explains the theory of spherical 

microphone array processing [1], [4], [19], [20]. The 

formulation provided in this section will be utilized in the 

following sections to develop the proposed method.  

A.  Array processing in Spherical Harmonic Domain 

Consider a sound field composed of multiple “single 

frequency plane wave” each with amplitude density 

denoted by  (       ) arriving from direction (     ) 

with a wave vector  ̃     (       ) and wave 

number  . The sound pressure at   (     ) due to 

this sound field can be written as follows [1] 

 (       )  ∑ ∑    (   )  
 

 

    

 

   

(   )  (1) 

where    (   ) are the spherical harmonic coefficients 

of the sound pressure, and   
 (   ) are the spherical 

harmonics.  

The relation between the amplitude of the plane 

waves producing the sound field and the pressure on the 

sphere in the spherical harmonic domain is   

           (   )    (  )   ( )    (2) 

where    ( ) is the spherical Fourier transform of 

 (       ), i.e.,  

   ( )

 ∫ ∫  (       ),  
 (     )-

            

 

 

  

 

   (3) 

and   (  ) defines the projection of the sound field 
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onto the surface of sphere. The expression for   (  ) 

depends on the array configuration. For example, in the 

case of a single open sphere, we have 

        (  )     
   (  )  (4) 

where   ( ) is the spherical Bessel function of the first 

kind [1].  

In the case of order-limited pressure function, we 

have    (   )           so we can represent the 

function by a limited number of spherical harmonics and 

we have 

 (       )  ∑ ∑    (   )  
 

 

    

 

   

(   )  (5) 

Equation (1) is, in fact, the inverse spherical Fourier 

transform of the pressure function [5]. So, we have 

    ∫ ∫  (   ),  
 (   )-          

 

 

  

 

   (6) 

which is the spherical Fourier transform of   (   ). For 

simplicity, we omitted the parameters       

According to the Cubature method, it can be possible 

to compute the multiple integrations of a specified 

function using a summation over samples of that 

function [1]. So,  

    ∑  

 

   

 (   ),  
 (   )-   ̂    (7) 

where   is the total number of samples and    is the 

sampling weight whose value depends on the sampling 

method. The approximation becomes equality for order-

limited function provided a sufficiently large    In this 

case, using the inverse spherical Fourier transform, 

 (   ) can be reconstructed perfectly on the sphere. 

But, in the case of     of infinite order, due to aliasing, 

perfect reconstruction is not possible [4], [21], [22], [23], 

[24]. 

Several sampling methods, such as Gaussian, equal-

angle, and uniform sampling, have been previously 

presented [4], [25], for which the sampling points 

(     ) and sampling weight    have been derived such 

that for order-limited functions (7) is maintained with 

equality. Due to some constraints, we may want to use 

any arbitrary given sampling set. So, Assume that the 

samples of the function,  (     ), are given, together 

with the positions of the samples, (     )  for 

         Using (5) we have 

 (     )  ∑ ∑      
 

 

    

 

   

(     )       (8) 

Equation (8) may be written in matrix form as  

                  (9) 

where vectors   of length   and     of length (   )  

are defined as 

        [ (     )  (     )    (     ) ]
 

 (10) 

and  

          [      (  )              ]
 
  (11) 

and the matrix   of dimensions   (   )  is given by 

          

 

[
 
 
 
  
 (     )   

  (     )   
 (     )   

 (     )    
 (     )

  
 (     )   

  (     )   
 (     )   

 (     )    
 (     )

      
  
 (     )   

  (     )   
 (     )   

 (     )    
 (     )]

 
 
 

 

 

(12) 

Equation (9) is called inverse discrete spherical 

Fourier transform [26]. Also,   

            
    (13) 

is called discrete spherical Fourier transform, where 

   (   )     is the pseudo-inverse of     Generally, 

the discrete spherical Fourier transform may be written 

as  

             (14) 

In the situation of a general sampling, matrix   is 

given by     , in the situation of Gaussian and equal-

angle sampling methods is given by          ( ), 

where   [          ]
 

holds the sampling weights, 

and for nearly uniform and uniform sampling methods is 

given by    
  

 
   . 

B.  Spherical Array Beamforming 

Array equations or beamforming equations is as 

follows [1], [4], [25], [27], [28], [29], 

  ∫ ∫   
 

 

  

 

(     ) (       )         

 ∑ ∑    
 ( )   (   )

 

    

 

   

  

 

(15) 

where   (     ) are the beamforming coefficient. The 

standard discrete form of beamforming in the space 

domain is  

                      (16)  

where   is as (  ) with a little modification in notation 
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         [  ( )   ( )     ( ) ]
 

  (17) 

with   ( )   (         ),        , and   is the  

    weight vector as follows 

         [  ( )   ( )     ( )]
 

   (18) 

Assuming              the discrete form of 

beamforming in spherical harmonic domain is as 

            
      (19) 

where the (   )    vector     is given by 

    

 [   ( )   (  )( )    ( )    ( )      ( ) ]
 

 

                               (20) 

and the  (   )    vector     is given by 

   

 [   (   )   (  )(   )    (   )      (   ) ]
 

 

               (21) 

In these equations    ( ) and    ( ) are the 

spherical Fourier transform of  (       ) and 

 (     ) respectively and   is called the effective 

order of the array. 

The output of the array due to a unit-amplitude 

plane-wave, i.e, array beam pattern, is defined as 

            
              (22) 

where      is a (   )    column vector as  

   

 [   (   )   (  )(   )    (   )      (   ) ]
 

 

(23) 

with     represents the array input owing to the sound 

field created by plane wave. Since for unit amplitude 

plane wave we have [1], 

   ( )  ,  
 (     )-

        (24) 

According to (2) we have 

   (   )    (  ),  
 (     )-

     (25) 

where (     ) is the plane wave arrival direction. 

 Using a different set of beamforming coefficients, 

different beam patterns can be designed. For instance, 

axis-symmetric beamformers with    
 ( )  

  ( )

  (  )
  
 (     ) of which two famous beamformers are 

the maximum directivity (MD) beamformer and the 

maximum white noise gain (WNG) beamformer [20]. 

Note that the beamformer coefficients are function of 

look direction which denoted by (     ) in the above 

relation.  

C.  The MPDR and MVDR Beamformers  

Consider a desired signal  ( ), arriving from direction 

(     ). The corresponding distant source creates a 

plane wave at the location of array. Array input may be 

written as follows 

                     (26) 

where   is the transfer function from the source to the 

microphone array input, also called the steering vector, 

         [  ( )   ( )     ( ) ]
 

  (27) 

is the sound pressure at the   microphones due to the 

desired source and, 

         [  ( )   ( )     ( ) ]
 

  (28) 

is the noise at the microphones [1], [14]. The array 

output is as follows 

                 (29) 

The array output variance is 

       ,| | -   ,      -            (30) 

where  

            ,  
 -          (31) 

is the spatial spectral matrix of the array input. Each 

element in this matrix represents the cross-spectral 

density between the signals at two microphones at wave 

number  . From (26) and (31) the spatial cross-spectral 

density matrix of the array input may be written as  

                            (32) 

with  

           ,  
 - (33) 

and 

           ,  
 -  (34) 

With the assumption of independent pressure signal 

and the noise signal, (32) is rewritten as 
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                   (35) 

So, we can rewrite (  ) as follows 

 ,| | -          
       

      

 |   |  ,| | -         
       (36) 

We have the following design objective 

              
 

        

                     
    (37) 

Owing to the distortionless response restriction, 

     , in the above optimization problem, 

|   |  ,| | - can not be modified, so, the minimization 

of        leads to minimization of       , i.e., the 

noise variance at the array output. The optimal value of 

  is 

         
     

  

     
   

 (38) 

It is the minimum power distortionless response 

(MPDR) beamformer [1], [2], [3]. The MVDR beamformer 

is the same as in (38) with    
   is replaced by    

  , 

                     
 

        

                            

         (39) 

with a solution 

         
     

  

     
   

 
        (40) 

 The spherical harmonic domain formulation of MPDR 

is as follows. In the spherical harmonic domain, (26) may 

be written as  

                               (41) 

The MPDR optimization problem can be written as  

                       
 

   
             

                           
       

         (42) 

Similar to (38), a solution may be written for 

beamforming coefficients in the spherical harmonic 

domain as 

          
  

   
        

  

   
        

     
 

         (43) 

For the MVDR beamformer we have 

          
  

   
        

  

   
        

     
 

    (44) 

 

The Proposed Method 

In this section we propose a general approach for 

estimating the cross-spectrum matrix of noise signal. We 

assume that the amplitude of the desired signal is   , 

and the disturbance signals satisfy           

         where    is a complex constant. We also 

assume that the desired signal propagates via a plane 

wave arriving from direction (     ), with variance of 

  
   ,|  |

 -, and the disturbances are other plane 

waves with arrival direction (     ) with   
  |  |

   
 . 

Specially uncorrelated sensor noise with variance   
  is 

also assumed. 

Suppose that the noise at the array input is owing to 

the sensor noise. Using the discrete spherical Fourier 

transform, as in (14) the sensor noise in the spherical 

harmonic domain can be written as  

              (45) 

where matrix   depends on the sampling method as 

mentioned in the second section of  the paper. This leads 

to 

         ,      
 -   ,      - 

   ,   -     
     

    (46) 

where we have assumed the IID noise. i.e, independent 

and identically distributed noise. As seen in (46), the 

spatial cross-spectrum of the noise depends on the 

sampling method. 

 The spatial spectrum matrix of the overall noise can 

be computed using the following theorem. 

Theorem 1: The spatial spectrum matrix of the noise, 

including the contributions from the disturbances, is as 

               
          

     ∑  
         

 

 

   

 ∑(    
   
         

 

   

   
     

         
 ) 

(47) 

       where  

            [   (   )   (  )(   )    (   )      (   ) ]
 

, 

   (   )    (  ),  
 (     )-

  and (     ) is the 

arrival direction of     disturbance. 

Proof: The array input in the spherical harmonic domain 

is as 

             ∑    

 

   

            ∑      

 

   

 

(48) 
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where                is the spherical Fourier 

transform of pressure due to the     disturbance, and 

     is the spherical Fourier transform of pressure due 

to the desired signal. 

Now, the overall noise is     ∑       
 
   , so the 

spatial spectrum matrix of the noise is  

       
         

       [(    ∑      

 

   

)(    ∑      

 

   

)

 

]

  ,      
 -

  *(∑      

 

   

)(∑    
   

 

 

   

)+

   
     ∑  

         
 

 

   

 ∑(    
   
         

 

   

   
     

         
 ) 

(49) 

 
   

For computing        
       , in the situation of 

uncorrelated disturbance, it is adequate to record the 

input signal during the time intervals when the 

disturbance is active but the desired signal is not active. 

However, in the case of correlated disturbance, both the 

disturbance and the desired signal appear and disappear 

cohesively. So, we need to have a mechanism to extract 

information for computing        
        from the array input, 

i.e.,  . This information includes              and   . 

The following theorem can be used for this purpose. 

Theorem 2. The amplitude of the disturbance plane 

waves can be computed using an axis-symmetric 

beamformer with   ( )   . 

Proof: We consider the axis-symmetric beamformers. As 

mentioned in the second section, axis-symmertic 

beamformers are beamformers with the following 

weights [30] 

         
 ( )  

  ( )

  (  )
  
 (     ) (50) 

If we set   ( ) to unity, we have 

         
 ( )  

 

  (  )
  
 (     ) 

 (51) 

So, (15) can be rewritten for this case as 

         ∑ ∑    
 ( )   (   )

 

    

 

   

   
 (     )

   (   )

  (  )
 

 

  (52) 

From (2) we have 

       
   (   )

  (  )
    ( ) 

(53) 

So, we have 

          ∑ ∑    ( )

 

    

 

   

  
 (     ) 

  (       )     

 
  (54) 

 
  

Equation (54) shows that y, as a function of look 

direction, gives   . Using these values we can compute 

       
       , and finally the beamforming weight can be 

computed as 

          
  

   
        

         

   
        

            
    (55) 

Finally, the beam pattern is computed using     and 

(22) as 

        (   )     
    (   ) 

 ∑ ∑    
 ( )  (  ),  

 (   )- 
 

    

 

   

 

 

     (56) 

Simulation Examples 

Examples of beam patterns designed using the 

proposed method are presented in this section. A 

spherical microphone array around a rigid sphere, 

operating at     , with     is assumed. We also 

consider      nearly-uniformly arranged 

microphones, with spatially uncorrelated sensor noise 

and with variance   
     . So,         due to sensor 

noise can be written as  

                 
       

   

 
     (57) 

A. The First Example 

In the first example we assume that the desired signal 

propagates with a plane wave coming from direction 

(     )  (     ), with variance of   
   . A 

disturbance signal is included that has correlation with 

the desired signal and propagates with another plane 

wave coming from direction (     )  (      ), with 

  
  |  |

   
  and        

     .  
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In the first step we must approximate    and   . For 

that we compute  (     ) using (54). An equal angle of 

      points was utilized to create (     ). Figure 1 

shows the normalized magnitude of  (     ). 

 

 

 
(a) 

 

 
(b) 

 
Fig. 1: Normalized magnitude of  (     ). ( ) surface plot.  
( ) contour plot. The arrival directions of the two plane waves 

are indicated with white “+”. 

 

The peaks in these plots indicates  (       ), i.e., the 

plane wave amplitude density that is identical to |  |. In 

this example we obtain amplitude density of           

and              , and also arrival directions of 

(         ) and (          ) for the desired signal 

and disturbance signal respectively. Using these values 

as   ,   , (     ) and (     ), we can compute 

  
   ,|  |

 - and   
  |  |

   
 . Finally, according to 

(49) we compute        
       , and then the spherical 

harmonic domain beamforming weights may be 

computed from (55). The resulting beam pattern is then 

computed using (56). The magnitude of the beam 

pattern has been shown in Fig. 2. As we can see in this 

figure, the first side lobe has a null in the disturbance 

signal arrival direction. So, the proposed method has the 

ability to shape the beam pattern to consider the 

correlated disturbances in the sound field.  

 

 
(a) 

 

 
(b) 

 

Fig. 2: | (   )| for MVDR beamformer with the cross-
spectrum matrix of noise obtained by the proposed method. 
( ) contour plot, arrival direction of the desired plane wave is 

indicated by the white “+” and the arrival direction of the 
disturbance plane wave is indicated by the black 

“+”. ( ) balloon plot. In this plot cyan color represents positive 
values of   * (   )+, and magenta color represents negative 

values of   * (   )+. 

 

Without the proposed method,    and    are not 

available. So, we have to use MPDR beamformer as 

expressed in (38). For this, we calculate the spatial 

spectrum matrix of the overall input signal, i.e.,  , using 

(35) and then using (38) and (22) we can calculate the 

corresponding beam pattern. This beam pattern has 

been shown in Fig. 3 in which we can see the signal 

cancellation phenomenon clearly. 
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(a) 

 

 
(b) 

 

Fig. 3: | (   )| for MPDR beamformer. ( ) contour plot, 
arrival direction of the disturbance plane wave and desired 
plane wave are indicated by the white “+”. ( ) balloon plot. 

 

B. The Second Example 

In the second example, the first example is further 

extended to include another disturbance propagates 

with a plane wave with arrival direction (     )  

(      ), with   
  |  |

   
  and        

     . Fig. 4, 

Fig. 5, and Fig. 6 show the simulation results. We can see 

again the ability of the proposed method in solving the 

signal cancellation problem. 

 

 
(a) 

 
(b) 

 

Fig. 4: Normalized magnitude of  (     ). ( ) surface plot. 
( ) contour plot. The arrival directions of the three plane 

waves are indicated by the white “+”. 

 

 

(a) 

 
(b) 

Fig. 5: | (   )| for MVDR beamformer which use the cross-
spectrum matrix of noise obtained by the proposed method.  
( ) contour plot, arrival direction of the disturbance plane 

wave is indicated by the black  “+”, and the arrival direction of 
the desired plane wave is indicated by the white “+”. ( ) 

balloon plot. 
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(a) 

 

 
(b) 

 

Fig. 6: | (   )| for MPDR beamformer. ( ) contour plot, 
arrival direction of the disturbance plane wave and desired 
plane wave are indicated by the white “+”. ( ) balloon plot. 

 

C.  Comparison with BF-LCMV method 

In this section we compare the proposed method with 

the rival method presented in [16] in which the signal 

cancellation problem has been solved using direction of 

arrival (DOA) estimation and the LCMV beamformer. For 

this purpose two performance measures have been 

considered: directivity factor (DF) which is the ratio 

between the array response in the look direction and the 

average response over all directions, and white noise 

gain (WNG) which is a general measure for array 

robustness and is defined as the improvement in signal-

to-noise ratio (SNR) at the array output relative to the 

array input. Experimental results show that two methods 

have similar performance in term of these two 

performance measures in almost all cases. For example 

with simulation setup as in the first example, the two 

methods gain DF of 23.97 and WNG of 39.91 dB. But, in 

the case of disturbance arriving from direction that is 

near the look direction and with amplitude that is a small 

fraction of the desired signal, the proposed method is 

superior as shown in Fig. 7. The parameters in this 

simulation is as in the first example except the 

disturbance signal parameters which are (     )  

(     ) and        
     . In this case, the DF and 

WNG for the proposed method are 19.19 and 37.5 dB 

respectively, and for the BF-LCMV method, these 

objective measures are 0.275 and 5.23 dB. This 

phenomenon is probably due to the role that the 

amplitude density characteristic of the disturbance 

signal plays in this specific case. The proposed method 

considers this characteristic but the BF-LCMV method 

only takes into account the arriving direction of the 

disturbance.  

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

Fig. 7: ( )     ( ) | (   )| for MVDR beamformer which use 
the cross-spectrum matrix of noise obtained by the proposed 

method. ( )     ( ) | (   )| for RF-LCMV method. 
 

Results and Discussion 

The simulation results show that the proposed 

method has the ability to shape the beam pattern to 

consider the correlated disturbances in the sound field 

and consequently to solve the signal cancellation 

problem. The comparisons with the rival method show 

that both methods have the same performance in 

almost all cases except in the case of disturbance 

arriving from direction that is near the look direction and 

with amplitude that is a small fraction of the desired 

signal, in which the proposed method is superior. 

Conclusion 

The signal cancellation problem is a major problem in 

the MPDR beanformer. It occurs whenever the 

disturbance signals include at least one signal that is 

correlated with the desired signal.   Using the MVDR 

beamformer, we can avoid this problem, but this 

approach requires that the cross-spectrum matrix of the 

noise signal is available. A common belief is that in the 

case of correlated disturbance, the estimation of this 

matrix is not possible. In this paper we showed that this 

common belief is a fault. We proposed a general 

approach for estimating the cross-spectrum matrix of 

noise signal that is applicable even in the case of 

correlated disturbance. Simulation examples show that 

using the proposed method along with the MVDR 

beamformer, we can bypass the signal cancellation 

problem completely.   
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Abbreviations 

LCMV Linearly constrained minimum variance  

MPDR Minimum power distortionless response 

MVDR Minimum variance distortionless response 

SNR Signal-to-noise ratio 

WNG White noise gain 

   Sampling weights 

  Vector of sampling weights 

  Elevation angle 

  Azimuth angle 

 ( ) Plane-wave decomposition in the space 

domain 

    Plane-wave decomposition in the spherical-

harmonics domain 

  ( ) Function relating pressure to plane-wave 

decomposition 

DF Directivity factor 

   Axis-symmetric beamforming weighting 

function 

  ( ) Spherical Bessel function of the first kind 

k Wave number 

  Wave vector denoting propagation direction 

 ̃ Wave vector denoting arrival direction 

  Order of spherical harmonics 

  Noise vector in the space domain 

    Noise vector in the spherical harmonics 

domain 

  Sound pressure in the space domain 

    Sound pressure in the spherical harmonics 

domain 

  Sound pressure vector in the space domain 

    Sound pressure vector in the spherical 

harmonics domain 

  Number of samples or microphones 

  Vector of spherical coordinates 

  Spherical Fourier transform matrix 

    Cross-spectrum matrix in the space domain 

        Cross-spectrum matrix in the spherical 

harmonics domain 

    Noise cross-spectrum matrix in the space 

domain 
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        Noise cross-spectrum matrix in the spherical 

harmonics domain 

  Steering vector in the space domain 

    Steering vector in the spherical harmonics 

domain 

 ( ) Beamforming weighting function in the space 

domain 

    Beamforming weighting function in the 

spherical harmonics domain 

  Beamforming weighting vector in the space 

domain 

    Beamforming weighting vector in the 

spherical harmonics domain 

  
 ( ) Spherical harmonics 

  Matrix of Spherical harmonics 
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