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 Background and Objectives: Compressive sensing (CS) theory has been 
widely used in various fields, such as wireless communications. One of the 
main issues in the wireless communication field in recent years is how to 
identify block-sparse systems.  We can follow this issue, by using CS theory 
and block-sparse signal recovery algorithms. 
Methods: This paper presents a new block-sparse signal recovery algorithm 
for the adaptive block-sparse system identification scenario, named 
stochastic block normalized iterative hard thresholding (SBNIHT) algorithm. 
The proposed algorithm is a new block version of the SSR normalized 
iterative hard thresholding (NIHT) algorithm with an adaptive filter 
framework. It uses a search method to identify the blocks of the impulse 
response of the unknown block-sparse system that we wish to estimate. In 
addition, the necessary condition to guarantee the convergence for this 
algorithm is derived in this paper. 
Results: Simulation results show that the proposed SBNIHT algorithm has a 
better performance than other algorithms in the literature with respect to 
the convergence and tracking capability. 
Conclusion: In this study, one new greedy algorithm is suggested for the 
block-sparse system identification scenario. Although the proposed SBNIHT 
algorithm is more complex than other competing algorithms but has better 
convergence and tracking capability performance. 
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Introduction 
Compressive sensing (CS) theory has been widely used in 
various fields, such as mathematics, signal processing, 
and wireless communications [1]-[3]. One of the main 
issues in the wireless communication field in recent 
years is how to identify block-sparse systems. According 
to [4]-[8], by using the CS theory and proposing block-
sparse signal recovery algorithms, we can follow this 
issue. In the sparse systems, the impulse response of the 

system has a small number of non-zero coefficients. In 
some practical cases, the impulse response of the 
system may include a small number of subspaces (block) 
(see Fig. 3), which is known as a block-sparse system. 
With this description, we can model a block-sparse 

system with impulse response NRh  as  

1 1 2 1[ ,..., , ,..., ,..., ,..., ]T
d d d N d Nh h h h h h  h  

          Th [1]      Th [2]              Th [L] 

(1) 
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where [ ]T ih  ( 1,2,..., ),i L  indicates the i-th block of 

the h, d is the block length, and N = dL. The h vector is 

termed K block-sparsity, where {1,2,..., },K L  is the 

maximum number of blocks involving nonzero 

components.  

Three major approaches sparse signal recovery (SSR) 

algorithms including convex optimization 

algorithms [4], [9], greedy pursuit algorithms [5], [8], and 

stochastic gradient descent (SGD) algorithms [10] have 

been recently developed to implement the block-sparse 

signal reconstruction.  

In order to reconstruct block-sparse signals, in the 

convex optimization class, in [4], [9], the basis pursuit 

(BP) algorithm has been extended the l1-minimization to 

a mixed l2/l1-norm minimization in the recovery 

algorithm. Also an improved algorithm, named dynamic 

recovery of block-sparse signal (D-BSS) has been 

proposed in [11]. In [12], the proposed algorithm 

benefits from l0(l2) penalty to reconstruct the block-

sparse signal. However the mentioned algorithms show 

high computational cost, and so they are not suitable for 

the large-scale scenario [13]. 

Recently, a block version of the greedy pursuit 

algorithms such as matching pursuit (MP), orthogonal 

MP (OMP), stagewise OMP (StOMP), and iterative hard 

thresholding (IHT), named BMP, BOMP [4], BStOMP [8], 

and BIHT [5] respectively, have been introduced that 

show a better performance than their original versions 

for the block-sparse signal recovery scenario. Moreover, 

the extended version of the compressive sampling 

matching pursuit (CoSaMP) algorithm has been 

presented in [5]. Also, the block normalized iterative 

hard thresholding (BNIHT) algorithm, has been proposed 

in [14]. Although the greedy pursuit class algorithms 

have low computational complexity, its performance 

degrades under strong background noise [13]. 

The SGD-based sparse adaptive filtering algorithms 

such as zero-attracting least-mean-square (ZA-LMS) 

algorithm and l0 -norm least mean square (l0-LMS) 

algorithms in [15], which have shown moderate 

computational complexity and robustness against 

noise [13], prove a better performance than other the 

types of the SSR algorithms in the sparse signal 

reconstruction process. Using this approach, several 

SGD-based algorithms have been proposed for the block-

sparse signal reconstruction in recent years. In the block-

sparse LMS (BS-LMS) algorithm [16], and block zero-

point attracting projection (BZAP) [17], a penalty of block 

sparsity as a mixed norm of the adaptive tap-weights as 

l2,0-norm in [16], and  a mixed l1,0-norm in [17] have been 

added to the cost function of the LMS and ZAP 

algorithms respectively. Moreover, block zero attracting 

LMS (BZA-LMS) and the block l0-norm LMS (Bl0-LMS) 

algorithms which can sense the block-sparse structure 

information of the block-structured sparse signal, have 

been presented in [18]. 

In order to improve the convergence performance of 

the solution of the block-sparse system identification 

problem, this paper presents a new block version of the 

NIHT algorithm with an adaptive filter framework, 

named stochastic block normalized iterative hard 

thresholding (SBNIHT) algorithm. In this work, we use a 

search method to identify the blocks of the impulse 

response of the block-sparse system that we wish to 

estimate. Simulation results show that the proposed 

algorithm has a faster convergence rate and a better 

tracking capability than other the competing algorithms 

in the literature. 

Adaptive Filter Framework for Sparse Signal 

Recovery 

Based on the CS theory, by using the proper 

dictionary matrix ( )M NR M N A  that satisfies the 

restricted isometry property (RIP), we can compress the 

sparse signal NRs  to a down-sampling signal 
MRq  

[19]. To achieve more accurate results, the 

unavoidable background noise v e.g., additive white 

Gaussian noise (AWGN) can be considered as an 

additional term in the SSR equation. Therefore, an SSR 

problem is formulated by the following 

underdetermined equation  

 q As v         (2)  

In order to achieve less complexity cost and 

robustness against background noise, we can use an 

adaptive signal processing framework to solve the SSR 

problem  [20].  

In the sparse systems identification scenario which 

can be considered as an SSR problem, the desired signal 

with adaptive filtering framework is achieved as 

( ) ( ) ( )T
od n n n u h       (3) 

where ,( ) [ ( ), ( 1),..., ( 1)]Tn n n n Mu u u   u   is the 

input signal vector, (.)T  denotes the transpose, oh  is the 

impulse response of the unknown system with the 

length M that we wish to estimate, and ( )n  indicates 

the additive white Gaussian noise. Also, the recursion 

error is obtained as 

( ) ( ) ( ) ( )Te n d n n n u h           (4)   

where 1 2 ,( ) [ ( ), ( ),..., ( )]TMn h n h n h nh denotes the iterative 

reconstruction impulse response vector. In Table 1 and 

Fig. 1, we can see the SSR problem that is effectively 

solved by the adaptive framework, while each row 

vector ja in the dictionary matrix A in (2) plays the role 

of ( )T nu  in the adaptive framework in (3), and the 
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components of the compressed measurement vector q 

in (2) that is introduced as ,jq  is regarded as d(n) in 

(3)  [13]. 

 

Table 1: Corresponding variables between CS problem and 
adaptive framework [13]. 
 

CS Problem Adaptive Framework 

  

 ( )nh  

j j jq v a s  
( ) ( ) ( )T

od n n n u h  

 

 

 

 

 

 

Fig. 1: Adaptive framework for CS problem  [13]. 

 

Proposed Algorithm    

To improve the convergence performance of the 

solution of the block-sparse system identification 

problem, this paper by considering this problem as an 

SSR problem, presents a new block version of the greedy 

NIHT algorithm with an adaptive filter framework. The 

proposed stochastic block normalized iterative hard 

thresholding (SBNIHT) algorithm uses a search method 

to identify the blocks of the impulse response of the 

unknown the block-sparse system.  

To proceed, we make the following assumptions:  

A1: The impulse response of the unknown block-sparse 

system has at most K blocks of nonzero coefficients; 

A2: The maximum length of the blocks including nonzero 

coefficients is L; 

A3: The numbers of zero coefficients between two 

adjacent blocks are at least L.  

The proposed algorithm benefits from a cost function 

as: 

2
1

{| ( ) | }
2

J E e n                                                         (5) 

where  denotes the expectation, and ( )e n is the 

recursion error which is obtained as (4). 

Based on (4), and dropping the time index for 

simplicity, i.e., ( ),nR R we can expand (5) for a time-

varying system as 

 21
( , , ) {| | }

2
TJ d  h R r u h      

    
21

( { } 2 )
2

T Td   h r h Rh                                (6) 

where  is the autocorrelation matrix 

of the input vector u(n), and }{ ( ) ( )E n d nr u  is the 

cross-correlation of the input vector u(n) and the desired 

signal d(n).  

Assuming that the unknown system has a time-

varying nature, we use an exponentially time-averaged 

window to obtain the R matrix and the r vector 

( ) ( 1) ( ) ( )Tn n n n  R R u u  (7) 

*( ) ( 1) ( ) ( )n n n d n  r r u  (8) 

where (0,1]   is the forgetting factor, and 
*(.) denotes 

the complex conjugate. It is noteworthy that we consider 

the term stochastic for the proposed algorithm because 

the R matrix and r vector in (7) and (8), are stochastic 

quantities. 
In the following, we obtain the negative gradient of 

(6) at the n-th iteration as  

( , , )J  h h R r r Rh  (9)     

By using the steepest descent principle, we have 

( 1) ( ) ( ) ( , , ),n n n J   hh h h R r  (10) 

where ( )n denotes the step-size of the n-th time 

iteration. By substituting (9) into (10), we can rewrite 

(10) as 

( 1) ( ) ( )( ( ) ( ) ( ))n n n n n n   h h r R h  (11) 

{.}E

}{ ( ) ( )TE n nR u u

 , 1,2,...,j j Ma ( )T nu

( )ns
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In the following to make a better estimate of the 

unknown block-sparse system, we apply a block-sparsity 

constraint as a hard thresholding operator (.)kH  (similar 

to the NIHT algorithm  [21] ) to the right-hand site of (11) 

( 1) ( ( ) ( )( ( ) ( ) ( )))kn H n n n n n   h h r R h  (12) 

where, by defining  

( ) ( ( ))kn H nh h  (13) 

and  

( ) ( ( ) ( ) ( ))kn H n n n p r R h  

( ) ( ) ( )n n n r R h  
(14) 

and substituting (13) and (14) into (12), we can rewrite 

the update formula of tap-weights for the proposed 

SBNIHT algorithm as 

( 1) ( ) ( ) ( )n n n n  h h p  (15)    

where the vector ( )nh  in (13-15) is an estimated 

impulse response vector of the adaptation step n, (h(n)), 

which its components that do not belong to the support 

set ( )
,

n have been zeroed. In here, we consider the 

support set ( )n  as the indexes sets of the K blocks with 

the length L involving nonzero components in the 

estimated vector h(n). By using the line search 

optimization method, we can consider the step-size of 

the SBNIHT algorithm in (15) as  

( )( )

( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

T
nn

T
n n n

n n

n
n n n




  



p p

p R p
 (16) 

where ( )( )n n


p  is a sub-vector of the p(n) vector that 

contains only the elements with the indexes sets of the 

support set ( )n  and ( )( )n nR  is the sub-matrix of the R 

matrix that includes corresponding columns and rows, 

indexed by support set ( ).n         

A.  Identify the Support Set   

In the following we present a new method with a 

search approach to identify the support set   at each 

iteration. To achieve this purpose, we define at first, a 

new vector named ,h  equal to the iterative 

reconstruction h vector 

h h  (17) 

Then, according to Fig. 2, we find the index of the 

component with the largest absolute value of the 

magnitude in the vector h   

 

argmax(| |,1) h  (18) 

Then, in the vector ,h  between the L blocks with the 

length L that contain the obtained index set   (see Fig. 

2), we find the index set of the block with the largest l2-

norm value 

[1] 2 [2] 2 [ ] 2argmax({|| || ,|| || ,...,|| || },1)L  h h h  (19) 

Then, we change the magnitude of the components 

of the obtained block 
[ ]h  as 

[ ] ( ) ( 1) ( 1){ , ,..., }L L    h h h h  (20) 

into zero value 

| 0
m h  (21) 

where {1, 2,..., }m K , and 

{ , 1,..., 1}m L L       (22) 

includes the indexes sets of the vector [ ]h . In order to 

find the support set   at each time iteration, we 

repeat the stages (18-22), until the finding K blocks. 

Therefore, the support set   at each time iteration is 

obtained by merging indexes sets which are resulted in 

each stage as the subspace 
m where 

{1, 2,..., }m K  

...
( )

21
n

K      (23) 

Then, the block sparse vector ( 1)n h can be 

obtained by pruning the elements which do not belong 

to the support set ( )n
    

( 1) ( 1),( )|( )|
n nnn   


h h   ( 1) 0

( )|
ncn
 


h  (24) 

According to the above stages, we can summarize the 

steps of the proposed the algorithm at each time instant 

as: 

Step 1) Update the proxy vector via (14); 

Step 2) Define the step-size value by using the line 

search optimization method as (16), and estimate the 

unknown vector h via the gradient update equation (15); 

Step 3) Identify the support set   that shows the set of 

the positions of the nonzero components corresponding 

to the K blocks with the length L of the estimated vector 

h; 

Step 4) Prune the elements which do not belong to the 

support set ,  for the estimated vector h. 

The steps of the SBNIHT algorithm for the n-th time 

iteration are summarized in Table 2. 
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Fig. 2: Method of the finding a block in the block-sparse 

vector via the proposed algorithm. 
 

Convergence Analysis 

To see how the recursive update h(n) converges 

toward oh , we rewrite (20) as 

( 1) ( ( ) ( )) ( ) ( ) ( )n n n n n n    I R rh h  (25) 

where I is the M-by-M identity matrix. Next, from (15) 

and by subtracting 
oh from both sides of (25), we can 

rewrite (29) as 

( 1) ( ( ) ( ))( ( ) )o on n n n    I Rh h h h  (26) 

the ( 1)n h  is the best approximation to h(n+1), if we 

have 

2 2|| ( 1) || || ( 1) ||o on n    h h h h  

         
2|| ( ( ) ( ))( ( ) ) ||on n n  I R h h  

(27) 

Defining the vector v(n) as 

( ) ( ) on n v h h  (28) 

and substituting this in (27), we obtain 

2 2|| ( 1) || || ( ( ) ( )) ( ) ||n n n n  v I R v  

                2 2|| ( ) ( ) || || ( ) ||n n n I R v  
(29) 

where 2|| ( ) ( ) ||n nI R denotes the spectral norm of 

( ) ( )n nI R  matrix, and defined as  

The proposed algorithm converges in mean square 

sense, if we have in (29). 
 

Table 2:   SBNIHT algorithm for the n-th time iteration 
 

Input:   Maximum block length L; length of unknown 

system M; maximum number of blocks involving nonzero 

coefficients K; Input vector 1MR u ; desired signal  d. 

Initialize:  
1

0 ,
M

R


 h         (0) 0 ,
M M

R


 R               

1
(0) 0 ,

M
R


 r     (1) [1: ]KL   

 Step 1: gradient update 

( ) ( 1) ( ) ( )Tn n n n  R R u u  

*( ) ( 1) ( ) ( )n n n d n  r r u  

( ) ( ) ( ) ( 1)n n n n  hp r R  

Step 2: line search optimization 

( ) ( )
| |

( ) ( ) ( )
| | |

( ) ( )

( )
( ) ( ) ( )

T
n n

T
n n n

n n

n
n n n


 

  



p p

p R p

 

( ) ( 1) ( ) ( )n n n n   ph h  

Step 3: support set update  

( 1);n h h  

for   m=1:K 

argmax(| |,1) h  

for    1,2,...,i L      

[ ] ( ) ( 1) ( 1){ , ,..., }i i L i L i      h h h h  

1

2
[ ] 2 ( )|| ||

i

i j

j i L





 

 h h  

end 

[1] 2 [2] 2 [ ] 2argmax({|| || ,|| || ,...,|| || },1)L  h h h  

{ , 1,..., 1}m L L       

| 0,
m h  

end 

( )
1 2 ...

n
K      

Step 4: pruning   

( ) ( ),( )( ) ||
n nnn 


h h       ( ) 0

( )|
ncn




h  

2

2

|| ( 1)||
1

|| ( )||

n

n




v

v
 (31) 

Therefore, based on (29) and (30), a necessary mean-

square convergence condition obtained as 

2 max|| ( ) ( ) || |1 ( ) [ ( )] | 1n n n n     I R R  (32) 

The inequalities (36) can be expanded as 

max1 1 ( ) [ ( )] 1n n    R  (33) 

Therefore, based on (33), a necessary mean-square 

convergence condition obtained as 

2 [( ( ) ( ))( ( ) ( )) ]max|| ( ) ( ) || n n n nn n       I R I RI R
 

=
2[ ( ) ( ) ( ) 2 ( ) ( )]max n n n n n   I R R R

 

=
2 21 ( ) [ ( )] 2 ( ) [ ( )]max maxn n n n    R R

 

=
2(1 ( ) [ ( )])maxn n  R

 

= max|1 ( ) [ ( )] |n n  R  (30) 
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max

2
0 ( )

[ ( )]
n

n



 

R

 
(34) 

Complexity 

In Table 3, the computational complexity of the 

proposed algorithm is compared with the other state-of-

the-art algorithms in the literature. The comparison is 

carried out in terms of multiplications per adaptation 

step of the algorithm.  

For the proposed SBNIHT algorithm, we have an 

increase in complexity compared with the other 

competing algorithms including BZA-LMS,  [18] BS-

PNLMS  [22], BS-MPNLMS  [23], and l2,0-SMPNLMS  [24], 

due to the existence of the gradient p(n) and vector 

product | |( ) ( )n n R p .  

But instead of this increasing complexity, the 

proposed algorithm can provide a much better solution 

for the block-sparse system identification problem 

compared to other competing algorithms. 
 

Table 3: Comparison in terms of multiplications 
 

    Adaptive Algorithm                     Complexity Order 

                                                        per Adaptation Step 

          BZA-LMS                                           O(M) 

         BS-PNLMS                                          O(M) 

       BS-MPNLMS                                        O(M) 

       l2,0-SMPNLMS                                      O(M) 

             BNIHT                                           O(MKL) 

            SBNIHT                                          O(MKL) 

 

Results and Discussion 

In this section, the proposed algorithm is compared 

with the algorithms BZA-LMS, BS-PNLMS, BS-MPNLMS, 

l2,0-SMPNLMS, and BNIHT in the application of block-

sparse system identification.  

The unknown system is a network echo path with the 

length M=512, and the adaptive filter has the same 

length.  

In order to evaluate the tracking capability, in all 

simulations, we switch the echo path from the one-

cluster in Fig. 3(a) to the two-clusters in Fig. 3(b) in 

iteration 5000.  

The input vector is a white Gaussian sequence or an 

AR(1) signal with a pole at 0.9 or a speech signal. The 

background noise ( )n  is a white Gaussian process with 

a signal-to-noise ratio (SNR) of 30 dB.  

All the results are averaged over 30 independent 

trials.  

The normalized mean square deviation (NMSD), 

which is used to compare the convergence and the 

tracking capability performance, is defined as 

2 2

( ) 10 0 010log ( ( ) / )dBNMSD k h h h  (35) 

 

 
 

Fig. 3: Two types of measured acoustic-echo-channels as the 
unknown block-sparse systems, (a) one cluster, (b) two 

clusters. 
 

In the following, we assume that the impulse 

response of the unknown system has a maximum of 2 

blocks with nonzero coefficients where the maximum 

block length of these 2 blocks is 32, and the number of 

zero coefficients between two adjacent blocks are at 

least 32. According to the mentioned system, we 

consider in all simulations, our system as Fig. 3, which is 

one-cluster or two-clusters with a maximum block length 

28. By using the above assumptions, we consider for the 

proposed SBNIHT algorithm, the maximum number of 

the blocks as K=2, and the maximum block length as 

L=32. Also for a better comparison, the number of the 

blocks for the BNIHT algorithm is considered as 2, as 

same as the SBNIHT algorithm. In addition, we chose the 

value of the parameter of the competing algorithms in 

all the simulations, according to the best values in their 

references, in such a way that all the algorithms have the 

same steady-state NMSD with the maximum 

convergence speed in achieving such a steady-state 

level.       

Figure 4 shows the NMSD curves of the BZA-LMS, BS-

PNLMS, BS-MPNLMS, l2,0-SMPNLMS, BNIHT, and the 

proposed SBNIHT algorithms for a white Gaussian 

sequence input signal, by considering the different block 

lengths  8,16,32L   for the BZA-LMS, BS-PNLMS, BS-

MPNLMS, BNIHT and l2,0-SMPNLMS algorithms. For the 

fair comparisons, the value of the algorithm parameters 

in Fig. 4 and Fig. 5 are selected as:  BZA-LMS ( 0.002, 

7 ),0.8, 1 10     BS-PNLMS ( 0.8, 0.01)q   , BS-MPNLMS 

( 0.02, 0.5, 0.1),      and l2,0-SMPNLMS ( 20,      

0.01, 0.01).  It is observed that the performance of 

the proposed algorithm is evidently better than other 

competing algorithms, in terms of convergence and 

tracking capability. 
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(a) 

 

(b) 

 

(c) 

Fig. 4: NMSD learning curves of the several algorithms and the proposed algorithm with a WGN input signal for the 
different block length of competing algorithms BZA-LMS, BS-PNLMS, BS-MPNLMS , l2,0-SMPNLMS and BNIHT, (a) 

L=8, (b) L=16, (C) L=32. 
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(a) 

 

(b) 

 

(c) 

Fig. 5: NMSD learning curves of the several algorithms and the proposed algorithm with an AR(1) input signal for 
the different block length of competing algorithms BS-PNLMS, BS-MPNLMS, l2,0-SMPNLMS and BNIHT, (a) L=8, 

(b) L=16, (C) L=32. 
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(a) 

 

(b) 

 

(c) 

 Fig. 6: NMSD learning curves of the several algorithms and the proposed algorithm with a speech input signal for the 
different block length of competing algorithms BZA-LMS, BS-PNLMS, BS-MPNLMS, l2,0-SMPNLMS and BNIHT, (a) L=8, (b) 

L=16, (C) L=32. 
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Figure 5 shows the NMSD curves of the BS-PNLMS, 

BS-MPNLMS, l2,0-SMPNLMS, BNIHT and the proposed 

SBNIHT algorithms for an AR(1) input signal generated by 

filtering white Gaussian noise using a first-order 

( )H z   11/ (1 0.9 )z   system.  

As same as Fig. 4, we consider the different block 

lengths  8,16,32L   for the BS-PNLMS, BS-MPNLMS, 

BNIHT, and l2,0-SMPNLMS algorithms. As same as the 

white input signal in Fig. 4, we can see that for the 

colored AR(1) input signal, the performance of the 

proposed algorithm is evidently better than other 

competing algorithms, in terms of convergence and 

tracking capability.  

We do not consider the BZA-LMS algorithm in Fig. 5, 

because it shows a bad convergence performance for 

the colored AR(1) input signal. 

Figure 6 shows the NMSD curves of the BZA-LMS, BS-

PNLMS, BS-MPNLMS, BNIHT and SBNIHT algorithms for a 

speech input signal, by considering the different block 

lengths  8,16,32L   for the BZA-LMS, BS-PNLMS, 

BNIHT, and BS-MPNLMS algorithms. For fair 

comparisons, the value of the algorithm parameters in 

Fig. 6 are selected as:  BZA-LMS 
7( 0.1, 0.8, 1 10 ),        BS-PNLMS 

( 0.1, 0.01)q   , BS-MPNLMS ( 0.9, 0.1, 0.1)     . 

It is also observed that the performance of the proposed 

algorithm is evidently better than other competing 

algorithms, in terms of convergence and tracking 

capability.  

Also, we can see that for all the input signals, the 

BNIHT algorithm shows a bad tracking capability. 

Conclusion 

Adaptive filter algorithms have been widely used in 

various fields, such as system identification, channel 

equalization, and noise cancellation.  

In many system identification scenarios for example 

acoustic echo path, the impulse response of the system 

is block-sparse.  

In the block-sparse systems, the coefficients of the 

system are in the form of a single cluster or multi-

cluster, wherein a cluster is a gathering of nonzero 

coefficients. To solve the block-sparse system 

identification problem, we use the normalized iterative 

hard thresholding (NIHT) algorithm that is one of the 

effective algorithms in the compressive sensing (CS) 

field, with an adaptive filter framework as a basis of the 

our work in this paper. The proposed algorithm named 

stochastic block normalized iterative hard thresholding 

(SBNIHT) algorithm is a new block version of the greedy 

NIHT algorithm with an adaptive filter framework.   

The SBNIHT algorithm uses a new search method to 

identify the blocks of the impulse response of the 

unknown block-sparse system. In addition, in this paper, 

the necessary condition to guarantee the convergence of 

SBNIHT is derived. Although the proposed SBNIHT 

algorithm is more complex than other state-of-the-art 

algorithms in the literature, but Simulation results 

demonstrate that the proposed algorithm has better 

convergence and tracking capability. 
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IHT Iterative Hard Thresholding 

NIHT Normalized IHT 

BIHT Block-IHT 

BNIHT  

BS 

Block-NIHT 
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Bl0-LMS Block l0-norm LMS  
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