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 Background and Objectives: Programmable logic devices, such as Field 
Programmable Gate Arrays, are well-suited for implementing biologically-
inspired visual processing algorithms and among those algorithms is HMAX 
model. This model mimics the feedforward path of object recognition in the 
visual cortex.  
Methods: HMAX includes several layers and its most computation intensive 
stage could be the S1 layer which applies 64 2D Gabor filters with various 
scales and orientations on the input image. A Gabor filter is the product of a 
Gaussian window and a sinusoid function. Using the separability property in 
the Gabor filter in the 0° and 90° directions and assuming the isotropic filter 
in the 45° and 135° directions, a 2D Gabor filter converts to two more 
efficient 1D filters. 
Results: The current paper presents a novel hardware architecture for the S1 
layer of the HMAX model, in which a 1D Gabor filter is utilized twice to create 
a 2D filter. Using the even or odd symmetry properties in the Gabor filter 
coefficients reduce the required number of multipliers by about 50%. The 
normalization value in every input image location is also calculated 
simultaneously. The implementation of this architecture on the Xilinx Virtex-
6 family shows a 2.83ms delay for a 128×128 pixel input image that is a 
1.86X-speedup relative to the last best implementation. 
Conclusion: In this study, a hardware architecture is proposed to realize the 
S1 layer of the HMAX model. Using the property of separability and 
symmetry in filter coefficients saves significant resources, especially in DSP48 
blocks.  
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Introduction 

Feature extraction in object recognition is performed in 

the primary visual cortex (V1) in the mammalian visual 

pathway. The V1 simple cells behavior modeling 

discovered by Hubel and Wiesel [1] is generally 

performed by 2 dimensional (2D) Gabor filters. A Gabor 

filter is a Gaussian kernel function modulated by a 

sinusoidal plane wave. A pyramid of 2D Gabor filters is a 

common approach for modeling classical simple cells (S1 
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layer) of HMAX (Hierarchical model and X) model [2], [3]. 

HMAX is a computational model of the ventral visual 

pathway found within the visual cortex, which is 

responsible for object recognition with an admissible 

performance. In S1 layer of the HMAX model, which is 

one of the computationally intensive stages of the 

model, the real part of the 2D Gabor filter is applied to 

the input image in four orientations and 16 scales. 

Applying different filters increases the robustness of the 

model for changes of object orientation and scale in the 

input image. This is performed in the S1 layer of the 

model, which is one of the computationally intensive 

stages of the model. 

In addition to biologically-inspired systems, the 2D 

Gabor filter is employed in many other applications, such 

as texture classification, facial expression recognition 

techniques [4], edge detection [5], and iris recognition 

[6]. For this reason, speedup in applying a 2D Gabor filter 

to an image is particularly critical in real-time 

applications. 

Many articles have been written in the last decade 

with the aim of acceleration of applying Gabor 2D filter 

to an input image. In [7], a technique has been proposed 

to integrate the interpolation and the convolution 

processes of the Gabor filter. The integration of these 

two processes makes the 2D Gabor filter separable along 

any direction.  

Separating the filter in two dimensions, x and y, 

converts the 2D filter to two more efficient 1D filters 

with Gaussian and sinusoidal modulations. However, this 

method requires a technique for re-sampling an image 

by an interpolation kernel, a process which involves 

additional computational complexity.  

To convert convolution to multiplication, some 

articles have used frequency domain and Fourier 

transforms. To obtain the final output, [8] first 

transforms input data and filters to Winograd or 

frequency domain, performs element-wise 

multiplication, and then applies inverse transformation. 

This study proposes a novel architecture for 

implementing fast algorithms on FPGAs. 

Utilizing some mathematical techniques in 

mathematical relationships reduces computation 

overhead without any loss in accuracy. Some recent 

studies have computed filters as linear combinations of a 

smaller number of separable filters, thus greatly 

reducing computational complexity at no cost in terms 

of performance [9], [10].  

In this study, a filter with rank R converts to an R 

separable filter or R filter with rank one. Separation in a 

2D filter indicates that separation may be achieved by 

applying two or more 1D filters, which greatly reduces 

the run-time and computational resource requirements 

without a loss in accuracy. The idea of separating Gabor 

filter kernels is also introduced in [11], but the suggested 

method only accommodates particularly oriented Gabor 

filters and so is not generic or flexible enough.  

Reference [12] proposes GPU acceleration of the 

texture feature extraction algorithm by using separable 

1D Gabor filters to approximate non-separable Gabor 

filter kernels. 

The complexity and severity of computations in the 

Gabor filter’s real-time applications, such as S1 layer of 

HMAX, has always posed a challenge in filter 

implementation. In recent years, researchers have been 

fascinated by an effective approach to overcoming this 

challenge: the design of hardware accelerators, which 

enable massive parallel processing and pipelining [13]-

[15].  

In addition, FPGA-based accelerators provide fast 

programming times and cost-effective ways for 

evaluating algorithms and prototyping, which eliminate 

fabrication time [16]. Furthermore, FPGA fabricators 

have developed IP Cores, such as CORDIC Cores, 

Memory Cores, and math calculation Cores, for instance 

rooting and power, which make designing easier, faster, 

and more optimal. 

A.  Our Contributions 

As the main contribution of this paper, we proposed a 

resource efficient version of the S1 layer of the HMAX 

model for hardware implementation. More precisely, 

the proposed model has the following properties: 

 The 2D Gabor filter is separable in 0° and 90° 

directions, and in other directions the Gabor filters 

becomes separable by approximating them using its 

isotropic (γ = 1,circular) version. In order to reduce 

the complexity of computation, separation and 

symmetry properties have been used in the isotropic 

version of 2D Gabor filters, which is effectively raises 

the filtering speed. 

 This method is employed in the design of hardware 

architecture for accelerating the S1 layer of the HMAX 

model. The effect of this approximation (i.e. γ = 1)  on 

the accuracy of the HMAX model has been 

investigated in [17] and it has been shown that it has 

no effect on its accuracy. 

 Pipeline hardware architecture for the proposed S1 

layer was designed and implemented on one Virtex-6 

FPGA family. By utilizing the separation and symmetry 

property, there is a desirable reduction in hardware 

resources, especially in DSP48E1 and memory blocks. 

 The normalization value of the results is calculated in 

parallel with the filter to increase the illumination 

invariance. 

B.  Paper Organization 

The organization of the present paper is as follows. 

The second section reviews the S1 layer of a HMAX 
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model of a classical simple cell emulating V1 simple cell. 

In the third Section discusses the mathematical relations 

of the separability and symmetric coefficient of a Gabor 

filter in special orientations. The next section presents 

the overall hardware architecture of the S1 layer of the 

HMAX model according to the contents of the previous 

section. The next section presents the simulations of the 

modified model.  

The following section provides the results of the 

proposed architecture and a comparison with a state-of-

the-art implementation. Finally, the conclusion of the 

work is presented. 

S1 Layer of HMAX 

The S1 layer is the lowest layer of the HMAX model 

and receives a gray value image as its input. This input 

image is then applied to a set of Gabor filters as an edge 

detector filter. The Gabor filters fit very well with the 

receptive field weight functions found in the simple cells 

of the primary visual cortex. The following equations 

describe the real part of the two-dimensional Gabor 

filter [3]: 

 (   )   
 
       

       (
  

 
 ) 

              

               

(1) 

x and y are determined by the filter size, which spans 

a range of sizes from 7×7 to 37×37 pixels in the steps of 

the two pixels. Table 1 of [2] presents all filter 

parameters, i.e., the aspect ratio, γ=0.3, orientation θ 

(0°, 45°, 90°, and 135°), effective width σ, and 

wavelength λ. Thus, the complete pyramid consists of 

4×16=64 filters, leading to 64 different S1 receptive field 

types (four orientations and 16 scales). Figure 1 shows 

the 2D Gabor filter bank. 

 

 

Fig. 1: The 2D Gabor filter bank with four orientations and 16 
scales [17]. 

 

In the S1 layer of the HMAX model, the 64 Gabor 

filters should be applied to the input image and then the 

results should be normalized for illumination invariance. 

Normalization values are obtained by calculating the 

root sum square values of the input image pixels at each 

location where the Gabor filter is applied. Figure 2 

provides the pseudo code for computing the S1 layer 

response and Fig. 3 shows the result of the S1 layer in 

various orientations and scales of the Gabor filter. 

 

 

 

 Fig. 3: Applying Gabor filters in 4 orientations and in 16 scales. 
 

Mathematical Relations 

The conventional way to apply the Gabor filters in the 

S1 layer is convolution in the spatial domain. The 

complexity of convolution depends directly on M×N and 

P, where P is the width and height of the filter and M 

and N are the width and height of the image, 

respectively.  

The complexity of calculating the filter response for 

one location is P
2
 and for the entire image is MNP

2
.  

 

        Input Image 

 
 

      n×n 

 

angle 

7×7 9×9 … 37×37 

0 Deg. 

  

… 

 

45 Deg. 

  

… 

 

90 Deg. 

  

… 

 

135 Deg. 

  

… 

 

 

For each scale, s = 7 : 2 : 37 
      For each orientation, Ө = 0 : 45 : 135 
          Extract s×s Gabor Filter in Ө orientation from 
memory 
          Computing the 2D convolution between the input 
Image and the Gabor Filter 
          Computing the Normalization value of the Image in 
the s×s region 
      end  
end 
result <= 2D convolution / Normalization value  

Fig. 2: Pseudo code of the S1 layer. 
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A filter is called separable if it can be expressed as the 

multiplication of two column and row vectors. 

Therefore, the convolution in the separable filters can be 

performed by two one-dimensional filters.  

Consequently, the computational complexity 

decreases to 2PMN or P/2 times. 
 

 (   )    ( )    ( ) 

(2) 
   (   )   (   )    (   )

 [  ( )    ( )]    (   )

   ( )  [  ( )    (   )] 

where the operator * denote to the convolution, G(x,y) 

is the 2D Gabor filter and G1 and G2 are 1D Gabor filters 

by column and row representation. Out(x,y) and In(x,y) 

are the input image and the output of the filter, 

respectively. 

Solving (1 in 0° and 90° shows that the Gabor filter is 

separable in these orientations. 
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in which: 
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where E1
T
(y) , E2

T
(y) and E1(x) , E2(x) are column and row 

vectors, respectively, and the * sign designates the 

convolution of the two column and row vectors. 

In any orientation Ө other than 0° and 90°: 
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In order to reduce the complexity of computation and 

make the Gabor filters separable, we approximate them 

using its isotropic (γ=1, circular) version. The effect of 

this approximation on the accuracy of the HMAX model 

is investigated in [17] and substituting γ=1 does not 

reduce accuracy. Therefore:  
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(7) 

 

This signifies that the 2D Gabor filter is equal to the 

minus of two separable filters in each arbitrary 

orientation. 

Especially in 45° and 135° orientations E3 = E4 and 

O1=O2 due to          : 
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Then: 
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Therefore, in these cases, the 2D Gabor filter 

transforms to plus or minus of two separate 1D filter. In 

addition, each 1D filter can be halved by using the even 

or odd symmetry properties in the functions of (10). This 

will reduce the required number of multipliers by about 

50%.  

The use of separability and symmetry properties 

improves storage capacity of Gabor filter coefficients. 

For example, storing a 37×37 filter requires 1,699 

memory locations. However, in the proposed design, 

19+19=38 memory locations are utilized. For a total of 

64 filters in S1 layer of HMAX, instead of  

∑                       memory locations, 

∑     (   )                   are utilized which 

k is the filters dimension. This represents a 95.8% 

reduction in the memory requirement for storing Gabor 

filter coefficients. 

Hardware Architecture of the Accelerator 

This section describes the hardware accelerator 

architecture of the HMAX model’s S1 layer. This design is 

the result of an accurate study of the S1 layer structure 

and the arrangement of the steps involved in this layer. 

The design is part of the HMAX model and is ultimately 

utilized with this model.  

A gray scale image as the accelerator input is stored in 

an internal memory. In addition, the Gabor filter 

coefficients are pre-calculated with the functions 

presented in the previous section and stored in the FPGA 

internal memory.  

Figure 3 presents the block diagram of the entire S1 

layer architecture. The design has two paths. In the first 

path, the input image data is applied to the 1D filter and 

the outputs are stored in an intermediate RAM. In the 

second path, instead of the input image, the stored 

values of the first path are applied to the 1D filter with a 

vertical sweep. Since the input image is required to apply 

other filters, the memory allocated for the input image 

cannot be used for intermediate values. Except for input 

image RAM and normalization values calculator (the 

normalization value is the same for all filters), this 

architecture has been replicated four times (for 

orientations 0°, 45°, 90° and 135°). The results of 

applying 0° and 90° Gabor filter are directly divided by 

the normalization value, but according to (10), the 

results of applying E3 and O1 filters must be + and – for 

Gabor filters 135° and 45°, respectively. The 

normalization value is calculated with the processing of 

the filter, simultaneously. 

 

Fig. 4: The block diagram of the S1 layer architecture. 

Figure 5 shows the architecture of a 1D filter. At each 

clock pulse, one pixel from a row of the input image is 

entered into a filter. Therefore, in the 37×37 filter, after 

37 clock pulses, the data is available and the accelerator 

starts to work.  

By exploiting the even or odd symmetry in the 

coefficients of the 1D filters, the pixel values of the input 

image are added or subtracted and then applied to the 

filter coefficients. Finally, the outputs of 19 multipliers, 

resulting of 37×37 filter, are added together using a 

pipelined version of the adder tree. Using multi-stage 

pipeline structure, the 1D filter output is prepared in one 

position of the input image in one clock pulse. 

 

 

Fig. 5: Architecture of a 1D filter (with even symmetry). Z
-1

 
represents a one-sample delay and GF is a Gabor Filter 

coefficient. 
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Figure 6 shows the architecture of the normalization 

values calculator. Initially, the image values are squared 

and entered into a shift register. A pipeline adder 

collects the register values and the results of the first 

path are stored in an intermediate RAM.  

In the second path, the stored values are vertically 

swept and entered into the shift register. The square 

root of the results are used as normalization value as 

shown in Fig. 5.  

The “Image RAM” shown in Fig. 6 and Fig. 4 is the 

same. 

 

 

Fig. 6: Architecture of the normalization values calculator. 
 

With the employment of the Xilinx IP cores available 

in ISE Design Suite software, the design of the circuit is 

facilitated and its square root, division, multiplication, 

and RAM components become more efficient. In order 

to more parallel processing in the hardware, four 1D 

filters with orientations of 0°, 45°, 90° and 135° have 

been instantiated to generate the results at four angles 

simultaneously.  

Simulation 

The present study investigates three different 

simulations on various images from well-known 

datasets, such as Caltech 101 [18]. The first one is the S1 

layer from the standard HMAX model written by Serre et 

al. [2], whose source code is available online. This is a 

simulation in MATLAB and serves as a basis for 

comparing our extension code results.  

The second simulation is the modified code in 

MATLAB, which converts a 2D filter to two 1D filter by 

use of the separability and symmetry properties of 

isotropic Gabor filters (γ=1). As expected, the result of 

this simulation is exactly equivalent to the first 

simulation or the standard model, due to the 

mathematical proof given in the third section.  

With the usage of ModelSim software, the VHDL code 

of the designed architecture is simulated as the third 

simulation.  

This simulation tests the functional operation and 

timing characteristics of the circuit (Fig. 7). The 

functional simulation is useful for checking the 

fundamental correctness of the designed circuit and the 

accuracy of the results due to the bit width limitations. 

Hardware implementation of circuit with Xilinx ISE 

determines the timing and resource consumption. The 

timing simulation evaluates the speed performance by 

considering the latency of wires and logic components 

and tests the mathematical operation of the circuit. The 

target platform for simulation and synthesis is a mid-

range commercial Xilinx FPGA, i.e. XC6VLX240T of the 

Virtex-6 family. 

Implementation Results and Comparisons 

By considering accuracy, efficiency, as well as 

resource and power consumption, this section evaluates 

the accelerator proposed. Implementation is performed 

on a Xilinx XC6VLX240T device, which hosts 

approximately 150,000 LUTs, a 14.5 Mb built-in RAM, 

and 768 DSP48. The design is written in VHDL language 

and synthesized and implemented with ISE 14.7 

software.  

The input image is assumed to be 128×128 pixels and 

converts to a gray scale with an integer number between 

0 and 255 (8 bits) assigned to every pixel. The input 

image is stored in an internal memory. The output is 

expressed with four 16-bit integer numbers in 

conjunction with the 14-bit address of the image pixel 

and a signal for output validation (Fig. 7). The output is 

not stored in the internal memory due to its 

consumption of excessive storage space. 

For each of the Gabor filter coefficients, a 16-bit fixed 

point number was assigned; 8 bits for integer part and 8 

bits for fractional part.  

Fixed point expression was selected since this 

expression uses fewer physical resources and fewer 

clock cycles than do floating point numbers. At the end 

of the first and second path, 8 bits from the low 

significant of the result numbers are removed. So the 

number stored in the intermediate RAM and the result 

of the second path will be integer. The bit width of 

intermediate values is adjusted such that it never 

overflows in the worst-case scenario.  

Multiplication, division, RAM, and square root 

components are generated by Core Generator software. 

A state machine controls the entire circuit via multiple 

counters for counting the rows and columns of the input 

image.  

Implementation of the total circuit indicates that the 

design can run at a minimum period of 5.38nsec or a 

maximum frequency of 185 MHz.  

Since the processing of a single line of input images 

with the pipeline structure takes about N clock cycles, 

processing the first path of filter in four orientations 

requires about MN clocks, where M and N are the width 

and height of the input image, respectively.  
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Therefore, process of first and second path of the 

filter and produce the final result take about 2MN clocks. 

Thus applying 16 filters take about: 

Del= 16×2MN×5.38 nsec (12) 

Del is the total delay of our hardware for each input 

image with M×N pixels. This time is 2.82msec for 

128×128 pixel image. Simulation of the circuit shows 

2.84msec delays, resulting in a maximum throughput of 

354 frames per second (fps). Consequently, the average 

processing time for one filter is 2.84ms/64=44μs. 

Obviously, this circuit is one layer of the HMAX model 

and its throughput should be comparable by the 

throughput of the rest of the circuit. In this calculation, 

the loading time of the input image is eliminated due to 

the pipeline structure of the circuit. 

Table 1 presents the total hardware resources 

consumed by the implemented circuit on a XC6VLX240T 

device. The limiting factor in further parallel processing 

is the amount of memory available. Table 1 is for a 

128×128 pixel image. The major impact of increasing the 

input image’s size is on the RAM used as it is directly 

related to the image’s dimensions. Therefore, if the 

image is enlarged to 256×256, then the memory 

consumption is quadrupled. Regardless of the amount of 

memory required, one of the advantages of the 

proposed architecture is that increasing the size of the 

input image has no effect on the number of multipliers 

required. Number of multipliers is affected by the largest 

filter dimension or 37. It should be noted that not 

utilizing the separability and symmetry property, we will 

require 37×37×4=5,476 multiplications.  

The estimated dynamic power consumption is 1.02W 

and the quiescent power consumption is 2.97W due to 

leakage by use of Xilinx XPower Analyzer software. 

For comparison of circuit speeds, Table 2 provides 

three different implementations of the HMAX model’s S1 

layer released in recent years. In addition to the 

standard HMAX model which is discussed in the present 

paper, there is an extension model developed by Mutch 

et al. [3].  In  this  model,  Gabor  filters  with  same  sizes  

 

(11×11) are used for all scales, applying them to scaled 

versions of the image. The advantage of this model is in 

reducing computational complexity, so it has been used 

in many implementations in recent years. 
 

Table 1: Hardware resource usage 
 

Resource Used Available Percent 

DSP48E1 77 768 10% 

RAMB36E1 57 416 13% 

RAMB18E1 5 832 1% 

Slice Reg. 15,598 301,440 5% 

LUTs 9,619 150,720 6% 

 

Reference [19] implements the whole Mutch HMAX 

model in the embedded Power PC, applies four 11×11 

Gabor filter to 10 images pyramid in the S1 layer, and 

reports a 511ms delay. The hardware implementation of 

this study achieved a maximum delay of 260msec. In the 

hardware proposed in [14], implements the application 

of an 11×11 Gabor filter, in four directions, to a 12 

images pyramid, from 256×256 to 38×38 image 

dimensions, and reports a hardware delay of 56.3 msec. 

In an article similar to the current work, the S1 layer of 

the standard HMAX model with a 128×128 image is 

implemented on programmable hardware, achieving a 

favorable Throughput of 190 fps. with a separable Gabor 

filter [13].  

In a comparable work, two 7×7 and 9×9 Gabor filters 

are applied to an input image in four directions [20]. As 

reported, 75 and 143 fps could be processed in their 

FPGA and std_cell implementations for full-HD 

(1920×1080) images, respectively. Even though the 

image dimensions are about 126 times larger than those 

of the present study’s implementation, only the two 

smallest filters, out of the 16, are used in this 

implementation. In the present work, there are 16 scales 

filter from 7×7 to 37×37 which include 36,416 multiply 

accumulate while in 7×7 and 9×9 filters 130 multiply 

accumulate are required.  

Fig. 7: Simulation of the S1 layer with ModelSim (states: W1: load image, W2: first path of filter, W3: second path of filter). 
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Table 2: Speed comparisons among various implementations 

 Image Size (pixel) Filter Size Throughput (fps) Description 

Debole [19] 140×140 ~ 30×30 (10*) 11×11 3.85 Mutch HMAX model, 11 orientation 

Masshri [14] 256×256 ~ 38×38 (12*) 11×11 17.8 Mutch HMAX model 

Orchard [13] 128×128 7×7 ~ 37×37 (16*) 190 standard HMAX 

Licciardo [20] 1920×1080 7×7 and 9×9 75/143 FPGA/Std_cell implementation 

This paper 128×128 7×7 ~ 37×37 (16*) 353 standard HMAX 

* Number of images in the pyramid 

 
Therefore, the complexity ratio in these two works in 

filters will be 36,416/130=280, which is much larger than 

image dimensions complexity ratio (126). By other 

calculation, according to (12), delay of our circuit for 

1920×1080 pixel images is about 357msec. Since the 

difference in complexity of the filters used in the two 

implementations is 280 times, therefore, it can be 

concluded that if our circuit hardware resources are 

used for [20] implementation, the circuit delay will be 

357/280=1.34msec which is 9.9X speedup. 

Comparisons of [14], [19], [20] are unfair due to their 

differences in, for example, the model, filter size, input 

image size, and implementation platform. Despite this, 

Table 2 presents these implementations since they are 

the most recently designed for increasing the response 

speed.  

The design that is most resembling to that of present 

article is [13], which is an architecture about 1.86X 

slower than the current work’s on the identical hardware 

platform. 

Conclusion 

In this study, we proposed a new method for applying 

an isotropic 2D Gabor filter to an input image. With the 

conversion of one 2D filter to two 1D filters (the 

separability property), the computational complexity is 

reduced. Besides, to determine the efficiency and 

resource requirements of the proposed method, pipeline 

structure of the S1 layer of the HMAX model has been 

implemented, which consists of 64 2D Gabor filter in 

different scales and orientation as well as normalization 

value calculator circuit.   

The architecture implemented on a fast and mid-

range commercial FPGA platform, i.e. XC6VLX240T, for 

which the achieved throughput was 353 fps. Using this 

method saves FPGA resources, specially the number of 

DSP48E1 and RAM blocks, as well as reducing hardware 

delays.  

The hardware design of the S1 layer of the standard 

HMAX model is performed with the assistance of Xilinx 

IP cores.  

The proposed S1 layer architecture accelerates by 

more than 1.86X compared to the most similar work.  

Using two one-dimensional filters and using a pipeline 

structure between the two filters can be introduced as a 

future work. 
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