
 J. Electr. Comput. Eng. Innovations, 8(2): 169-182, 2020

Doi: 10.22061/JECEI.2020.7219.371 169

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

An Energy Efficient Fault Tolerance Technique Based on Load
Balancing Algorithm for High-Performance Computing in Cloud
Computing

H. Jahanpour, H. Barati*, A. Mehranzadeh

Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran.

Article Info Abstract

Article History:
Received 12 November 2019
Reviewed 27 December 2019
Revised 02 February 2020
Accepted 04 May 2020

 Background and Objectives: Cloud Computing has brought a new
dimension to the IT world. The technology of cloud computing allows
employing a large number of Virtual Machines to run intensive applications.
Each failure in running applications fails system operations. To solve the
problem, it is required to restart the systems.
Methods: In this paper, to predict and avoid failure in HPC systems, a
method of fault tolerance to High-Performance Computing systems (HPC) in
the cloud is called Daemon-COA-MMT (DCM), has been proposed. In the
proposed method, the Daemon Fault Tolerance technique has been
enhanced, and COA-MMT has been utilized for load balancing. The method
consists of four modules, which are used to determine the host state.
When the system is in the alarm state, the current host may face failure.
Then the most optimal host for migration is selected, and process-level
migration is performed. The method causes decreased migration
overheads, decreased system performance speed, optimal use of
underutilized hosts instead of leasing new hosts, appropriate load
balancing, equal use of hardware resources by all hosts, focusing on QoS
and SLA, and the significant decrease of energy consumption.
Results: The simulation results revealed that in terms of parameters, the
proposed method declines average job makespan, average response time,
and average task execution cost by 18.06%, 35.68%, and 24.6%,
respectively. The proposed fault tolerance algorithm has improved energy
consumption by 30% and decreased the HPC systems' failure rate.
Conclusion: In this study, the Daemon Fault Tolerance technique has been
enhanced, and COA-MMT has been utilized for load balancing in high
performance computing in the cloud computing.

©2020 JECEI. All rights reserved.

Keywords:
Cloud computing

Fault tolerance

High-Performance computing

Virtual machines

Load balancing

*Corresponding Author’s Email
Address:

hbarati@iaud.ac.ir

Introduction
Cloud computing is the greatest revolution in the

computing world, so that significant organizations and

companies have changed their traditional data

processing systems to cloud service to store a large

amount of data [1]. Cloud computing advantages are

running computation-intensive applications, decreased

time of applying the hardware, and cost [2]. It reduces

the time of applying the hardware and cost. There are

two critical roles in cloud computing: cloud service

providers and users [3]. The providers such as Amazon

and Bare Metal Cloud offer Virtual Machines (VMs), the

hardware, etc. to their clients in return for the

http://jecei.sru.ac.ir/
mailto:hbarati@iaud.ac.ir

H. Jahanpour et al.

170

subscription. Based on the services provided by them,

clouds are divided into four categories: Infrastructure as

a Service (IaaS), Software as a Service (SaaS), Platform as

a Service (PaaS), and Hardware as a Service (HaaS) [4, 5].

HaaS focuses on the hardware. The service can be leased

for research, massive information, and configuration of

HPC systems [4]. HPC is a branch of software science

that causes great scientific and computing jobs so rapidly

and less costly by integrating the computing power of

many small and medium computers [6]. HPC systems can

process a large volume of data and analyze the results so

rapidly. Using HaaS, running conventional computation-

intensive applications on HPC systems in the cloud will

be possible [7]. Despite different advantages such as

fastness, resource provisioning, cost reduction,

multitenant services, etc., cloud computing faces various

challenges, including load balancing, security, reliability,

possession, green technology, backing up data, and

transferring data [8]. Some of the most critical cloud

computing challenges are reliability and resource

availability, especially at the HaaS level [9].

A system will be called fault tolerance if it fulfills its

determined duties properly, even in the presence of

software and hardware failures [10]. In fault-tolerance

systems, the system's restarting is refrained to decrease

operational costs and energy consumption [11]. The

importance of fault tolerance is to develop the

availability of resources, reliability of cloud services, and

running applications. To minimize the effects of a failure

on the system and provide accurate and successful

running of applications, failures should be predicted and

managed [12]. If fault tolerance is not provided, the

system will incur irreparable damage [13]. Therefore,

fault tolerance is an essential feature of cloud computing

systems, especially HPC systems, since it results in

shorter running times in the presence of failure. Also,

load balancing is one of the main challenges of cloud

computing, which divides workload evenly between

hosts to satisfy users and increase the rate of resource

consumption [14]. Load balancing aims to minimize

energy consumption and reduce carbon dioxide

emissions in cloud computing [15]. Decreased energy

consumption in cloud computing systems leads to less

carbon dioxide in cloud infrastructures, which causes

less warming and pollution of the environment. Less

energy consumption and carbon dioxide emission are

essential criteria for energy-efficient load balancing in

cloud computing, which causes green computing [16]. To

provide energy-efficient fault tolerance, increase Quality

of Service (QoS), cause effective use of resources, lessen

violation of Service Level Agreement (SLA), reduce

response time, and accurately examine the system's

state. Then the failure is predicted and refrained through

effective use of resources. This method causes energy-

efficient fault tolerance and proper load balancing

among hosts. In the proposed method, the Daemon

Fault Tolerance technique has been enhanced, and COA-

MMT has been utilized for load balancing. The proposed

method consists of four modules: node monitoring with

Lm sensors module, rule-based predictor module,

migration policy module based on COA-MMT, and

controller module of DCM. The method causes

decreased migration overheads, decreased system

performance speed, optimal use of underutilized hosts

instead of leasing new hosts, appropriate load balancing,

equal use of hardware resources by all hosts, focusing on

QoS and SLA, and a significant decrease of energy

consumption. The paper is organized as follows: Next

Section includes related work in fault tolerance and load

balancing. In Next Section, the proposed method, DCM,

and its modules for fault tolerance in HPC systems are

discussed in detail. Next Section consists of the

simulation and evaluation of the method. Finally, Section

presents the conclusions.

Related Work
This part investigates specific algorithms in load

balancing and fault tolerance in cloud computing and

individually represent their advantages and

disadvantages.

Pan et al. [17] represented Particle Swarm

Optimization (PSO) algorithm, an evolutionary

computing method, originated from particles' social and

natural behavior. Particles possess state and speed and

move in a multidimensional search space. Each particle

determines its speed based on its own best state and the

state of the best particle in the society, which reduces

response time [18-19].

Huang et al. [20] suggested the Genetic Algorithm. In

this algorithm, the gene cost is first calculated through

the current scheduling solution's ratio to the best

scheduling solution. Then based on the gene cost, a

scheduling strategy is decided. Finally, the least costly

solution, which is similar to the final scheduling solution,

is selected. The standard genetic algorithm guarantees

the load balancing of the system more effectively

compared with other methods. The rate of loading

fluctuation of VMs plays an essential role in load

balancing.

Abdullah et al. [21] suggested that Bat Algorithm

provides load balancing. In this method, first, each bat

receives a primary value. The speed and location of each

bat are randomly determined in a d-dimensional space.

Each bat's fitness function is calculated, and the best

state for the bat is determined based on the least value

of the function. This method provides optimal utilization

of all resources and is more efficient. Its convergence

speed is superior to that of PSO. However, an increased

number of requests causes a longer response time. Also,

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sinha%20Sheikh%20Abdhullah.QT.&newsearch=true

An Energy Efficient Fault Tolerance Technique Based on Load Balancing Algorithm for High-Performance…

171

users wait a long time to receive service. The result will

be decreased QoS and users' satisfaction and increased

violation of SLA and system costs.

Ghafari et al. [22] represented the Artificial Bee

colony Algorithm-Minimal Migration Time (Bee-MMT) to

provide load balancing. In this method, first, the over-

utilized host is determined. Then, one or more VMs are

determined to migrate to underutilized hosts. Then VMs

migrate from over-utilized hosts to new hosts. On

migrating, the previous host switches to sleep mode. In

this algorithm, the violation of SLA is used as an essential

metric to satisfy QoS. The method provides better

response time than conventional methods and reduces

energy consumption in cloud computing infrastructure.

Also, BEE-MMT causes decreased carbon dioxide and the

appropriate efficiency of the resources of the system.

In [23], Daemon's fault tolerance is proposed. This

algorithm is based on the methods of predicting failures.

This algorithm has four modules with specific duties such

as node monitoring module with Linux monitoring

sensors, rule-based fault predictor module, migration

policy module, and controller module. The first module

is the node monitoring module Lm sensors. The

monitoring node is an open-source using Lm sensors to

monitor the accuracy of the computer's tasks. Modern

CPUs are made of sensors used for monitoring CPU

temperature, fan speed, memories, number of user's

requests, and other parameters. Rule-based prediction is

the second stage. At this stage, the failure is predicted

based on the history of failures and the system's

maximum workload. The predictor module inputs consist

of four parameters, to which specific weight values are

assigned to calculate the state of the operating system.

In the third stage, the migration policy is implemented.

The purpose of the policy is to execute computation-

intensive entirely with minimum energy consumption. At

the fourth stage, the controller module is implemented.

As failure is predicted, FTDaemon calls for the module.

Occurring failure requires the system to lease an

additional node. On migrating from an unhealthy node

to a newly leased node, the unhealthy node is

abandoned. When the host is not operating at a critical

state, there is no need to keep an additional node so

that additional nodes' cost and energy are nearly zero. In

FTDaemon, when a host is predicted to fail, the system

manager will lease a new host from the service provider.

This is a main weakness of the method since other hosts,

which may be underutilized, will not be considered by

the manager, so load balancing is not established.

In [24], reactive fault tolerance is suggested. In this

method, while HPC systems are running, they send their

results to checkpoints. In case of any failure, the system

restarts from the point before the failure. In this

method, due to increased system components, the

system may not be able to restart repeatedly. The

technique leads to decreased energy consumption. Also,

the method does not suit the systems needing overuse

of VMs or clusters because failures lead to a significant

decrease in availability.

In [25], Power-Check fault tolerance has been

suggested, which increases the monitoring level in HPC

systems using specific intelligent data. The method

causes decreased CPU use, lower system performance,

and optimized energy consumption.

Yakhchi et al. [26] suggested Cuckoo Optimization

Algorithm-Minimum Migration Time (COA-MMT)

algorithm to provide load balancing. This algorithm is

based on the life of cuckoos. COA-MMT has three steps

for load balancing and power consumption

management: At the first stage, an over-utilized host is

detected. To do this, some hosts are selected randomly

and clustered. Using profit function and according to

equation (1), the profit value of habitat or cluster is

determined. Applying equation (2), for each host, the

eggs are laid in a specific range called Egg Laying Radius

(ELR) [16]. The host with the most CPU utilization is

selected as the overused host.

 () () (1)

In equation (1), denotes the profit function.

 ()

 (2)

In equation (2), is an integer, supposed to handle

the maximum value of ELR. and stand for

upper bound and lower bound, respectively, which are

used for defining ELR. At the second stage, an under-

loaded host is detected. The host experiencing the

minimum CPU utilization is selected as the host with the

least loading value. At the third stage, selection policy is

implemented, and one or more VMs are selected to

migrate to the host with minimum CPU utilization.

Minimal Migration Policy Time (MMT) selects the VMs

needing less time to migrate to other hosts. Migration

time is calculated by equation (3).

 ,
 ()

 ()

 (3)

In equation (3) is a set of VMs currently allocated

to host j. denotes the spare network bandwidth

available for the host j; and () is the amount of

RAM currently utilized by the VM . This method

decreased the violation of SLA compared with Bee-MMT.

Using this method leads to increased QoS and

satisfaction of users.

Tamilvizhi and Parvathavarthini in [27] proposed a

concept of fault management with the emphasis on the

H. Jahanpour et al.

172

hardware and network faults handling. This proposed

work introduces an innovative perspective on adopting

a fault-tolerant mechanism to avoid network congestion

and health monitoring for fault detection with migration

techniques to handle faults adaptively. This work's

primary goal is to develop an effective cloud

architecture that could tolerate fault occurrences

beforehand or after hand and then suggest appropriate

solutions to maintain data traffic and the system's

availability, thus making it more reliable and flexible.

Neelima and Reddy in [28] proposed a load balancing

task scheduling algorithm in the cloud using the

Adaptive Dragonfly algorithm (ADA), which provides

minimum time and cost while balancing the load. In this

method, to attain better performance, a multi-objective

function is developed based on three parameters:

completion time, processing costs, and load. Based on

the multi-objective function, we assign a task to VM.

The proposed methodology's main objective is to assign

the task to VM using ADA, which minimizes the total

execution time and cost while balancing the load.

Durga Devi et al. [29] proposed a dynamic load

balancing in a heterogeneous environment by Modified

Adaptive Neuro-Fuzzy Inference System (MANFIS).

Parameters of MANFIS are optimized by introducing

Fire-fly Algorithm. In this method, the adopted Modified

Adaptive Neuro-Fuzzy Inference System (MANFIS) for

VM load balancing is based on the CPU utilization and

turnaround time. Also adopted Enhanced Elliptic Curve

Cryptography to provide security between cloud users

and cloud servers. There are two key implication of

proposed methodology. First, is to optimize load

balancing based on CPU utilization and Turnaround

time. Second, is to provide data security using Enhanced

Elliptic Curve Cryptography.

Kong et al. [30] proposed a fast heuristic algorithm

based on the zero imbalance approach as a new

concept in the heterogeneous environment. This

approach focuses on minimizing the completion time

difference among heterogeneous VMs without priority

methods and complex scheduling decision to the

particular cloud configuration. This mechanism consists

of combining load balancing and task allocation. To

achieve this mechanism, this algorithm collects each

task's size, the processing speed of each VM, the

bandwidth of each VM, the number of VMs and tasks,

as information to implement load balancing and task

allocation in the balancing phase. Moreover, the

assignment of tasks is performed on any VMs under the

control of modified optimal completion time. The

proposed algorithm identifies the suitable VMs for the

appropriate unassigned tasks based on earliest finish

time in the task allocation phase. Table 1 shows a

comparison between the mentioned algorithms.

Proposed Method

As shown in the related work section, FTDaemon is

not perfect, which results in increasing migration

overheads, increasing system cost, increasing energy

consumption, decreasing system performance speed,

ignoring underutilized hosts, inappropriate load

balancing, unequal use of hardware resources by some

hosts, ignoring QoS, and violating SLA. An energy-

efficient fault tolerance approach has been suggested to

predict and avoid failure occurrence in HPC systems.

The proposed algorithm is called Daemon-COA-MMT

(DCM). The method causes decreased migration

overheads, decreased system performance speed,

optimal use of underutilized hosts instead of leasing

new hosts, appropriate load balancing, equal use of

hardware resources by all hosts, focusing on QoS and

SLA, and a significant decrease of energy consumption.

Our method employs four modules. To predict and

prevent failures, the proposed method utilizes these

parameters: CPU temperature, CPU utilization, number

of users' requests, voltage, and fan speed parameters.

The architecture of the method consisted of some

modules, is illustrated in Fig. 1.

Fig. 1: The architecture of the proposed method.

The proposed method consists of four modules:

 Node monitoring with Lm sensors module

 Rule-based predictor module

 Migration policy module based on COA-MMT

 Controller module of DCM

The modules are described as follows:

A. Host Monitoring Modules in Proposed Method

In the proposed method, Lm sensors are used since

most HPC systems run Linux, and Lm sensors utilize the

Linux operating system. Lm sensors cause the

development of the DCM method, which could easily be

deployed on HPC systems in clouds. HPC systems,

possessing more than 100000 CPUs, impose massive

overhead on the networks and HPC systems. Therefore,

An Energy Efficient Fault Tolerance Technique Based on Load Balancing Algorithm for High-Performance…

173

the method should check the parameters periodically to

reduce monitoring overhead.

The information collected at intervals of 600

seconds, which are changeable, is sent to the host.

Whenever the monitoring parameters inside the Lm

sensors exceed the maximum value, the alarm will be

triggered, which indicates that the failure is likely to

occur.

B. Rule-Based Prediction Modules in Proposed Method

DCM Fault Tolerance is executed on each node in the

user's space, and the failure is predicted based on the

history of failure, maximum operating values, and

information obtained from the system.

When the monitoring node with Lm sensors indicates

a failure, the rule-based predictor module runs. The

rule-based predictor module inputs are five parameters:

temperature T, voltage V, fan speed F, CPU utilization C,

and several user's requests R from the host.

The reason for using number of user's requests is

that the second module investigates hardware

resources and the cause of creating workload for the

host's hardware resources. To calculate the respective

host's actual state, specific fixed weight values are

assigned to the host. The values are 1, 1.5, 2, 2.5, and 3

for the very good, good, normal, alarm, and critical

areas, respectively (Table 2).

Ref Approach Advantage Disadvantage

[17] An improved particle algorithm to achieve

resource load balancing optimization in the

cloud environment

Improve Resource utilization,

Good Performance

It is valid for equal-sized

population

[20] a Genetic Algorithm based resource

management algorithm for allocating cloud-

based virtual machines on physical machines

Obtained an optimized

distribution strategy

High computational overhead

[21] The comparison of load balancing

techniques and BAT algorithm techniques

are described

provides optimal utilization of all

resources

Increased number of requests

causes a longer response time

[22] An algorithm to detect over utilized hosts

and then migrate VMs based on artificial bee

colony algorithm (ABC)

Greater power consumption

saving, Decreasing the CO2

emission and operational cost

High complexity for selecting best

overloaded host, No prediction for

future workload of hosts

[23] Energy efficient fault tolerance for HPC in

the cloud that develop a generic FT

algorithm for HPC systems in the cloud.

Reduced the energy consumption

of computation-intensive

applications

Low accuracy of failure prediction

mechanism that is unsuitable for

HPC workload.

[24] Fault Tolerance (FT) approach to HPC

systems in the cloud to reduce the wall clock

execution time in the presence of faults

Improved the execution time,

reduce energy consumption

Does not suit the systems needing

overuse of VMs or clusters

[25] A power-aware check pointing framework

Power-Check to address the problem of

marginal energy benefits

Reduction in the amount of

energy consumed, improving the

check pointing performance

Job partitioning however not

considered in this approach.

[26] An approach based on Cuckoo Optimization

Algorithm (COA) to detect over-utilized

hosts.

Reduced the power consumption May be cause SLA violation

[27] Adopting a fault tolerant mechanism to

avoid network congestion and health

monitoring for fault detection with

migration technique

Reduced energy consumption and

cost overhead

This method no worries about how

to cover the error

[28] A load balancing task scheduling algorithm

in cloud using Adaptive Dragonfly algorithm

(ADA)

Well-balanced load across virtual

machines

High computational overhead

[29] Dynamic load balancing in a heterogeneous

environment is handled by Modified

Adaptive Neuro Fuzzy Inference System

(MANFIS)

Improving the turnaround time

and maximizing the CPU

utilization

High communication overhead

[30] A fast heuristic algorithm based on the zero

imbalance approach, as a new concept in

the heterogeneous environment

strikes the balance between the

requirements of cloud users and

providers

Ignoring power consumption in the

data center and live VM migration.

Table 1: Comparison and summary of previous methods

H. Jahanpour et al.

174

As shown in Table 2, the host is at an excellent state

when parameters are as follows: temperature 0-15,

voltage 0.85-0.94, fan speed 0-500, CPU utilization 0-16,

and the number of requests 0-50. The weight of each

parameter is 1. The rule-based predictor module is

shown in Fig. 2.

As shown in Fig. 2, the main parameters

() are inserted into a calculating module

and values are obtained from equation (5). The result

is compared with the threshold, and the output of the

rule-based predictor module is obtained. The threshold

is calculated based on system log, constructive

information, current sensor values, and CPU utilization

values.

In (4), constant is employed to improve the

accuracy of prediction. As is negligible, we set

 . On calculating based on determining ranges in (5),

the host state is determined based on ac at the current

state.

 ∏

 (4)

As shown in (6), five states can be assigned to each

host. The categorization is based on these five

parameters: temperature (T), voltage (V), fan speed (F),

CPU utilization (C), and the number of user's requests

(R) from the host. These five areas are used to improve

the accuracy of prediction and detect suspicious hosts

immediately. The method of determining the state of

hosts is shown in Table 3.

{

(5)

C. Migration Policy Based on Proposed Method

When an alarm is triggered, the migration policy is

activated.

It is not needed to lease a new host to eliminate the

alarm state since the third module examines all hosts to

find underutilized hosts.

The purpose of the method's migration policy is to

complete computation-intensive computation with

minimum energy consumption. In the DCM algorithm,

when a failure is predicted, COA-MMT load balancing is

executed.

On investigating the load balancing area, we chose

the COA-MMT load balancing algorithm for the third

module due to its rapid and exact detection of optimal

point, providing appropriate load balancing and SLA,

increasing QoS, and containing MMT policy. COA-MMT

technique is executed in three steps to provide load

balancing in the system.

In the third module of the proposed method, the

COA-MMT load-balancing algorithm is implemented in

two steps to establish load balancing and manage

power utilization. According to the method, the host

monitoring and rule-based predictor modules are

determined based on the over-utilized host's hardware

parameters. Hence, the COA-MMT load balancing

algorithm does not need to search for the over-utilized

host, which causes overheads and increased energy

consumption. Migration policy based on COA-MMT

optimization includes two steps: detecting the under

loaded host and selection policy.

CPU
Utilization

Number of Users'
Requests from

Host
Fan Speed Voltage Temperature

Weight of
Parameter

0-16 0-50 0-500 0.94-0.85 0-15 1

16-32 50-100 500-1000 0.94-1.03 15-30 1.5

32-48 100-150 1000-1500 1.03-1.12 30-45 2

48-64 150-200 1500-2000 1.12-1.21 45-60 2.5

64-80 200-250 2000-2500 1.21-1. 30 60-75 3

Table 2: Weight of parameters based on measured

values

𝑉𝑖
i

𝐹𝑖

𝑅𝑖
i

Threshold

𝑎𝑐 Cmp Output

𝐶𝑖
i
𝑇𝑖

i

Computation

Fig. 2: Rule based predictor module.

An Energy Efficient Fault Tolerance Technique Based on Load Balancing Algorithm for High-Performance…

175

State aC Amounts Threshold

Critical

3*2.5*2.5*2.5*2.5

=117.18

3*3*2.5*2.5*2.5

=140.62

3*3*3*2.5*2.5

=168.75

3*3*3*3*2.5

=202.50

3*3*3*3*3

=243

117.18

Alarm
2*2*2*2*2.5

=40

2*2*2*2.5*2.5

=50

2*2*2.5*2.5*2.5

=62.50

2*2.5*2.5*2.5*2.
5 = 78.12

2.5*2.5*2.5*2.5*
2.5 = 97.66

40

Normal
1.5*1.5*1.5*1.5*2

=10.12

1.5*1.5*1.5*2*2

=13.50

1.5*1.5*2*2*2

=18

1.5*2*2*2*2

=24

2*2*2*2*2

=32
10.12

Good
1*1*1*1*1.5

=1.5

1*1*1*1.5*1.5

=2.25

1*1*1.5*1.5*1.5

=3.37

1*1.5*1.5*1.5*1.
5 = 5.06

1.5*1.5*1.5*1.5*
1.5 = 7.59

1.5

Very
Good

1*1*1*1*1

=1

_

_

_

_

1

Table 3: Calculating ac based on the parameters of the proposed method

Fig. 3: Process level migration from the host, in warning state to the proper host.

H. Jahanpour et al.

176

D. Controller Module in Proposed Method

The controller module is responsible for the

implementation of three introductory modules. It is

installed on all nodes. On predicting a failure, the

controller module is called for, and the following steps

are taken:

 Several VMs installed on a host, which is in the

alarm state, request some information about their

current host from the information center.

 The ID of programs running on the unhealthy VMs

installed on the current host is obtained through

the information center.

 An appropriate host, determined by COA-MMT, is

selected

 The process level migration from a host in an alarm

state to a host in the proper state is performed.

 The details of the running VMs on a proper host is

published to the head host.

In Fig. 3, the process level migration from a host,

which is in an alarm state to a proper host, is shown.

Once the method detects a host, which is in an alarm

state, the host is selected based on COA-MMT, and the

controller module performs process level migration to a

proper host.

The flowchart of the proposed method is illustrated

in Fig. 4. First, the state of the host is examined by Lm

sensors. Second, five main parameters are selected, and

 is calculated through equation (5). The result is

compared with the warning threshold. If is lower

than the warning threshold, the host state will be

proper, and other steps are redundant. Otherwise,

using the COA-MMT algorithm, the proper host is

selected. The tasks are selected on the host, which is at

the alarm state. Finally, process level migration is

performed. Algorithm 1 shows the pseudo-code for

proposed method.

Start

Investigating host state

using Lm-sensors

𝑎𝑐 𝑇𝑖 𝐹𝑖 𝑉𝑖 𝐶𝑖 𝑅𝑖 𝐾𝑐

𝑛

𝑖

 𝑎𝑐 𝑊𝑎𝑟𝑛𝑖𝑛𝑔 𝑇 𝑟𝑒𝑠 𝑜𝑙𝑑

Recognizing optimal host through COA-MMT

algorithm based on the main parameters

Selecting tasks to migrate at the level of process

Calling for controller module and migrating

Yes
No

End

Fig. 4: Flowchart of the proposed method.

An Energy Efficient Fault Tolerance Technique Based on Load Balancing Algorithm for High-Performance…

177

Simulation and Result

Using Cloudsim 3.0, the proposed method, DCM, has

been simulated. The proposed method's efficiency has

been evaluated in scenarios A, B, and C compared with

Power-Check [15] and Tamilvizhi et al. method [27]. In

scenario A, five users with five brokers, and two data

centers have been created. The first data center contains

three hosts, while the second data center contains two

hosts. Ten VMs are also created using the Time-Shared

policy, each with 512 MB and one CPU managed by Xen,

as Virtual Machine Manager (VMM), on Linux operating

system. The host's memory is 2048 MB, with a storage

capacity of 1,000,000 MB and a bandwidth of 10,000

Mb/sec. The number of submitted tasks (cloudlets)

ranges between 10 and 100, each with 600 MB files.

In scenario B, we set 10 cloud users with ten brokers

and five data centers. Each data center contains three

hosts, making a total of 15 hosts. A total of 25 VMs are

also created using the Time-Shared policy, each with 512

 BM and one CPU managed by Xen, as VMM, on Linux

operating system.

The host memory is 2048 MB, with a storage capacity

of 1,000,000 MB and a bandwidth of 10,000 Mb/sec.

Moreover, the number of submitted tasks ranges

between 50 and 500, each with 1000 MB files.

In scenario C, fifteen cloud users with fifteen brokers

and eight data centers have been created. Each data

center contains three hosts, making a total of 24 hosts.

30 VMs are also created using the Time-Shared policy,

each with 512 BM and one CPU managed by Xen, as

VMM, on Linux operating system. The host's memory is

2048 MB, with a storage capacity of 1,000,000 MB and a

bandwidth of 10,000 Mb/sec. Also, the number of

submitted tasks ranges between 500 and 1000, each

with a file size of 1400 MB. To improve accuracy,

simulation is performed ten times in a row.

Table 4 illustrates the conditions and parameters

of the simulation.

Fig. 5: Average job makespan. a.senario A's makespan time. b.senario B's makespan time. c. senario C's makespan time.

H. Jahanpour et al.

178

The average job makespan, average response time,

failure rate, energy consumption, and average task

execution costs are presented compared to two other

algorithms.

The interval between request and completion of the

request is called job makespan. Figure 5 shows the

average job makespan of the proposed method in

scenario A, B, and C compared with Power-Check and

Tamilvizhi method.

Algorithm 1: Proposed method

As shown in Fig. 5, in scenario A, the average job

makespan has improved compared with other methods.

Also, an increased number of tasks results in improving

the method. In scenario B, when the number of tasks

changes from 50 to 500, which is more than that of

scenario A, the average job makespan of the method is

less compared with other methods. Also, in scenario C,

when the number of tasks changes from 550 to 1000,

the average job makespan improves substantially.

Decreased average job makespan shows that the

method's task execution time is lower compared with

other methods.

The most optimal host is chosen for migration in the

proposed method, and load balancing is established.

Thereby, its average job makespan is decreased by

9.50% and 18.06%, respectively, compared with the

Tamilvizhi method and Power-Check.

In the proposed method, first the important

information of the nodes is collected using sensors and

then the status of the nodes is checked for fault by using

the prediction module. If a node is at faulty, jobs will be

properly transferred to the appropriate machines by

migration policy agents. In this way, a proper load

balance will be created on the proposed method and

makespan is reduced.

Fig. 6 shows the failure rate (FR), calculated by

equation (6). Here, FR is calculated concerning the total

failure of the system.

In the proposed method, by using the module to

predict the status of the node and check the status of

the node in terms of fault, an attempt is made to

prevent fault in machines. Also, by performing the

migration operation properly, a stable situation is

provided to prevent fault. As shown in Fig. 6, increased

workload and number of tasks cause the failure rate to

decrease in HPC systems.

In the failure rate of the DCM method is decreased

compared with the Tamilvizhi method and Power-Check

by 21.03% and 10.21%, respectively.

Therefore, there is a relationship between average

job makespan, failure rate, and reliability in HPC systems

since the decrease of average job makespan leads to

increased failure rate and reliability.

 (6)

where FR is failure rate and MTTF is min time to

failure. Equation (6) derives the rate of failure of our

method concerning the system's total failure.

The interval between request and the first response is

called response time.

The proposed method's response time compared with

Table 4: Conditions and simulation parameters

Scenarios A B C

Cloud users 5 10 15

Brokers 5 10 15

Data centers 2 5 8

Virtual Machines 10 25 30

Bandwidth (Mb/sec) 10000 10000 10000

Total Host 5 15 24

Number of Tasks 10 - 100 50 - 500 550 - 1000

Storage Capacity 1000000 1000000 1000000

host memory(MB) 2048 2048 2048

Initialization: (n: number of host, T: temperature, V:

voltage, F: fan speed, C: CPU utilization, R: several

user's requests)

for (i=1 ; i<= n ;i++)

Using Lm sensors, the hosti state mode is

obtained (𝑇𝑖 𝐹𝑖 𝑉𝑖 𝐶𝑖 𝑅𝑖);

Determine weight of parameter for

(𝑇𝑖 𝐹𝑖 𝑉𝑖 𝐶𝑖 𝑅𝑖);

 Calculating ac values for hosti;

 Determine the state of hosti;

 if (𝑎𝑐 > 𝑇 𝑟𝑒𝑠 𝑜𝑙𝑑)

Recognizing optimal host through COA-

MMT algorithm;

 Selecting tasks to migrate at the level of

process

 Calling for controller module and migrating

The details of the running VMs on a proper

host is published to the head host.

 end if

end for

end

An Energy Efficient Fault Tolerance Technique Based on Load Balancing Algorithm for High-Performance…

179

the Tamilvizhi method and Power-Check in three

considered scenarios is shown in Fig. 7.

As shown in Fig. 7, the method results in proper load

balancing between all hosts. As mentioned, in the

proposed method, by applying the appropriate

migration method, a good load balancing is created.

Fig. 6: Investigating the rate of failure in three scenarios.

Fig. 7: Average Response Time.

Balancing the load between the machines makes the

jobs on the machines faster. Also, the productivity of the

CPUs of the system is increased. Therefore, the average

response time is decreased compared with the

Tamilvizhi method and Power-Check by 45.83% and

35.68%, respectively.

The costs that the service provider incur to respond to

users' requests are called task execution costs. The

average task execution costs of the proposed method, in

comparison with the Tamilvizhi method and Power-

Check, in these three considered scenarios, are shown in

Fig. 8.

Fig. 8: Average Tasks Execution Costs

As shown in Fig. 8, the most proper host is selected

for migration in the proposed method. Due to the exact

prediction of failure, the possibility of failure and

disturbance in tasks' performance is significantly

reduced.

Also, the computational overhead is minimized, and

the speed of the system is increased. Therefore, the

method declines the average task execution costs

compared with the Tamilvizhi method and Power-Check

by 44.71% and 44.16%, respectively.

 Fig. 9 illustrates the proposed method's average

energy consumption compared to the Tamilvizhi method

and Power-Check in these three considered scenarios.

The proposed method employs an exact load

balancing method to minimize migration time (Fig. 9). In

the method, the proper host for migration is attentively

selected.

Therefore, on average, the DCM fault tolerance

algorithm's energy consumption is optimized by 30%

compared with that of other methods. Also, the energy

consumption of the Tamilvizhi method is higher

compared with that of others.

Fig. 9: Energy Consumption in HPC Systems.

0

0.1

0.2

0.3

0.4

0.5

0.6

A B C

Fa
ilu

re
 R

at
e
)%

(

Scenario

Power-Check Tamilvizhi method DCM

0

50

100

150

200

250

300

350

400

450

500

A B C

R
es

p
o

n
se

 T
im

e
(m

s)

Senarios

Power-Check Tamilvizhi method DCM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B C

A
ve

ra
ge

 T
as

ks
 E

xe
cu

ti
o

n
 C

o
st

 (
$

)

Scenario

Power-Check Tamilvizhi method DCM

0

20

40

60

80

Power-Check Tamilvizhi
method

DCM

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n
 (

k
j)

Methods

H. Jahanpour et al.

180

Conclusion

In recent years, cloud computing has become a

popular computing technology in all industries and

provides more benefits than other technologies. One of

the main challenges of cloud computing is fault

tolerance, which avoids restarting the system and

declines operational costs and energy consumption. In

this paper the DCM method to enhance FTDaemon is

proposed. In the proposed method, the Daemon Fault

Tolerance technique has been enhanced, and COA-MMT

has been utilized for load balancing.

The method consists of four modules, which are used

to determine the host state. To predict and prevent

failures, the proposed method utilizes these parameters:

CPU temperature, CPU utilization, number of users'

requests, voltage, and fan speed parameters. Based on

evaluations and simulations, the proposed method is

significantly optimized in task execution costs, job

makespan time, and response time and declines the

energy consumption compared with the Tamilvizhi

method and Power-Check.

Author Contributions

H. Barati and A. Mehranzadeh conceptualized the

research. H. Jahanpour designed the experiments and

collected the data and she carried out the data analysis.

H. barati and H. Jahanpour validated the results. H.

Jahanpour wrote the manuscript. H. Barati and A.

Mehranzadeh reviewed and edited the manuscript.

Acknowledgment

The authors would like to thank Dezful Branch, Islamic

Azad University.

Conflict of Interest

The author declares that there is no conflict of

interests regarding the publication of this manuscript. In

addition, the ethical issues, including plagiarism,

informed consent, misconduct, data fabrication and/or

falsification, double publication and/or submission, and

redundancy have been completely observed by the

authors.

Abbreviations

IT Information Technology

HPC High-Performance Computing

DCM Daemon-COA-MMT

QoS Quality of Service

SLA Service Level Agreement

VM Virtual Machine

SaaS Software as a Service

IaaS Infrastructure as a Service

HaaS Hardware as a Service

PSO Particle Swarm Optimization

Bee-MMT Bee colony Algorithm-Minimal Migration

Time

MMT Minimal Migration Policy Time

CPU Central Processing Unit

FTDaemon Daemon's fault tolerance

COA-MMT Cuckoo Optimization Algorithm-Minimum

Migration Time

ELR Egg Laying Radius

ADA Adaptive Dragonfly algorithm

References

[1] M. Vaishnnave, K.S. Devi, P. Srinivasan, “A survey on cloud
computing and hybrid cloud,” Int. J. Appl. Eng. Res., 14: 429-434,
2019.

[2] M.U. Bokhari, Q. Makki, Y.K. Tamandani, “A survey on cloud
computing,” Big Data Analytics: 149-164, 2018.

[3] F.A. Ibrahim, E.E. Hemayed, “Trusted cloud computing
architectures for infrastructure as a service: Survey and
systematic literature review,” Computers & Security, 82: 196-226,
2019.

[4] A.M. Caulfield, E.S. Chung, A. Putnam, H. Angepat, D. Firestone, J.
Fowers, et al., “Configurable clouds,” IEEE Micro, 37(3): 52-61,
2017.

[5] F. Zafar, A. Khan, S.U.R. Malik, M. Ahmed, A. Anjum, M.I. Khan, et
al., “A survey of cloud computing data integrity schemes: Design
challenges, taxonomy and future trends,” Computers & Security:
65, 29-49, 2017.

[6] K. O'brien, I. Pietri, R. Reddy, A. Lastovetsky, R. Sakellariou, “A
survey of power and energy predictive models in HPC systems
and applications,” ACM Computing Surveys (CSUR), 50(3):1-38,
2017.

[7] M.A. Netto, R.N. Calheiros, E.R. Rodrigues, R.L. Cunha, R. Buyya,
“HPC cloud for scientific and business applications: taxonomy,
vision, and research challenges,” ACM Computing Surveys (CSUR),
51(1): 1-29, 2018.

[8] A. Pradhan, S.K. Bisoy, P.K. Mallick, “Load Balancing in Cloud
Computing: Survey,” Innovation in Electrical Power Engineering,
Communication, and Computing Technology: 99-111, 2020.

[9] M.R. Mesbahi, A.M. Rahmani, M. Hosseinzadeh, “Reliability and
high availability in cloud computing environments: a reference

https://www.ripublication.com/ijaer19/ijaerv14n2_13.pdf
https://www.ripublication.com/ijaer19/ijaerv14n2_13.pdf
https://link.springer.com/chapter/10.1007/978-981-10-6620-7_16
https://link.springer.com/chapter/10.1007/978-981-10-6620-7_16
https://www.sciencedirect.com/science/article/pii/S0167404818302712
https://www.sciencedirect.com/science/article/pii/S0167404818302712
https://www.sciencedirect.com/science/article/pii/S0167404818302712
https://www.sciencedirect.com/science/article/pii/S0167404818302712
https://ieeexplore.ieee.org/abstract/document/7948672/
https://ieeexplore.ieee.org/abstract/document/7948672/
https://www.sciencedirect.com/science/article/pii/S0167404816301377
https://www.sciencedirect.com/science/article/pii/S0167404816301377
https://www.sciencedirect.com/science/article/pii/S0167404816301377
https://www.sciencedirect.com/science/article/pii/S0167404816301377
https://dl.acm.org/doi/abs/10.1145/3078811
https://dl.acm.org/doi/abs/10.1145/3078811
https://dl.acm.org/doi/abs/10.1145/3078811
https://dl.acm.org/doi/abs/10.1145/3150224
https://dl.acm.org/doi/abs/10.1145/3150224
https://dl.acm.org/doi/abs/10.1145/3150224
https://dl.acm.org/doi/abs/10.1145/3150224
https://link.springer.com/chapter/10.1007/978-981-15-2305-2_8
https://link.springer.com/chapter/10.1007/978-981-15-2305-2_8
https://link.springer.com/chapter/10.1007/978-981-15-2305-2_8
https://link.springer.com/article/10.1186/s13673-018-0143-8
https://link.springer.com/article/10.1186/s13673-018-0143-8

An Energy Efficient Fault Tolerance Technique Based on Load Balancing Algorithm for High-Performance…

181

roadmap,” Human-centric Computing and Information Sciences,
8(1): 20, 2018.

[10] M.N. Cheraghlou, A. Khadem-Zadeh, M. Haghparast, “A survey of
fault tolerance architecture in cloud computing,”Journal of
Network and Computer Applications, 61: 81-92, 2016.

[11] A. Rezaeipanah, M. Mojarad, A. Fakhari, “Providing a new
approach to increase fault tolerance in cloud computing using
fuzzy logic,” International Journal of Computers and Applications:
1-9, 2000.

[12] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, et al., “Predicting
Node failure in cloud service systems. in Proc. the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering: 480-
490, 2018.

[13] A.A. Shaikh, S. Ahmad, “Fault tolerance management for cloud
environment: a critical review,” International Journal of Advanced
Research in Computer Science, 9(Special Issue 2): 34, 2018.

[14] A. Hota, S. Mohapatra, S. Mohanty, “Survey of different load
balancing approach-based algorithms in cloud computing: a
comprehensive review,” Computational intelligence in data
mining: 99-110, 2019.

[15] P. Kumar, R. Kumar, “Issues and challenges of load balancing
techniques in cloud computing: A survey,” ACM Computing
Surveys (CSUR), 51(6): 1-35, 2019.

 [16] M. Kumar, S.C. Sharma, “Dynamic load balancing algorithm to
minimize the makespan time and utilize the resources effectively
in cloud environment,” International Journal of Computers and
Applications, 42(1), 108-117, 2020.

[17] K. Pan, J. Chen, “Load balancing in cloud computing environment
based on an improved particle swarm optimization,” in Proc.
2015 6th IEEE International Conference on Software Engineering
and Service Science (ICSESS): 595-598, 2015.

[18] F. Abazari, M. Analoui, H. Takabi, S. Fu, “MOWS: multi-objective
workflow scheduling in cloud computing based on heuristic
algorithm,” Simulation Modelling Practice and Theory, 93: 119-
132, 2019.

 [19] M. Abd Elaziz, S. Xiong, K.P.N. Jayasena, L. Li, “Task scheduling in
cloud computing based on hybrid moth search algorithm and
differential evolution,” Knowledge-Based Systems, 169: 39-52,
2019.

[20] Y.L. Huang, Z.X. Li, “A GA-based resource management algorithm
for smart living applications requiring intensive computing
power,” in Proc. 2017 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW): 259-260, 2017.

 [21] S.S. Abdhullah, K. Jyoti, S. Sharma, U.S. Pandey, “Review of recent
load balancing techniques in cloud computing and BAT algorithm
variants,” in Proc. 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom):
2428-2431, 2016.

 [22] S.M. Ghafari, M. Fazeli, A. Patooghy, L. Rikhtechi, “Bee-MMT: A
load balancing method for power consumption management in
cloud computing,” in Proc. 2013 Sixth International Conference
on Contemporary Computing (IC3): 76-80, 2013.

[23] I.P. Egwutuoha, S. Chen, D. Levy, B. Selic, R. Calvo, “Energy
efficient fault tolerance for high performance computing (HPC) in
the cloud,” in Proc. 2013 IEEE Sixth International Conference on
Cloud Computing (CLOUD): 762-769, 2013.

[24] I.P. Egwutuoha, S. Chen, D. Levy, B. Selic, R. Calvo, “A proactive
fault tolerance approach to High Performance Computing (HPC)
in the cloud,” in Proc. 2012 Second International Conference on
Cloud and Green Computing (CGC): 268-273, 2012.

[25] R.R. Chandrasekar, A. Venkatesh, K. Hamidouche, D.K. Panda,
“Power-check: An energy-efficient check pointing framework for
HPC clusters,” in Proc. 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid): 261-
270, 2015.

[26] M. Yakhchi, S.M. Ghafari, S. Yakhchi, M. Fazeli, A. Patooghi,
“Proposing a load balancing method based on Cuckoo
Optimization Algorithm for energy management in cloud
computing infrastructures,” in Proc. 2015 6th International
Conference on Modeling, Simulation, and Applied Optimization
(ICMSAO): 1-5, 2015.

[27] T. Tamilvzhi, B. Parvathavarthini, “A novel method for adapive
fault tolerance during load balancing in cloud computing,” Cluster
Computing, 22(5): 10425-10438, 2019.

[28] P. Neelima, A.R.M. Reddy, “An efficient load balancing system
using adaptive dragonfly algorithm in cloud computing,” Cluster
Computing, 23: 2891.2899, 2020.

[29] T.D. Devi, A. Subramani, P. Anitha, “Modified adaptive neuro fuzzy
inference system based load balancing for virtual machine with
security in cloud computing environment,” Journal of Ambient
Intelligence and Humanized Computing, 1-8, 2020.

 [30] L. Kong, J.P.B. Mapetu, Z. Chen, “Heuristic load balancing based
zero imbalance mechanism in cloud computing,” Journal of Grid
Computing, 18(1): 123-148, 2020.

Biographies

Hoda Jahanpour received her B.Sc. degree in
Computer Engineering from Dezful Branch,
Islamic Azad University, Dezful, Iran, in 2014.
Furthermore, she received her M.Sc. degree in
computer systems Architecture from Dezful
Branch, Islamic Azad University, Dezful, Iran, in
2016. Her major research interests include
Distributed Computing and cloud computing.

Hamid Barati is an Assistant Professor in the
Department of Computer Engineering at Dezful
Branch, Islamic Azad University, Dezful, Iran. He
received his B.S. degree in Computer Hardware
Engineering, M.S. degree in Computer Systems
Architecture Engineering and Ph.D. degree in
Computer Systems Architecture Engineering in
2005, 2007 and 2015 respectively. Currently he is
Faculty of Islamic Azad University, Dezful Branch,

Iran. His major research experiences and interests include mobile ad
hoc networks, interconnection networks and energy-efficient routing
and security issues in wireless sensor networks.

Amin Mehranzadeh received the M.Sc. and Ph.D.
degrees in Computer Engineering. He is currently
an Assistant Professor in Computer Engineering
Department at Azad University of Dezful. His
research interest is Distributed Computing, Cloud
Computing, Embedded Systems and Network-on-
Chip systems including Performance and Cost
Improvement in Routing and Arbitration of
various types of NoC systems. Recently, he has

started carrying out research in Deep Neural Network with his team
which consists of M.Sc. and Ph.D. students.

https://link.springer.com/article/10.1186/s13673-018-0143-8
https://link.springer.com/article/10.1186/s13673-018-0143-8
https://www.sciencedirect.com/science/article/abs/pii/S1084804515002246
https://www.sciencedirect.com/science/article/abs/pii/S1084804515002246
https://www.sciencedirect.com/science/article/abs/pii/S1084804515002246
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2019.1709288
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2019.1709288
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2019.1709288
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2019.1709288
https://dl.acm.org/doi/abs/10.1145/3236024.3236060
https://dl.acm.org/doi/abs/10.1145/3236024.3236060
https://dl.acm.org/doi/abs/10.1145/3236024.3236060
https://dl.acm.org/doi/abs/10.1145/3236024.3236060
https://dl.acm.org/doi/abs/10.1145/3236024.3236060
https://d1wqtxts1xzle7.cloudfront.net/58398647/6133-12948-1-SM.pdf?1550079892=&response-content-disposition=inline%3B+filename%3D6133_12948_1_SM_pdf.pdf&Expires=1604260004&Signature=DevcTEeYYTPQ63kqBJMYLdgeTaWYmpp8XXzTf46788yb9VCpT9Fq2-JQLQ~avhrT5IiACjy0FWeBx0ljSjvdGoWgCSfX1BYzP2CJmxndSkSbQqLPlriep1vBZPlp6j1Cs45flxQmjp-PxthRg0mFg9cy2CoSlK3W6jPe5~Uij-n6qRPHN3rpXDfAXL5s3KvyVO3qsTADF5in4uyAbxKmvX1tOIhPD~tNybiGEgEiioL0B8E77ut5ZIm1SDxfIRLDUtRY0IAlMMVqgJqMuoGhj3VSEX8-fI7JDQE5H6tVmkLL7nOK8oCLcdf15XBS2wif-EB1Vf84JPNyjyi8s2RxZw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/58398647/6133-12948-1-SM.pdf?1550079892=&response-content-disposition=inline%3B+filename%3D6133_12948_1_SM_pdf.pdf&Expires=1604260004&Signature=DevcTEeYYTPQ63kqBJMYLdgeTaWYmpp8XXzTf46788yb9VCpT9Fq2-JQLQ~avhrT5IiACjy0FWeBx0ljSjvdGoWgCSfX1BYzP2CJmxndSkSbQqLPlriep1vBZPlp6j1Cs45flxQmjp-PxthRg0mFg9cy2CoSlK3W6jPe5~Uij-n6qRPHN3rpXDfAXL5s3KvyVO3qsTADF5in4uyAbxKmvX1tOIhPD~tNybiGEgEiioL0B8E77ut5ZIm1SDxfIRLDUtRY0IAlMMVqgJqMuoGhj3VSEX8-fI7JDQE5H6tVmkLL7nOK8oCLcdf15XBS2wif-EB1Vf84JPNyjyi8s2RxZw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/58398647/6133-12948-1-SM.pdf?1550079892=&response-content-disposition=inline%3B+filename%3D6133_12948_1_SM_pdf.pdf&Expires=1604260004&Signature=DevcTEeYYTPQ63kqBJMYLdgeTaWYmpp8XXzTf46788yb9VCpT9Fq2-JQLQ~avhrT5IiACjy0FWeBx0ljSjvdGoWgCSfX1BYzP2CJmxndSkSbQqLPlriep1vBZPlp6j1Cs45flxQmjp-PxthRg0mFg9cy2CoSlK3W6jPe5~Uij-n6qRPHN3rpXDfAXL5s3KvyVO3qsTADF5in4uyAbxKmvX1tOIhPD~tNybiGEgEiioL0B8E77ut5ZIm1SDxfIRLDUtRY0IAlMMVqgJqMuoGhj3VSEX8-fI7JDQE5H6tVmkLL7nOK8oCLcdf15XBS2wif-EB1Vf84JPNyjyi8s2RxZw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://link.springer.com/chapter/10.1007/978-981-10-8055-5_10
https://link.springer.com/chapter/10.1007/978-981-10-8055-5_10
https://link.springer.com/chapter/10.1007/978-981-10-8055-5_10
https://link.springer.com/chapter/10.1007/978-981-10-8055-5_10
https://dl.acm.org/doi/abs/10.1145/3281010
https://dl.acm.org/doi/abs/10.1145/3281010
https://dl.acm.org/doi/abs/10.1145/3281010
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2017.1404823
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2017.1404823
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2017.1404823
https://www.tandfonline.com/doi/abs/10.1080/1206212X.2017.1404823
https://ieeexplore.ieee.org/abstract/document/7339128
https://ieeexplore.ieee.org/abstract/document/7339128
https://ieeexplore.ieee.org/abstract/document/7339128
https://ieeexplore.ieee.org/abstract/document/7339128
https://www.sciencedirect.com/science/article/abs/pii/S1569190X18301515
https://www.sciencedirect.com/science/article/abs/pii/S1569190X18301515
https://www.sciencedirect.com/science/article/abs/pii/S1569190X18301515
https://www.sciencedirect.com/science/article/abs/pii/S1569190X18301515
https://www.sciencedirect.com/science/article/abs/pii/S0950705119300322
https://www.sciencedirect.com/science/article/abs/pii/S0950705119300322
https://www.sciencedirect.com/science/article/abs/pii/S0950705119300322
https://ieeexplore.ieee.org/abstract/document/7991094/
https://ieeexplore.ieee.org/abstract/document/7991094/
https://ieeexplore.ieee.org/abstract/document/7991094/
https://ieeexplore.ieee.org/abstract/document/7991094/
https://ieeexplore.ieee.org/abstract/document/7724698/
https://ieeexplore.ieee.org/abstract/document/7724698/
https://ieeexplore.ieee.org/abstract/document/7724698/
https://ieeexplore.ieee.org/abstract/document/7724698/
https://ieeexplore.ieee.org/abstract/document/7724698/
https://ieeexplore.ieee.org/abstract/document/6612165
https://ieeexplore.ieee.org/abstract/document/6612165
https://ieeexplore.ieee.org/abstract/document/6612165
https://ieeexplore.ieee.org/abstract/document/6612165
https://ieeexplore.ieee.org/abstract/document/6676767
https://ieeexplore.ieee.org/abstract/document/6676767
https://ieeexplore.ieee.org/abstract/document/6676767
https://ieeexplore.ieee.org/abstract/document/6676767
file:///C:/Users/Parham/Desktop/%5b24%5d%20Egwutuoha,%20I.%20P.,%20Chen,%20S.,%20Levy,%20D.,%20Selic,%20B.,%20&%20Calvo,%20R.%20(2012,%20November).%20A%20proactive%20fault%20tolerance%20approach%20to%20High%20Performance%20Computing%20(HPC)%20in%20the%20cloud.%20In%20Cloud%20and%20Green%20Computing%20(CGC),%202012%20Second%20International%20Conference%20on%20(pp.%20268-273).%20IEEE.
file:///C:/Users/Parham/Desktop/%5b24%5d%20Egwutuoha,%20I.%20P.,%20Chen,%20S.,%20Levy,%20D.,%20Selic,%20B.,%20&%20Calvo,%20R.%20(2012,%20November).%20A%20proactive%20fault%20tolerance%20approach%20to%20High%20Performance%20Computing%20(HPC)%20in%20the%20cloud.%20In%20Cloud%20and%20Green%20Computing%20(CGC),%202012%20Second%20International%20Conference%20on%20(pp.%20268-273).%20IEEE.
file:///C:/Users/Parham/Desktop/%5b24%5d%20Egwutuoha,%20I.%20P.,%20Chen,%20S.,%20Levy,%20D.,%20Selic,%20B.,%20&%20Calvo,%20R.%20(2012,%20November).%20A%20proactive%20fault%20tolerance%20approach%20to%20High%20Performance%20Computing%20(HPC)%20in%20the%20cloud.%20In%20Cloud%20and%20Green%20Computing%20(CGC),%202012%20Second%20International%20Conference%20on%20(pp.%20268-273).%20IEEE.
file:///C:/Users/Parham/Desktop/%5b24%5d%20Egwutuoha,%20I.%20P.,%20Chen,%20S.,%20Levy,%20D.,%20Selic,%20B.,%20&%20Calvo,%20R.%20(2012,%20November).%20A%20proactive%20fault%20tolerance%20approach%20to%20High%20Performance%20Computing%20(HPC)%20in%20the%20cloud.%20In%20Cloud%20and%20Green%20Computing%20(CGC),%202012%20Second%20International%20Conference%20on%20(pp.%20268-273).%20IEEE.
https://ieeexplore.ieee.org/abstract/document/7152492
https://ieeexplore.ieee.org/abstract/document/7152492
https://ieeexplore.ieee.org/abstract/document/7152492
https://ieeexplore.ieee.org/abstract/document/7152492
https://ieeexplore.ieee.org/abstract/document/7152492
https://ieeexplore.ieee.org/abstract/document/7152209
https://ieeexplore.ieee.org/abstract/document/7152209
https://ieeexplore.ieee.org/abstract/document/7152209
https://ieeexplore.ieee.org/abstract/document/7152209
https://ieeexplore.ieee.org/abstract/document/7152209
https://ieeexplore.ieee.org/abstract/document/7152209
https://link.springer.com/article/10.1007/s10586-017-1038-6
https://link.springer.com/article/10.1007/s10586-017-1038-6
https://link.springer.com/article/10.1007/s10586-017-1038-6
https://link.springer.com/article/10.1007%2Fs10586-020-03054-w
https://link.springer.com/article/10.1007%2Fs10586-020-03054-w
https://link.springer.com/article/10.1007%2Fs10586-020-03054-w
https://link.springer.com/article/10.1007%2Fs12652-020-01728-2
https://link.springer.com/article/10.1007%2Fs12652-020-01728-2
https://link.springer.com/article/10.1007%2Fs12652-020-01728-2
https://link.springer.com/article/10.1007%2Fs12652-020-01728-2
https://link.springer.com/article/10.1007/s10723-019-09486-y
https://link.springer.com/article/10.1007/s10723-019-09486-y
https://link.springer.com/article/10.1007/s10723-019-09486-y

H. Jahanpour et al.

182

Copyrights

©2020 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
H. Jahanpour, H. Barati, A. Mehranzadeh, “An Energy Efficient Fault Tolerance Technique
Based on Load Balancing Algorithm for High-Performance Computing in Cloud
Computing,” Journal of Electrical and Computer Engineering Innovations, 8(2): 169-182,
2020.

DOI: 10.22061/JECEI.2020.7219.371

URL: http://jecei.sru.ac.ir/article_1467.html

http://jecei.sru.ac.ir/article_1467.html

