
 J. Electr. Comput. Eng. Innovations, 8(1): 41-52, 2020 

 

 
 
 

Doi: 10.22061/JECEI.2020.7100.357                                                                                                                                                                       41 

Journal of Electrical and Computer Engineering Innovations 

(JECEI) 

Journal homepage: http://www.jecei.sru.ac.ir 

Research paper 

A High-Performance Model based on Ensembles for Twitter 
Sentiment Classification 

R. Asgarnezhad1, S.A. Monadjemi2,*, M. Soltanaghaei1 

1
Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran. 

2
Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran, and Senior Lecturer, School of continuing and 

lifelong education, National University of Singapore, Singapore, 119077. 

Article  Info  Abstract 

 

Article History: 
Received  8 March 2019 
Reviewed 03 May 2019 
Revised 05 June 2019 
Accepted 28 November 2019  

 

 Background and Objectives: Twitter Sentiment Classification is one of the 
most popular fields in information retrieval and text mining. Millions of 
people of the world intensity use social networks like Twitter. It supports 
users to publish tweets to tell what they are thinking about topics. There 
are numerous web sites built on the Internet presenting Twitter. The user 
can enter a sentiment target and seek for tweets containing positive, 
negative, or neutral opinions. This is remarkable for consumers to 
investigate the products before purchase automatically.  

Methods: This paper suggests a model for sentiment classification. The goal 
of this model is to investigate what is the role of n-grams and sampling 
techniques in Sentiment Classification application using an ensemble 
method on Twitter datasets. Also, it examines both binary and multiple 
classifications, which are classified datasets into positive, negative, or 
neutral classes.  

Results: Twitter Classification is an outstanding problem, which has very 
few free resources and not available due to modified authorization status. 
However, all Twitter datasets are not labeled and free, except for our 
applied dataset. We reveal that the combination of ensemble methods, 
sampling techniques, and n-grams can improve the accuracy of Twitter 
Sentiment Classification.  
Conclusion: The results confirmed the superiority of the proposed model 
over state-of-the-art systems. The highest results obtained in terms of 
accuracy, precision, recall, and f-measure. 
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Introduction 
With an increasing number of tweets over the Webs, 

tweets have interested more and more. There is a high 

interest in Sentiment Classification (SC) of tweets ‎[1]-‎[9]. 

In many web sites, the user records an opinion, including 

positive, negative, or neutral sentiments ‎[10]-‎[11]. 

Twitter classification is an outstanding problem, which 

has very few free resources and not available due to 

modified authorization status. However, all Twitter 

datasets are not labeled and free, except for our applied 

dataset.  

Many kinds of research in Twitter Sentiment 

Classification (TSC) have converged on the usage of 

regular classifiers and machine learning-based 

classifiers ‎[3], ‎[7], ‎[10]-‎[13]. The main problem in 

supervised techniques is the availability of labeled 

datasets ‎[8]. We can only prepare a rare number of 

datasets for supervised models because manually 
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collecting them is time-consuming. Also, a few 

studies ‎[3] converged on the ensemble method. The 

current authors in 2015 compared the validity of 

supervised and unsupervised approaches ‎[14].  

Yet, tweets are vaguer than other sentiment data like 

reviews ‎[15].   

Different challenges can be studied in TSC ‎[3] 

concerning other datasets: classification accuracy, data 

sparsity problem, and neutral tweets. These cause to 

largest of tweets incorrectly classified. It revealed that 

Part of speech (POS) features were not helpful in the 

micro-blogging ‎[1]. In the current study, we examine to 

define a way that increases classification performance.  

In this article, we suggest a novel model, namely 

NEST, to improve TSC. Specifically, the boosting method, 

n-gram features, bootstrapping sampling, and Term 

Frequency–Inverse Document Frequency (TFIDF) 

weighting mechanism applied. The suggested model is 

novel, because it applies both binary and multiple 

datasets and combines n-gram, sampling techniques, 

and ensemble methods for TSC. We reveal that our 

model plays a vital role in the performance of the model. 

We produced multiple classifications containing positive, 

negative, or neutral tweets. We showed that the 

combination of TFIDF, sampling, and n-gram has a better 

result for both datasets. Also, we show that the usage of 

ensemble methods and combined with n-grams can 

increase the accuracy of TSC. Twitter-Sanders-Apple 

(TSA) datasets used in all experiments. The effectiveness 

of the suggested model compared with the methods 

in ‎[4], ‎[21], ‎[26]-‎[27], ‎[30], ‎[32]. Our findings exposed 

that our features are well in two datasets. The obtained 

results presented in two experiments and validated that 

our model outperforms the existing methods on the 

datasets. The highest f-measure obtained 93.52% by our 

model on TSA2; whereas, Padmaja and Hegde ‎[32] 

obtained 89.73%. Also, the best f-measure of the NSET 

achieved 89.64%; whereas, the highest f-measure in the 

literature obtained 81.25% by Pandey et al. ‎[4] on the 

TSA3. It revealed that our model works better than the 

other methods based on genetic algorithm (GA) in ‎[32]  

and cuckoo search in ‎[4].  It also revealed that the NSET 

works better than the other methods based ensembles 

in ‎[21], fuzzy rules in ‎[26], ‎[30], and supervised 

techniques in ‎[27]. 

The innovations of this study indicated as follows:  

 The model is of an ensemble nature 

 Applying sampling technique and n-gram 

besides weighting mechanism for improving 

classification efficiency 

 Providing the boosting selector in conjunction 

with the popular classifier  

 Choosing the best features based on the feature 

selection stage and two error indices  

 Employing both two and three classes datasets 

on Twitter 

The rest of this article organized as follows: Sec. 2 and 

Sec. 3 presents available techniques and related works, 

respectively. The proposed model is shown in Sec 4 and 

evaluated in Sec. 5. Finally, the conclusion and future 

works display in Sec. 6. 

Available Machine Learning Techniques 

The machine learning (ML) techniques for text 

classification algorithms, like maximum entropy (ME), 

naive Bayes (NB), and support vector machines (SVM), 

have achieved peerless success in SC text categorization, 

and these classifiers provided feasibility in their tasks. On 

reviewing the experiment dataset, the results of SVM 

was virtually better than other ML techniques. Hence we 

in our model used it to improve classification 

performance. Here, the summarization of some of the 

popular ML techniques in this context is of concern.  

The ML approaches applied supervised, unsupervised, 

and semi-supervised methods and employed linguistic 

features. The lexicon-based approaches divided into 

corpus-based and dictionary-based approaches.  The 

main advantage of them is to support in determining 

domain and context-specific opinion words using a 

domain corpus. In lexicon-based approaches, a 

document divides by aggregating the sentiment 

orientation of all available words. A document with more 

positive words classified as positive; whereas, the 

document with more negative words categorized as 

negative. Hybrid approaches combined the advantages 

of both approaches to improve the performance of SC. 

Explanations of some classifiers are of concern herein. 

A.  Naïve Bayes 

NB obtained reasonable accuracy. It is simple and 

assumed independent features.  

Also, it mainly used when the size of the training set is 

not vast. Here, (1) is applied ‎[16] to calculate the 

probability of event A in column A, provided that class C 

holds. 

(1) 
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where, k c   is the column K mean, while the row 

belongs to the class C and 2

k c 
 is the variance of the kth 

therein, and no input classification is required. An 

example presented to explain the Bayes Continuous 

Decider, where, there exist four features with positive or 

negative classes. 

B.  Maximum Entropy 

Unlike NB, ME is assumed dependent features  [17]. 

This technique estimates ( | )P c d  in  
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C.  Neural Network 

Here, a description of the perceptron classifier is of 

concern: If m is the count of the selected features and 

the dataset is named P , each user named 
iP  would 

have been assigned the m features, and if any 

connection attribute x is considered, there are variables 

1x  to 
mx  for each connection. These inputs are samples 

of the training network. It is the training method with a 

supervisor because the network is trained through 

samples with the correct output (Fig. 1). 

 

 
Fig. 1:  Single-layer perceptron ‎[18]. 

 

D.  Support Vector Machine 

In this structure, first, the attribute table converts 

into a set of data points 1 1 2 2{( , ),( , ),..., ( , )}n nx c x c x c , and then, 

these divide into two classes { 1,1}
i

c   . Each 
i

x  is a p-

dimensional vector of real numbers, which are the same 

properties extracted from the previous step. 

Linear classification methods try to separate data by 

constructing a hyperplane, which is a linear equation). 

The SVM classification method, which is one of the linear 

classification methods, finds the best hyperplane that 

separates data from two classes with maximum margin. 

A picture of a data set belonging to two classes, which 

selects the best hyperplane for separating them exposed 

in Fig. 2. In this form, the data is two-dimensional, that 

is, each data consists of only two variables  [19]. 

Here explains in detail how to produce a separator 

hyperplane. An accurate picture of how the separator 

hyperplane produced through the SVM exposed in Fig. 3. 

First, consider a convex hull around the points of each 

class. In Fig. 3, the convex hull drawn around the points 

related to class -1 and class +1. Line P is the line that 

shows the closest distance between two convex hulls. h, 

which is the separating hyperplane, is a line that splits P 

and is vertical to it. The b is the width of the source for 

the hyperplane with the maximum separation limit. If b 

ignored, the solutions are the only hyperplane that goes 

beyond the source. The vertical distance of the 

hyperplane to the source achieved through dividing the 

absolute value of the parameter b by the length w. 

 

 
Fig. 2:  Hyperplane with maximum separator boundary with 

separating boundaries for classification. 
 

 
 

Fig. 3:  How to build a separating hyperplane between two data 
classes in two-dimensional space. 

 

The basic idea is to choose the proper separator. It 

refers to the separator that is farthest from the 

neighboring points on both floors. This answer has the 

highest boundary with points on two different floors and 

can be bounded by two parallel hyperplanes that pass 

through at least one of the floor points. These vectors 

are named support vectors. The mathematical equations 

for these two parallel hyperplanes are of concern (5) and 

(6). 

(4) . 1w x b   
 

(5) . 1w x b    

It is remarkable to remark that if the training data are 

linearly separable, the two boundary hyperplanes can be 

chosen in such a way that there is no data between 

them, and then, the distance between the two parallel 

hyperplanes can be maximized. Applying geometric 
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theorems, the distance between the two hyperplanes is 

| |
2

w , So you have to | |w  Minimized. It is also necessary to 

prevent data points from being placed within the 

boundary, for which a mathematical constraint added to 

the formal definition. For each i, it ensured through 

employing the following constraints that no point placed 

on the boundary. For data related to the first and second 

floors, (7) and (8) are of concern, respectively. 

(7) . 1iw x b   
 

(8) . 1iw x b    

The following constraint can be shown as follows. 

(9) ( . ) 1 1i ic w x b i n     

Related Work 

SC has attracted a great deal of attention in recent 

years. A large number of methods proposed for 

improving classification performance. These methods 

differ from each other in the way the architecture of the 

classifier, algorithm parameters, or preprocessing 

methods. Here, the summarization of some of the 

existing articles on the TSA datasets are of concern:  

In 2009, Liu et al. suggested an ESLAM model. They 

try to train a language model based on manually labeled 

data  [20].  

Expressed ensemble techniques are effective for SC of 

feature sets and classification algorithms. For example, 

in 2013, Hassan et al. proposed an ensemble framework 

in  [21] and used a combination of unigrams and bigrams, 

POS, and semantic features derived from WordNet (WN) 

and SentiWordNet (SWN). Authors applied several base 

learners like NN, Random Tree (RT), NB, Bayes Net, 

Logistic Regression (LR), and SVM. Despite using the 

bootstrap model and several classifiers, their framework 

was not more effective than our approach. They 

obtained 76.30% of accuracy. Unfortunately, their 

different datasets are not available. In 2015, Lima et 

al.  [22] introduced a polarity analysis framework for 

Twitter, which follows ML approaches. They utilized four 

datasets to estimate the performance of their 

framework. Additionally, they employed five kinds of 

classifiers like NB, SVM, Decision Trees (DT), and Nearest 

Neighbors (KNN). 

In 2017, Keshavarz and Abadeh  [23] combined both 

corpora and lexicon approaches. For this goal, they 

produced lexicons from the text. Also, they applied a 

novel GA to solve the SC problem. Adaptive sentiment 

lexicons generated by the algorithm to choose the best 

features. Their experiments conducted on six datasets. 

Also, Bala  [24] used supervised and unsupervised 

techniques. The results obtained on three labeled 

datasets. Also, the author conducted a feature selection 

using a GA to verify results. The experiments reveal that 

the obtained results via supervised techniques are 

different on datasets. After the preprocessing stage, the 

document term matrix produced using unigram and 

bigram. Next, features extracted and supervised learning 

algorithms like NB, SVM, and DT applied to the datasets. 

Also, Pandey et al.  [4] proposed a novel clustering 

method using k-means and cuckoo search in 2017. They 

achieved an accuracy of 81.4 and 82.20% for TSA2 and 

TSA3, respectively. 

In 2018, Haider et al.   [25] investigated the impact of 

adverbs for SC. Also, Trupthi et al.   [26] investigated the 

effective topic modeling methodology Latent Dirichlet 

Allocation (LDA) to extract the keywords in a clustering 

manner. Next, they applied the keywords using the 

Possibilistic fuzzy c-means approach for twitter 

sentiment analysis. 

The present researchers in  [27] proposed a model 

named SFT for TSC in 2018. The goal of our model was to 

investigate the role of weighting feature techniques in 

SC using supervised methods on the Twitter data set. 

The applied classifier in the current article is based on 

the SFT model in our previous article.  

Abdolahi and Zahedi in  [28] introduced a method to 

consolidate the external word correlation knowledge 

into short and long stories in both local and global 

coherence in 2018. Using the effect of combined 

word2vec vectors, they confirm that their proposed 

method is free of the language and its semantic 

concepts. They received 87.03% of accuracy. Behravan et 

al.  [29] in 2018 suggested a new clustering method for 

big datasets using Particle Swarm Optimization (PSO) 

algorithm. Their proposed method was a two-stage 

algorithm: (1) search the solution space for a proper 

number of clusters and (2) search to find the position of 

the centroids. In 2018, Vashishtha and Susan in  [30] 

estimated the sentiment of social media posts using a 

novel set of fuzzy rules. Their system combines Natural 

Language Processing techniques and Word Sense 

Disambiguation using nine fuzzy rule-based systems. 

They reached 59.7, 58.9, and 68.6% of precision, recall, 

and f1-score on the TSA3 datasets, respectively. 

In 2019, Tripathi et al.  [31] suggested a novel Map-

Reduce based K-means to cluster the large scale data. 

Also, Padmaja and Hegde  [32] proposed a system 

consists of three phases; data collection, preprocessing, 

and classification of sentiments. In the third phase, a 

hybrid classifier applied to classify the twitter sentiment 

classes. In 2020, Abbas et al.  [33] offered a classification 

model with four classifiers, and varying techniques 

consist of NB, DT, multilayer perceptron, and LR to form 

a single ensemble classifier. They gained an accuracy of 

82.2% on Twitter. Also, Jiang et al.  [34] develop a novel 

NN-based model, namely MAN, to conduct the aspect-
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level SC tasks. 

In 2020, Naseem et al.  [35] shown a transformer-

based method for SA and applied deep intelligent 

contextual embedding to heighten the quality of tweets 

by removing noise. They also employed the bidirectional 

Long Short Term Memory (LSTM) network to define the 

sentiment of a tweet. They reached an accuracy of 

96.2% on airline datasets. 

In 2020, Samad et al.  [36] studied the effect of seven 

text processing scenarios on Twitter. Their experiments 

revealed negative effects on SC of two common text 

processing steps: 1) stop word removal; 2) averaging of 

word vectors to represent individual tweets. Word 

selection from context-driven word embedding showed 

that only the ten most important words in Tweets 

cumulatively produce over 98% of the maximum 

accuracy. Also, Nemattolahzadeh et al.  [37] suggested a 

method to utilize experimental data for identifying the 

influence network between individuals in social 

networks. Their method was based on convex 

optimization and could identify interaction patterns 

accurately. The three models were the most 

comprehensive and vastly models in the literature 

considered. 

In 2020, Sharma and Jain in  [38] presented a study on 

Twitter sentiment analysis where tweets collected and 

sentiments behind the tweet assessed using various ML 

techniques. They extracted data from twitter, and text 

preprocessing and feature extraction employed to the 

textual data. Correlation-based attribute selection 

methods applied and ML classifiers consist of SVM, NB, 

Random Forest, Meta classifier, and LR analyzed to 

confirm which classifier gives better results. They 

obtained an accuracy of 88.2% on the Cambridge 

Analytica dataset. 

The NSET Model 

The NSET model proposed in five stages: (1) 

preprocessing; (2) sampling; (3) weighting mechanism; 

(4) feature selection; (5) classification; and (6) 

performance evaluation. Fig. 4 tabulated the NSET 

model in detail.  

Three main contributions of the NSET decorated in 

orange color. 

In preprocessing, the n-grams applied to handle 

important relations. Next, a bootstrapping sampling 

performed to boost accuracy. After performing the 

TFIDF, classification methods run on test datasets. The 

AdaBoost method through the 10-fold cross-validation 

scheme on the dataset adjusted. In our model, shuffled 

and stratified samplings applied. In all experiments, 

results in terms of 10-fold cross-validation obtained.  

The goal of this article is to study the role of n-grams 

and sampling using an ensemble method. Here, the 

stages of the model described. 

 

Fig. 4:  The steps of the NSET for Twitter Sentiment 
Classification. 

A.  Preprocessing 

Preprocessing stages including Tokenization, Filtering 

Token, Stemming, Filtering Stop Word, and N-grams. 

First, useless characters and words tokenized. Each 

tweet convert in a sequence of tokens and filters based 

on their length. The root of each word found through 

stemming. According to the stop word list, the stop 

words in each tweet eliminated and filtered.  

B.  Sampling 

Here, attribute subset selection techniques used to 

improve the classification performance. Bootstrapping 

technique applied to obtain higher accuracy in our NSET 

model. This type of sampling applied sampling with 

replacement. So, the sample may not have all unique 

examples. Once an example selects, it remained a 

candidate for selection and can choose again.  

Additionally, it may generate a sample that is greater in 

size than the original dataset  [39]. When a tuple 

selected, it has equal probability to select and add to the 

training set again. 

C.  Weighting Mechanism 

TFIDF weighing mechanism used to produce word 

vector. It consists of two ratings, regularity and inverse 

regularity of phrase. Inverse document frequency 

investigated by splitting the number of records. TFIDF 

mechanism defined as in 

(10) . ( )
t

NTFIDF TF Log
F

  

TF is the frequency of word t in document d, N is the 

number of documents, and Ft is the number of 

documents, including word t. It did not assign high 

scores to frequent words  [40].  

D.  Feature Selection Methods 

Feature selection methods extract a subset of 

features from all possible lists of features in the dataset 

to present the prediction results. These methods work at 

two levels: first, the selection of the subset of attributes 

through an attribute evaluator algorithm, and second is 
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the evaluation of the search heuristics via a search 

algorithm. Feature selection can be done in three ways: 

• Evaluating the performance of the set of attributes 

by using a specific classifier, namely wrapper method. 

• Selecting attributes as a filter in the preprocessing 

phase of data analytics. 

• Selecting a set of attributes as a unigram, bigram, 

and trigram in the preprocessing phase of data analytics. 

E.  Classification 

Ensemble methods apply multiple models to obtain 

better predictive performance than could be obtained 

from any of the constituent models. Ensembles may 

become more flexible in the functions. However, some 

ensemble techniques, especially bagging, tend to reduce 

problems related to over-fitting of the training data. 

Empirically, ensembles tend to yield better results when 

there is significant diversity among the models. Boosting 

is an ensemble method that can be used in conjunction 

with many other learning algorithms to improve their 

performance.  

AdaBoost is a nested method and tries to build a 

better model using the learner provided in its 

subprocess. AdaBoost is a meta-algorithm and can be 

used in conjunction with many other learning algorithms 

to improve their performance. AdaBoost is sensitive to 

noisy data and outliers. However, it can be less 

susceptible to the overfitting problem than most 

learning algorithms.  

The classifiers it uses can be weak, but as long as their 

performance is not random, they will improve the final 

model. To sum up, we used AdaBoost in conjunction 

with the SVM classifier  [41].  

Here, the pseudo-code of our model expressed as: 

 

Pseudo-code for the NSET model 

1:          while (Website is Online) do 

2:          TW=Get-T (Tweets) 

3:          for each tweet in TW do 

4:               Tokenizing, Splitting, Filtering, Stemming,  

5:              Omitting Stop words, and Generating N-gram 

6:           end for     

7:          W=Pre-process (a set of words) 

8:          W-s=Sample (W) 

9:          for each set of words in W-s do 

10:             Constructing a word vector via TFIDF schema 

11:         end for 

12         WV=Get-TFIDF (a set of weights) 

13:        F=Feature-Selection (WV) 

14:        for each word vector in F do 

15:             Applying the bootstrapping, storing the results 

16:             Applying the SVM classifier 

17:         end for 

18:       Best-F=SVM-Classifier (F) 

19:       Model=Ensemble (Best-F) 

20:      Per=Evaluation (Model) 

21:      end while 

 

 

Here, the pseudo-code of our ensemble expressed as: 

 

Pseudo-code for the Ensemble 

1:          for each classifier do 

2:                W=Weigh-Vote (F) 

3:                C=Predict (W) 

4:              Add W to weight for the class  

5:           end for     

7:          return the class with the biggest weight 

 
 

Results and Discussions  

Here, measures for evaluating SC introduced. P and N 

are the numbers of positive and negative tuples. TP 

refers to the positive tuples that correctly labeled by the 

classifier. TN refers to the number of true negatives. FP 

is the negative tuples that incorrectly labeled as positive. 

FN is the positive tuples that mislabeled as negative. 

Accuracy is the sum of actual tuples that classified TP 

and the number of TN relative to the total number of 

classified instances. Precision stated as the percentage of 

tuples that labeled as positive and actual. Recall refers to 

the percentage of tuples that labeled positive. F-

measure combines precision and recall into a single 

measure  [39]. F-measure comes from a weighted 

harmonic mean of precision and recall. Also, mean 

absolute error (MAE) and root absolute error (RAE) for 

error evaluation employed. These measures computed 

in Eq. (11) to (16)  [42]- [43]. 

 

(11) 
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F.  Dataset 

Two datasets prepared by Niek Sanders applied. 

However, the datasets used in other studies are not 
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openly available, except for Sanders. You can found it in 

this address, http://www.sananalytics.com. The detailed 

information of two corpora shown in Table 1. 

 
Table 1: A description of the used datasets 
 

Datasets 
Number of 

instances 

Number of instances  in classes 

Positive Negative Neutral 

TSA2 479 163 316 - 

TSA3 988 163 316 509 

 

Dataset 1: This dataset is a subset of TSA and consists 

of 479 tweets. There are 163 positive and 316 negative 

tweets in the given dataset.  

Dataset 2:  This dataset is also a subset of TSA and 

contains 988 tweets. It has three classes having 163 

positive, 316 negative, and 509 neutral tweets. 

G.  Experiments 

To achieve state-of-the-art results R implementation 

applied to conduct experiments on the sanders dataset. 

The accuracy and efficiency of the NSET model 

examined. The experiments try to evaluate the 

effectiveness of n-grams and sampling. Moreover, the 

impact of the ensemble method and the combination of 

preprocessing techniques estimated.  

Assumptions: The default setting chosen in all 

experiments. For classification, a supervised method of 

SVM as a base learner used to receive the highest 

performance and combine supervised and ensemble 

methods. In our previous work, experiments showed 

that SVM is one of the best classifiers on the TSA 

dataset. The linear kernel and the value for the 

parameter epsilon=1.0 for LibSVM (C-SVC) determined 

by cross-validation. All related parameters set optimal. 

For cross-validation, 10-fold using shuffled used in all 

experiments. 

Experiment I. The first experiment investigated the 

effect of the TFIDF mechanism and n-grams on the 

evaluation metrics using AdaBoost and sampling on 

TSA2. We used Term Frequency and TFIDF mechanisms 

in the primary preprocessing stage. However, it reveals 

that the Term Frequency mechanism cannot improve 

performance. The TFIDF weighting mechanism was 

useful. Hence, the TFIDF mechanism considered both 

experiments. We showed that 10-fold cross-validation 

with shuffled often is better than a stratified one. 

Moreover, the data using bootstrapping sampling 

reduced. The obtained results obtained shown in Table 

2. 

The highest results in each column of the table 

marked as bolded text. The highest accuracy highlighted 

at 90.61%. Also, this result achieved when used bigrams. 

Bigrams provide a good balance among unigrams and an 

ability to obtain the sentiment expression patterns. 

However, SVM confuses when trigrams used. It found 

that the highest f-measure is 93.52%, which belongs to 

bigrams. 

Experiment II. The second experiment investigated 

the effect of the TFIDF mechanism and n-grams on the 

evaluation metrics using AdaBoost and sampling on the 

TSA3.  

We showed that 40-fold cross-validation with 

stratified is better than shuffled one for this dataset. 

Therefore, 10-fold cross-validation using stratified used 

in this experiment. Also, the data using bootstrapping 

sampling reduced. The obtained results showed in Table 

3.  

The highest accuracy highlighted 87.65%, which 

belongs to the unigram feature. However, SVM confuses 

when n-gram with higher levels applied. The highest f-

measure obtained at 89.64%. 

 
Table 2: The performance of the NSET on the TSA2 (%) 

 
 

N 

ACT 

PRE 

Confusion 

matrix 
Results 

POS NEG P R F A 

1 POS 113 11 91.13 75.84 82.78 90.19 

 NEG 36 319 89.86 96.67 93.14 

2 POS 109 5 95.61 73.15 82.89 90.61 

 NEG 40 325 89.04 98.48 93.52 

3 

POS 105 5 95.45 70.47 81.08 89.77 

 NEG 44 325 88.08 98.48 92.99 

 

Note: ACT= Actual, POS=Positive, NEG=Negative, PRE=Prediction, 

P=Precision, R=Recall, F=F-measure, A=Accuracy 

 

As shown in Fig. 5, the highest accuracy obtained 

when bigrams used. But this matter was not verified for 

TSA3.  

Fig. 6 compares the evaluation metrics for the NSET 

on the datasets. Also, the error indices of two 

experiments show that the obtained results can be good 

enough (Table 4). 

For TSA2, all results are higher than those of TSA3. 

Besides, the values of precision are above 95% for both 

datasets.  

We showed that the NSET make a batter for binary 

classification according to these datasets. Nonetheless, 

this model outperforms the existing methods for 

multiple classification tasks. 

http://www.sananalytics.com/
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Table 3: The performance of the NSET on the TSA3 (%) 
 

 

N 

ACT 

PRE 

Confusion matrix Results 

POS NEG NEU P R F A 

 

1 

POS 121 2 4 95.28 70.35 80.94  

87.65 

 

NEG 4 243 19 91.35 83.51 87.25 

NEU 47 46 502 84.37 95.62 89.64 

 

2 

POS 119 3 8 91.54 69.19 78.81  

86.74 

 

NEG 6 239 18 90.87 82.13 86.28 

NEU 47 49 499 83.87 95.05 89.11 

 

3 

POS 118 3 5 93.65 68.60 79.19  

86.43 

 

NEG 4 231 15 92.40 79.38 85.40 

NEU 50 57 505 82.52 96.19 88.83 

 

Note: ACT= Actual, POS=Positive, NEG=Negative, NEU= Neutral, 

PRE=Prediction, P=Precision, R=Recall, F=F-measure, A=Accuracy 

 
Table 4: Error comparison 

 

Experiment N0. MAE RAE 

I 0.0876 0.0978 

II 0.0977 0.0998 

 

 

 

 
Fig. 5:  The highest accuracy for the NSET based on n-grams. 

 

H.  Discussion 

Here, the effects of n-grams and ensemble 

investigated on the TSA. The effectiveness of the 

suggested model examined the two datasets and 

compared them with the methods in Trupthi et al.  [26], 

our previous model  [27], Padmaja and Hegde  [32], 

Vashishtha and Susan in  [30], Hassan et al.  [21], and 

Pandey et al.  [4]. 

 
Fig. 6:  The highest results for the NSET on two datasets. 

 

The obtained results presented in two experiments 

and validated that the NSET outperforms the existing 

methods on the datasets, except for the achieved 

accuracy on the TSA2. Fig. 7 illustrates the performance 

of the NSET model and others in terms of accuracy. The 

highest accuracy gained 92.78% by Padmaja and 

Hegde  [32] on the TSA2 and 82.2% by Pandey et al.  [4]. 

In the TSA3, whereas the NSET received 90.61 and 

87.65% for TSA2 and TSA3, respectively. However, we 

examine more alternatives to improve accuracy.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7:  The comparison of accuracy among the NSET and 

others. 
 

Fig. 8 illustrates the performance of the NSET model 

and others in terms of precision. The best precision in 
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the literature achieved 90.4% by our previous model  [27] 

on the TSA2 and 82.34% by Pandey et al.  [4] on the 

TSA3. The highest precision gained 95.25% by the NSET, 

whereas Padmaja and Hegde  [32] obtained 85.2%. It was 

approximately 10% higher than that one. We show that 

bigram features can work well using our model on the 

TSA2, but with the increasing to trigram, the embedded 

SVM in our mode confuse and it cannot improve more. 

Besides, the increase of n in the model causes few 

improvements in some cases of the TSA3. It also 

revealed that our model is better than the proposed 

model by Pandey et al.  [4] through a cuckoo search on 

the TSA3. It finds that an uncomplicated and accurate 

model can be good enough in this context.  

Fig. 9 illustrates the performance of the NSET model 

and others in terms of recall. On the other hand, the 

best recall of the NSET gained 98.48% on the TSA2, but 

Padmaja and Hegde  [32] obtained 90.05%. This value for 

Trupthi et al.  

 [26] and our previous model  [27] achieved 89.06 and 

85.4%, respectively. It is also shown that the recall of our 

model received 96.19% on the TSA3; whereas, Pandey et 

al.  [4] obtained 80.16%, an increase of approximately 

16%. These differences revealed that the best criteria 

can be the f-measure.  

 

 
 

Fig. 8:  The comparison of precision among the NSET and 
others. 

 

 

Fig. 9:  The comparison of recall among the NSET and others. 

 
It reflects the highest f-measure gains in both 

datasets. The f-measure for the comparison works is of 

concern in Fig. 10. 

It is clear from the comparison that the NSET shows 

better accuracy for classification. It is a notable 

difference between the models. The highest f-measure 

reached 93.52% by our model on TSA2; whereas, 

Padmaja and Hegde  [32] obtained 89.73%, 

approximately 4% more. The best f-measure of the NSET 

gained 89.64%; whereas, the highest f-measure in the 

literature received 81.25% by Pandey et al.  [4] on the 

TSA3. 

The results showed that the NSET is more accurate 

than its predecessors. It showed that the combination of 

TFIDF, sampling, and n-gram is a good alternative for 

both used datasets.As a limitation in the used dataset, 

the tweets are very short in the TSA3. Therefore, the 

obtained results have not a significant improvement, and 

these are the same approximately in this dataset. For 

this reason, we want to work more in the preprocessing 

stage to choose the best feature in this dataset. 
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Fig. 10:  The comparison of f-measure among the NSET and 

others. 

Conclusion 

The NSET suggests a model for both binary and 

multiple classifications, which classify the dataset into 

positive, negative, or neutral classes. Compared to the 

existing studies on Twitter SC which, either depends on 

sophisticated features or complicated learning 

procedure, the NSET is more simple and straightforward. 

The effect of n-grams using the ensemble method and 

sampling technique on the Twitter datasets is 

investigated. The highest f-measure achieved 93.52%, 

which belongs to bigrams. Bigram features construct the 

relationship of words to improved results. Experimental 

results demonstrated that the present model 

outperforms the existing methods based on two 

experiments on the datasets. Maximum precision 

obtained 95.45%, an increase of 10%. The NSET is very 

redeeming in comparison to others since it applied more 

related words using n-grams and sampling techniques. 

The results revealed that the NSET is more accurate 

than its predecessors. It is also shown that the 

combination of TFIDF, sampling, and n-gram is a good 

alternative for both datasets. Our findings exposed that 

bigram features are well only in the TSA2; whereas, 

unigrams achieved the best performance for the TSA3. It 

revealed that our model works better than the other 

methods based GA in  [32], cuckoo search in [4], 

ensembles in  [21], fuzzy rules in  [26],  [30], and 

supervised techniques in  [27]. 

We believe that performance can still be improved. 

As future work, we aim to study the use of heuristic 

algorithms as a way to improve feature selection and 

reduce the feature.  
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Abbreviations  

TFIDF Term Frequency-Inverse 

Document Frequency  

k c   The column K mean and the row 

belongs to the class C 
2

k c 
 The variance of the kth 

Z(d) A normalization function 

,i cF  A function for feature 
iF  and 

class c 

m The count of the selected 

features 

P  The dataset  

1 1 2 2{( , ),( , ),..., ( , )}n nx c x c x c  A set of data points 

i
x  A p-dimensional vector of real 

numbers 

TF The frequency of word t in 

document d   

N  The number of documents 

Ft The number of documents 

including word t 

MAE Mean Absolute Error  

RAE Absolute Error   
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