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 Background and Objectives: In this paper, a constrained cooperative 
distributed model predictive control (DMPC) is proposed. The proposed 
DMPC is based on linear adaptive generalized predictive control (AGPC) to 
control uncertain nonlinear large-scale systems. 
Methods: The proposed approach, has two main contributions. First, a novel 
cooperative optimization strategy is proposed to improve the centralized 
global cost function of each local controller. Second, using the proposed 
linear distributed AGPC (DAGPC), the mismatch between linearized and 
nonlinear models is compensated via online identification of the linearized 
model in each iteration of optimization. 
Results: The proposed novel cooperative optimization strategy decreases the 
computational burden of optimization process compared to conventional 
cooperative DMPC strategies. Moreover, the proposed linear DAGPC 
decreases the satisfaction time of the terminal condition compared to 
conventional DMPC methods. The paper establishes sufficient conditions for 
the closed-loop stability. The performance and effectiveness of proposed 
method is demonstrated through simulation of a quadruple-tank system for 
both certain and uncertain situations. The imposed uncertainty changes the 
system from minimum phase to nonminimum-phase situation. Closed-loop 
stability and proper convergences are concluded from simulation results of 
both situations. 
Conclusion: Most important advantages of proposed linear cooperative 
DAGPC are its less design complexity and consequently less convergence 
time compared to fully nonlinear DMPC methods, due to its online 
identification of the linearized model. 
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Introduction 
Most practical plants are nonlinear dynamic, so a precise 

dynamic of the simplest systems such as a DC motor 

would still be nonlinear. On the other hand, many 

industrial systems are large-scale systems which consist 

of several nonlinear subsystems.  Controlling these 

nonlinear large-scale systems is one of the most 

important challenges. Model predictive control (MPC) is 

one of the desirable approaches to deal with this 

challenge for linear and nonlinear large-scale systems 

which leads us to distributed MPC (DMPC) algorithms. 

Different linear DMPC approaches namely cooperative, 

non-cooperative and agent negotiation which is a kind of 

cooperative approach, are theoretically investigated and 

can be extended to nonlinear large-scale systems ‎[1] 

and ‎[2]. In non-cooperative algorithms, each local 
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controller optimizes its own local cost function, whereas 

in cooperative algorithms, it optimizes global cost 

function which is a combination of all local cost 

functions ‎[3], ‎[4], and ‎[5]. Dual mode DMPC is developed 

based on the proximity of the state variables to the 

origin. When the state variables are far from origin, the 

nonlinear DMPC algorithm is considered.  On the other 

hand, when the state variables are in the neighborhood 

of the origin, the linear DMPC algorithm is applied.  

Compared to the methods in which nonlinear algorithms 

are used when the states are in a neighborhood of the 

origin, the computational burden is reduced using 

proposed dual mode DMPC or intelligent methods like 

genetic algorithm ‎[6] and ‎[7]. Gradient projection 

optimizer is designed as a subsidiary nonlinear 

nonconvex algorithm that improves the objective 

function.  Therefore, there would be no need for a 

coordinator layer ‎[3] and ‎[8]. On the contrary, some 

methods require coordination between their subsystems 

because the subsystems are optimized 

independently ‎[8], ‎[9], and ‎[11]. In these methods each 

subsystem exchanges its information to its 

interconnected neighbors via coordinator. In some other 

approaches, the interconnection between subsystems is 

considered as a constraint in each local optimization 

instead of using the coordinator ‎[12] and ‎[13]. The 

network based DMPC algorithm with multi rate sampling 

is a combination approach which is designed for a 

nonlinear large-scale uncertain system composed of 

coupled subsystems. Local controllers are 

interconnected through a network-based coordination 

structure that uses iterative strategy to control the 

entire large-scale system ‎[14]. The key factor in 

approaches with coordination layer or approaches in 

which each local controller optimizes its cost function 

separately and exchanges information to its neighbors, is 

communication delay. In most of these approaches, 

communication delay is considered as a constraint ‎[15] 

and ‎[16]. A two-layer robust DMPC is another method 

which is designed for nonlinear constrained systems 

coupled through cost functions ‎[17]. Each subsystem 

receives information of control trajectories of its 

neighbors and solves its local optimization that involves 

interconnected coupling terms and computes its local 

optimal control signal. Sufficient conditions for 

convergence of states of all subsystems are provided in 

the first layer. In the second layer, robust DMPC 

approach is developed which uses a shorter prediction 

horizon and also tolerates larger disturbances ‎[18] 

and ‎[19]. Moreover, robust distributed control methods 

are useful to control a group of nonlinear subsystems 

being exposed to constraints of the control inputs and 

external disturbances ‎[20] and ‎[21]. Another DMPC 

approach is sequential nonlinear DMPC for constrained 

large-scale systems. In this approach, each local 

controller solves its optimization problem at each 

sampling time, and exchanges its information via the 

communication channel to achieve the global objective 

of the overall system. The performance of the proposed 

nonlinear DMPC is similar to the centralized nonlinear 

MPC. However, they are more effective compared to the 

centralized approaches ‎[22] and ‎[23]. By applying the 

contraction theory in DMPC algorithms, larger sampling 

intervals and stronger coupling between subsystems are 

addressed. The conservative conditions are also reduced 

using contraction theory ‎[24] and ‎[25]. 

Hierarchical based DMPC is a useful algorithm for 

uncertain large-scale systems. A two level DMPC 

approach is designed based on hierarchical framework, 

which takes unreliable fault information into account to 

the system.  

The objective is to compensate the identified actuator 

faults of the subsystems which include the detected time 

delays and uncertainties. In first level, faults are 

recovered to maintain the design characteristics for all 

subsystems. In second level, recovery process is applied 

by increasing the whole system performance. The 

designed distributed method satisfies the recovery 

design characteristics, and also imposes lower fault 

compensation and consequently, lower cost compared 

to the centralized and decentralized methods ‎[26] 

and ‎[27]. Nonlinear large-scale systems could be 

controlled using both linear and nonlinear DMPC 

algorithms. Linear algorithms are less complicated than 

nonlinear ones. However, there are restrictions to apply 

the linear algorithms for nonlinear systems.  When the 

nonlinearity degree is high or it has several equilibrium 

points, the closed loop nonlinear system may get 

unstable by applying linear algorithms.  

Moreover, in all reviewed researches, the 

computational burden of optimization and convergence 

time are two main challenges. In this manuscript, a novel 

cooperative DMPC strategy is proposed which reduces 

the computational burden of optimization process and 

convergence time due to its main algorithm’s 

reconfiguration. Additionally, to exploit the advantages 

of linear algorithms for controlling the uncertain 

nonlinear large-scale systems, a new Distributed 

Adaptive Generalized Predictive Control is proposed. 

The remainder of current paper is organized as 

follows. In second section, problem statement is given 

for nonlinear interconnected large-scale systems. In 

third section, the new cooperative optimization strategy 

is proposed. The reconstructed distributed model 

predictive controller is proposed in fourth section. Fifth 

section presents the results and discussion for a 

quadruple-tank system. Finally, concluding remarks are 

expressed in last section. 
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Problem Statement: Mathematical Model of 

Nonlinear Large-Scale Systems 

A. Notation 

The operator | | denotes the absolute value of a 

variable. Variables    and     belong to subsystem  , and 

    denotes the interconnection between subsystem   

and its neighboring subsystem  . Function    represents 

the identified version of  . Function  ̂(   ) is the 

prediction of   in   seconds ahead of the current time  . 

Function   ( ) denotes the increment of  ( ); 

  ( )   ( )   (   ). 

B. Mathematical model 

Consider a large-scale system with nonlinear dynamic 

whose centralized model is decomposed into   coupled 

subsystems. Each subsystem can be presented by the 

following nonlinear continuous-time model: 

 ̇ ( )    (  ( )   ( )   ( ))            (1) 

where,    is a nonlinear function,         and 

        present the vectors of state and input of 

subsystem   respectively,     
    presents the vector 

of state of subsystem   which is the interconnected 

neighboring subsystem of subsystem  , and   is the 

continuous-time index. The overall dynamic,  ( ),  is 

described as follows: 

 ̇( )   ( ( )  ( )) (2) 

where,   [  
    

 ] . It is assumed that    is a 

Lipschitz function. The nonlinear continuous-time model 

of subsystem  , can be discretized using the following 

Euler derivative approximation: 

 ̇ ( )  
  (   )    ( )

  
 (3) 

where,   is the discrete-time index and    is the 

sampling time. Hence, according to (1) and (3), the 

nonlinear discrete-time dynamic of subsystem  , 

  (   ), is represented as: 

  (   )    (  ( )   ( )   ( )) (4) 

where,    is a nonlinear function. The overall discrete-

time dynamic,  (   ), is represented as: 

 (   )   ( ( )  ( )) (5) 

In this paper, a quadruple-tank system, consisting of 

four interconnected subsystems which have first order 

linearized models, is analyzed using proposed approach. 

Thus, each state is considered as the output of its 

corresponding subsystem. As a result, the model for 

each subsystem is implemented in transfer function 

form. 

Approach: Proposed Cooperative Optimization 

Strategy 

DMPC methods are divided into two main groups, 

cooperative and non-cooperative, based on 

communication structure between local controllers. 

Unlike the non-cooperative group, in cooperative DMPC 

the same centralized global cost function, which is 

defined based on a combination of all cost functions, is 

optimized in each local controller to consider the effect 

of control input of each local controller on the entire 

plant. Each local controller optimizes its own control 

input by minimizing the global cost function at each 

iteration, supposing that other control inputs are equal 

to their last optimal values ‎[1], ‎[3], and ‎[4]. In the 

proposed cooperative DMPC, the global cost function 

will be modified. Each local controller optimizes the 

global cost function which is defined based on a convex 

combination of its own cost function and the cost 

function of its neighbors and not cost functions of all 

other subsystems. The proposed approach assumes that 

if two subsystems are not neighbors, it is not necessary 

to consider their cost functions in each other’s 

corresponding global cost functions. The effect of 

control input of each local controller is still taken into 

account on the entire plant which is mathematically 

provable. The proposed idea helps us to significantly 

reduce the computational burden of optimization 

processes of all subsystems. The proposed cooperative 

DMPC uses the following strategy: 

1. All local controllers receive the state measurement 

of overall large-scale system in (5) ( ( )) from the 

sensors at time  . 

2. At iteration  : 

2.1. Each local controller   calculates its vector of future 

inputs,    
, along the control horizon based on  ( ) 

and the vectors of control inputs of its neighboring 

local controllers (not all other controllers) which are 

constant and equal to their latest optimal input 

vectors. 

2.2. The neighboring local controllers exchange their 

vectors of control inputs, and each local controller   

calculates the current optimal input vector,    

    
. 

2.3. According to receding horizon criteria the current 

optimal control input   
    

 is the first element of 

the current optimal input vector,    

    
. 

3. If a termination condition which is considered in 

corresponding global cost function, is satisfied in 

current iteration, each controller   dispatches its 

optimal control input to its actuators; otherwise it 

will go to step 2 and let      . 

4. All subsystems’ dynamics are updated using 

obtained optimal control inputs. 

5. Whenever a new measurement of  ( ) is received 

from sensors, go to step 1 and let      . 

Each local controller   optimizes following 

optimization process in each iteration: 
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   ( )      (      )

 ( ) 

   
 [   ( )     (      )]

 
 

(6-a) 

Subject to (5). 

  (   )                (6-b) 

   

 
    

   
               (6-c) 

‖ ̂ ( )    ( )‖  

  
  

  (   )
   

  [      ] 

 

 

(6-d) 

with: 

 ( )       ∑    
 

 (6-e) 

           ∑  

 

   (6-f) 

and: 

  ( )  ∑‖ ̂ (   )    (   )‖  

 

  

   

 ‖   (     )‖  

  

 

 

 

(7) 

where,    is the prediction horizon, and      is the 

set of neighboring subsystems of subsystem  . The 

termination condition is represented in (6-d) where    is 

a small enough positive constant. The termination 

condition states that if the closed loop system is stable, 

the prediction error tends to zero over the time. 

 ̂ (   )          is the predicted output of 

subsystem   which calculates via particular manner in 

each linear MPC algorithm.    is the reference 

trajectory.    and    are diagonal positive definite 

weighting matrices of prediction errors and increment 

control inputs respectively with appropriate dimensions. 

To achieve global optimality,  ( ) is represented as a 

convex combination of subsystem   and its neighbors’ 

cost functions with appropriate    and    coefficients. 

Approach: Proposed Cooperative Constrained 

DMPC Algorithm 

There are two key reasons for using linear algorithms 

to control the nonlinear large-scale systems. First of all, 

the identification of linear subsystems, based on 

empirical data is a lot easier than nonlinear one. 

Secondly, most industrial nonlinear systems like liquid 

level control, internal temperature control of a furnace, 

power system components, Arrhenius temperature 

based chemical reaction and pressure control have only 

one equilibrium point.  Thus, they can be identified by a 

precise first order linear model. On the other hand, MPC 

algorithms are model based control strategies, so a 

complicated model significantly increases the 

computational burden of applied MPC strategy.  

Considering this, in many industrial processes the first 

order model is used to take advantage of the MPC useful 

characteristics. 

In this paper, a reconstructed cooperative 

constrained DAGPC algorithm is proposed to control 

uncertain nonlinear large-scale systems. The proposed 

DAGPC algorithm identifies the transfer function of first 

order linearized system which actually presents the 

nonlinear behavior of the plant. 

A.  Proposed cooperative constrained DAGPC algorithm 

The linear GPC algorithm is developed based on the 

transfer function model which can be applied to non-

minimum phase and unstable linear systems ‎[28]. The 

mismatch between nonlinear and linearized models will 

be compensated using online identification process in 

the proposed DAGPC approach. The numerator and 

denominator polynomials of first order linearized version 

will be identified using online RLS algorithm. The 

identified polynomials, free responses of nominal 

nonlinear subsystems, and GPC algorithm are applied to 

the proposed cooperative optimization strategy to 

calculate the optimal control trajectories. The calculated 

optimal control trajectories will be applied to nominal 

nonlinear system and this process iterates in the next 

time sample. The free response of each nominal 

nonlinear subsystem is derived from its past information 

of input and output. 

Assume that the identified linearized model of 

subsystem   is: 

  ( )  
   

 (   )

  
 (   )

  ( )  
∑    

 (   )  ( )   

  
 (   )

 (8) 

where: 

   
 (   )      

     

    

  
 (   )        

      
    

   
 (   )      

     

    

where,    
 ,     

  and     

  are the orders of the identified 

polynomials,   
 ,    

  and    
 , respectively. The DAGPC 

matrices will be calculated using the new identified 

polynomials of linearized model and finally the optimal 

control input will be obtained using these new matrices. 

The proposed DAGPC algorithm solves the 

optimization problem for subsystem   at each iteration   

using the novel proposed cooperative optimization 

strategy in which, the new identified numerator and 

denominator of linearized model of each subsystem are 

calculated in the beginning of each time sample. In this 

process, the cost function, which is presented in (6-a), is 

being subjected to (8) which presents linearized model 

with new identified numerator and denominator.  

The cost function of subsystem   is represented as 

matrix form as follows: 

   (     )
   (     )     

      
 (9) 
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in which the predicted output matrix is: 

     
    

   
    

    
    

 (10) 

where: 

   [

 ̂ (   )

 ̂ (   )
 

 ̂ (    )

]

    

 

   
  [   

     
      

 ]          

   
 [   

    
     ]

 
          

The local controller   analytically evaluates its closed 

form solution of future optimal control trajectory by 

computing the following derivative equation: 

   
   

      
 (  

      
    )

  

  
    (  

   
    

    
    

) 

 

 

(11) 

where: 

   
 [

  ( )
  (   )

]
(   

   )  

 

   
 

[
 
 
 

   ( )

   (   )
 

   (      )]
 
 
 

    

 

    
 

[
 
 
 

   ( )

   (   )
 

   (      )]
 
 
 

    

    

   
 

Similar to the conventional GPC, the predicted 

output,  ̂ (   ) (         ) will be calculated 

using developed CARIMA and Diophantine relations as 

following procedure, assuming the delay is zero ‎[28]: 

   
 (   )  ( )      

   (   )

 ∑    
   (   )

   

   
 (   )  ( ) 

 

 

 

(12) 

    
 
 
(   )   

 (   )       
 
 
(   ) (13) 

where: 

  
 
 
(   )    

(   )
   

(   )
    (14) 

  
 
 
(   )    

(   )
   

(   )
     

   
(     )

  (   ) 

 

(15) 

where, the coefficients of   
 
 
(   ) and   

 
 
(   ) are 

calculated using the following recursive equations: 

  
 
   

(   )    
 
 
(   )    

(   )
    (16) 

  
(      )

   
(      )

   
(   ) ̃ (    )

        (17) 

with following initial values:  

  
 
 
  (     

 (   )) (18) 

  
 
 
     

(   )
   (19) 

where,  ̃ (    )
 (      ) are coefficients of the 

   
 (   ). The future outputs are calculated using (12) 

and (13) as follows: 

  (   )    
 
 
(   )  ( )

   
 
 
(   ) [    

   (     )

 ∑    
   (     )

   

]

   
 
 
(   )  (   ) 

 
 
 
 
 
 
 

(20) 

The proper estimation of   (   ) is its average so 

the predicted outputs are obtained using the average of 

  (   ) in (20): 

 ̂ (   )    
 
 
(   )   (     )

 ∑   
 

 
(   )   (     )

   

   
 
 
(   )  ( ) 

         

 
 
 
 

(21) 

  
 
 
(   )      

  
 
 
(   )

     
(    

(   )
     

   
(     )

  (   )) 

 
 

(22) 

   
 

 
(   )      

  
 
 
(   )

     
(    

(   )
     

   
(     )

  (   )) 

 
 

(23) 

  (   ) is the white noise, so its average is zero. 

The new DAGPC matrices of predicted output’s vector of 

the form of (10), are presented with appropriate 

dimensions as: 

  
  

[
 
 
 
   

(   )

  
(   )

  
(   )

  
(   )

 

 
 

(    )
 

 
 

(    )
]
 
 
 
 

   (   
   )

 

  
  

[
 
 
 
   

(   )
  

  
(   )

  
(   )

 
 

 
 

   

 
 

(       )
 
 

(       )
   

 

(    )

]
 
 
 
 

     

 

  
(   )

     
 

  
(     )

  ∑     (         )

   

   

     
 

   
  

[
 
 
 
 
    

(   )   

   
(   )    

(   )  
 

 
 

   

 
  

(       )
 
  

(       )
   

  

(    )

]
 
 
 
 
 

     

 

   
(   )

     
 

   
(     )

  ∑      (         )
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where,   
(   )

 and    
(   )

 (                      

 ) are the coefficients of   
 
 
(   ) and    

 

 
(   ) 

polynomials respectively. 

B.  Stability analysis 

Since the GPC is developed based on the transfer 

function, it is possible for it to obtain the closed-loop 

transfer function and derive some properties such as 

closed-loop stability. In (11), it is assumed that: 

   (  
      

    )
  

  
     [

   

 
    

]

     

 [

          

   
     

       

]

     

 

 
 
 
 
 

(24) 

sufficient conditions for the closed-loop stability of 

the system are provided next. 

Theorem 1: Let the overall constrained nonlinear system 

in (2) with the DMPC controller in (6), if: 

|    |  (      
   ) (25) 

|        
     |   (      

   ) (26) 

hold for subsystem   with       
     , and if: 

|    |  (      
    ) (27) 

|        
      |   (      

    ) (28) 

hold for its neighboring subsystem   with       
     

 , then the dynamic of subsystem   satisfies the terminal 

condition (6-d) and the closed loop system will be stable, 

where: 

    (      
(   )

        
 
 

(    )
) 

   
 (    

  
(   )

        
 
 

(    )
) 

     (      
   

(   )
          

  
 

(    )) 

    
 (      

   
(   )

          

  
 

(    )) 

in which,       
           

  are the elements of the first 

row of (   
 )

  
 matrix. 

Proof. From (11) and (24), it follows that: 

   
   (     

    
    

    
) (29) 

From (8), it is clear that we are dealing with a multiple 

input model for each subsystem  , thus for calculating 

the closed loop system the control input of subsystem   

and the control vector of its neighbouring subsystems 

should be taken into consideration separately. First, the 

control of subsystem   is considered, hence the 

substitution   ( )    and    
   in (8) and (29) 

respectively leads to: 

  ( )  
    

      
  

  ( ) (30) 

   
   (     

    
) (31) 

Current increment of optimal control input of 

subsystem  ,    ( ), is the first row of    
: 

   ( )     
(     

    
) (32) 

after being substituted from (30), (32) obtains: 

      
  

    

   ( )     
(          

    
) (33) 

where,       is the  column matrix in which all its 

elements are one, and           
    

 is expanded as: 

          
    

        

 (  
    

    )  ( ) 

 

(34) 

where: 

  
  [

  
(   )

 

 
 

(    )
]    

  [

  
(   )

 

 
 

(    )
] 

after being substituted from (24) and (34), (33) obtains: 

      
  

    

   ( )

       (        
  )  ( ) 

 
 

(35) 

where: 

    (            
) 

   
 (    

  
(   )

        
 
 

(    )
) 

    (      
(   )

        
 
 

(    )
) 

and consequently, the closed loop transfer function is 

analytically yielded as:  
  ( )

  

 
       

(      
   )  (        

     )        
  

 

 

(36) 

Second, the control vector of neighboring subsystems 

of subsystem   is considered, thus the substitution 

   
   in (29) leads to: 

    (          
    

    
    

) (37) 

It is sufficient to calculate only the effect of one of the 

neighboring inputs and extend the result to the rest of 

them, i. e., the control of subsystem   is considered and 

set all other elements of    
 to zero, thus the 

substitution   ( )    in (8) leads to: 

  ( )  
    

     
   

  ( ) (38) 

and also (37) lead to:  

    (          
    

    
    

) (39) 

it is clear that: 

          
    

    
    

   (40) 
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the control trajectory of subsystem  ,    
, yields: 

   
 (   

 )
  

(          
    

)  (41) 

where: 

(   
 )

  
 [

      
         

 

   
       

          

 
]

     

 

Current increment of optimal control input of 

subsystem  ,    ( ), is the first row of    
: 

   ( )    ((   
 )

  
) (          

    
) (42) 

where,   ((   
 )

  
) indicates the first row of the 

(   
 )

  
 and after the substitution, (42) leads to: 

   ( )  [      
         

 
] (       

 (  
    

    )  ( )) 

 

(43) 

From (38) and (43), it follows that: 

      
  

    

   ( )

       

 (          
  )  ( ) 

 

 

 

(44) 

where: 

   
        

           

  

   
  (      

   
(   )

          

  
 

(    )) 

   
  (      

   
(   )

          

  
 

(    )) 

the closed loop transfer function is analytically yielded 

as: 

  ( )

  

 
        

(      
    )  (        

      )         
  

 
(45) 

Remark 1. The closed-loop transfer function in (45) holds 

for all other elements of    
. 

Therefore, based on (36), (45), and remark 1, the 

overall characteristic equation is obtained as follows: 

 (   )     ( 
  )  ∏   ( 

  )

  

   
   

 (46) 

where,    ( 
  ) and    ( 

  ) are denominators of 

(36) and (45) respectively. The closed loop stability 

conditions are investigated by applying the Jury criteria 

for following equations: 

   ( 
  )            

        
   (47) 

   ( 
  )            

        
      

       (   ) 

 

(48) 

where: 

     (      
   ) 

     (        
     ) 

          (    ) 

     (      
    ) 

     (        
      ) 

First,    ( 
  ) is investigated. According to Jury 

criteria, the necessary and sufficient conditions for the 

polynomial    ( 
  ) to have no roots outside or on the 

unit circle are: 

   ( )    (49) 

   (  )    (50) 

|    |       (51) 

|    |  |    | (52) 

       (53) 

where: 

     |
        
        

|       |
        
        

| 

Inequality (51) holds if inequality (53) holds. 

Inequalities (49), (50) and (52) are represented as: 

                 (54) 

                 (55) 

|(    )
 
 (    )

 
|  |    (         )| (56) 

From inequality (56) we have: 

|    |  |         | (57) 

From (54) and (54) it follows that            , so 

the inequality (57) leads to: 

|    |            (58) 

after being substituted from (51), inequality (58) yields: 

|    |        (59) 

So, the necessary and sufficient conditions for the 

polynomial    ( 
  ) to have no roots outside or in the 

unit circle, with       , are: 

|    |       (60) 

|    |        (61) 

The necessary and sufficient conditions for the 

   ( 
  )         (   )  in order not to have roots 

outside or on the unit circle, with     
  , are inspired 

from the above mentioned procedure of    ( 
  ) and 

are represented as: 

|    
|       (62) 

|    |        (63) 
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for         (   ). This complete the proof. 

Results and Discussion 

A quadruple-tank system is taken into account as a 

nonlinear interconnected large-scale system which 

consists of four coupled subsystems to demonstrate the 

performance and effectiveness of the proposed 

cooperative DAGPC algorithm. The proposed algorithm is 

developed based on transfer function model. Thus, each 

state variable that denotes height of water in 

corresponding tank is considered as the output of the 

corresponding subsystem (    ) ‎[6]. Hence, the 

following continuous-time implementation is considered 

as: 

 ̇ ( )   
  

  

√    ( )  
  

  

√    ( )  
    

  

  ( ) 
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The discrete-time model can be obtained using Euler 

derivative approximation, presented in (3), and sampling 

time   : 

  (   )    ( )

 (    ⁄ ) (   √    ( )
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where,    (       ) is the output of the subsystem   

which presents its water level, and    (     ) is the 

control input which presents input voltage to the pump 

 .  Definitions of       (        ),       (     ) and 

  are given in ‎[6]. Typical experimental values of 

parameters are given in ‎[29] as: 

             

             

                

                

          ⁄  

(     )  (         )      ⁄  

(     )  (       ) 

The quadruple-tank system is investigated with 

following set-points: 

  
          

  
          

  
          

  
         

According to experimental data, above mentioned 

      and set-point values are related to minimum-phase 

model of the quadruple-tank system ‎[29]. 

Following constraint is imposed to control inputs: 

             
The objective of the control process is to maintain the 

water levels at the set-points. The prediction horizon is 

 , the weighting matrices are      and     , the 

sampling time is       , and the initial water levels are 

considered to be zero. The linearized models of 

subsystems are identified with first order models. The 

simulation results of predicted outputs of subsystems 

are illustrated in Fig. 1, Fig. 2, Fig. 3, and Fig. 4. 

 
Fig. 1: The predicted output of subsystem 1. 

 
Fig. 2: The predicted output of subsystem 2. 
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Fig. 3: The predicted output of subsystem 3. 

 
Fig. 4: The predicted output of subsystem 4. 

 

It can be concluded that the proposed cooperative 

DAGPC algorithm leads to stable and feasible responses 

which solve proposed cooperative optimization strategy 

at each time instant. Based on the proposed cooperative 

optimization strategy, each local controller solves a 

global cost function that is a convex combination of its 

own and its neighboring subsystems’ cost functions. For 

example, in quadruple-tank system, subsystem 1 is 

neighbor to the subsystem 3, but not to the subsystems 

2 and 4. Thus, the corresponding global cost function 

which is minimized in local controller of subsystem 1 is 

defined as:  

                    

while this global cost function, in conventional 

cooperative DMPCs, is defined based on all four 

subsystems ‎[1], ‎[3], and ‎[4]: 

              

Thus, it is expected to decrease the computational 

burden of optimization and convergence time using 

proposed cooperative optimization strategy.  Simulation 

results of predicted outputs of subsystems 1 and 2, are 

illustrated in Fig. 5 and Fig. 6 respectively using 

conventional cooperative DMPC, proposed in ‎[1], ‎[3], 

and ‎[4]. It is clear from Fig. 1 and Fig. 2 that the 

proposed method, in this paper, decreases the 

convergence times compared to the conventional 

cooperative DMPC which are illustrated in Fig. 5 and Fig. 

6.  

 
Fig. 5: The predicted output of subsystem 1, using the 

conventional DMPC. 
 

 
Fig. 6: The predicted output of subsystem 2, using the 

conventional DMPC. 
 

In ‎[6], the dual mode DMPC approach is proposed to 

investigate the quadruple-tank system. According to 

simulation results which are depicted in Fig. 1, Fig. 2, Fig. 

3, and Fig. 4, convergence times of predicted outputs are 

decreased using proposed approach, in this paper, in 

comparison with the results which are presented in ‎[6].  

Because the proposed Cooperative DAGPC method in 

this paper is based on transfer function model of the 

system, the state variable of each subsystem is 

considered as the output of the corresponding 

subsystem.   

Now, the proposed approach is examined when an 

uncertainty is applied. Assuming that in      (   ) 

coefficients of corresponding pumps’ flows change to 

following new values: 
(  

      
   )  (         )      ⁄  
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in which, according to the experimental data, above 

mentioned new coefficients are related to nonminimum-

phase model of the quadruple-tank system ‎[29]. The 

simulation results of predicted outputs of uncertain 

subsystems are drawn in Fig. 7, Fig. 8, Fig. 9, and Fig. 10. 

The results emphasize performance and effectiveness of 

proposed algorithm in dealing with the uncertainty 

which represents the nonminimum-phase specifications 

of the quadruple-tank system. Although responses 

fluctuate when the uncertainties are imposed, they 

quickly converge back to their set-points. 

 
Fig. 7: The predicted output of uncertain subsystem 1. 

 
Fig. 8: The predicted output of uncertain subsystem 2. 

 
Fig. 9: The predicted output of uncertain subsystem 3. 

 
Fig. 10: The predicted output of uncertain subsystem 4. 

 

Conclusion 

In this paper a novel cooperative DMPC strategy is 

proposed which improves the global cost function of 

each local controller. In proposed strategy, each local 

controller optimizes the global cost function that is a 

convex combination of its own and its neighboring 

subsystems’ cost functions. So the computational 

burden of optimization and convergence time is reduced 

compared to conventional cooperative DMPC methods. 

Because, in these conventional cooperative DMPCs, each 

local controller optimizes the global cost function which 

is defined as a combination of its own and all other 

subsystems’ cost functions. A linear distributed model 

predictive controller; DAGPC is presented which employs 

the proposed cooperative optimization strategy to 

control the uncertain coupled nonlinear large-scale 

systems. The simulation results of a quadruple-tank 

system consisting of four interconnected nonlinear 

subsystems with and without imposed uncertainty 

indicate the performance of the proposed approach. 

According to simulation results, proposed cooperative 

DAGPC algorithm leads to stable and feasible responses 

for both certain and uncertain models in which the 

imposed uncertainty represents the nonminimum-phase 

specifications of the quadruple-tank system. 
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